Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Fastidious Anatomization of Biota Procured Compounds on Cancer Drug Discovery

Author(s): Anand Thirupathi*, Chandra M. Shanmugavadivelu and Sampathkumar Natarajan

Volume 21, Issue 5, 2020

Page: [354 - 363] Pages: 10

DOI: 10.2174/1389201020666191128145015

Price: $65

Abstract

Background: Natural products are the rootstock for identifying new drugs since ancient times. In comparison with synthetic drugs, they have abounding beneficial effects in bestowing protection against many diseases, including cancer. Cancer has been observed as a major threat in recent decades, and its prevalence is expected to increase over the next decades. Also, current treatment methods in cancer therapy such as radiation therapy and chemotherapy cause severe adverse side effects among the cancer population. Therefore, it is exigent to find a remedy without any side effects.

Methods: In recent years, research has focused on obtaining naturally derived products to encounter this complication. The current pace of investigations, such as gene identification and advancement in combinatorial chemistry, leads to the aberrant access to a wide range of new synthetic drugs. In fact, natural products act as templates in structure predictions and synthesis of new compounds with enhanced biological activities.

Results: Recent developments in genomics have established the importance of polymorphism, which implies that patients require different drugs for their treatment. This demands the discovery of a large number of drugs, but limited sources restrict the pharmaceutical industry to overcome these major obstacles. The use of natural products and their semisynthetic and synthetic analogues could alleviate these problems. However, the lack of standardization in terms of developing methods for evaluating the chemical composition, efficacy, isolation and international approval is still a major limitation in this field. In the past few years, several drug-approval authorities, including the FDA and WHO have allowed using these naturally derived compounds in humans.

Conclusion: In this review, we described the use of some natural products from plant and marine sources in cancer treatment and shed some light on semi-synthetic and synthetic compounds derived from natural sources used in cancer therapy.

Keywords: Natural products, cancer therapy, analogues, curcumin, betulinic acid, andrographolide.

Graphical Abstract

[1]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod., 2012, 75(3), 311-335.
[http://dx.doi.org/10.1021/np200906s] [PMID: 22316239]
[2]
Mishra, B.B.; Tiwari, V.K. Natural products: an evolving role in future drug discovery. Eur. J. Med. Chem., 2011, 46(10), 4769-4807.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.057] [PMID: 21889825]
[3]
Carter, G.T. Natural products and Pharma 2011: strategic changes spur new opportunities. Nat. Prod. Rep., 2011, 28(11), 1783-1789.
[http://dx.doi.org/10.1039/c1np00033k] [PMID: 21909580]
[4]
Cragg, G.M.; Newman, D.J. Natural products: a continuing source of novel drug leads. Biochim. Biophys. Acta, 2013, 1830(6), 3670-3695.
[http://dx.doi.org/10.1016/j.bbagen.2013.02.008] [PMID: 23428572]
[5]
Bhatnagar, P.; Pant, A.B.; Shukla, Y.; Chaudhari, B.; Kumar, P.; Gupta, K.C. Bromelain nanoparticles protect against 7,12-dimethylbenz[a]anthracene induced skin carcinogenesis in mouse model. Eur. J. Pharm. Biopharm., 2015, 91, 35-46.
[http://dx.doi.org/10.1016/j.ejpb.2015.01.015] [PMID: 25619920]
[6]
Mathers, C.D.; Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med., 2006, 3(11) e442
[http://dx.doi.org/10.1371/journal.pmed.0030442] [PMID: 17132052]
[7]
Leo, E.; Arletti, R.; Forni, F.; Cameroni, R. General and cardiac toxicity of doxorubicin-loaded gelatin nanoparticles. Farmaco, 1997, 52(6-7), 385-388.
[PMID: 9372590]
[8]
Kilickap, S.; Akgul, E.; Aksoy, S.; Aytemir, K.; Barista, I. Doxorubicin-induced second degree and complete atrioventricular block. Europace, 2005, 7(3), 227-230.
[http://dx.doi.org/10.1016/j.eupc.2004.12.012] [PMID: 15878560]
[9]
Perazella, M.A. Onco-nephrology: renal toxicities of chemotherapeutic agents. Clin. J. Am. Soc. Nephrol., 2012, 7(10), 1713-1721.
[http://dx.doi.org/10.2215/CJN.02780312] [PMID: 22879440]
[10]
Lameire, N. Nephrotoxicity of recent anti-cancer agents. Clin. Kidney J., 2014, 7(1), 11-22.
[http://dx.doi.org/10.1093/ckj/sft135] [PMID: 25859345]
[11]
Gibaud, S.; Andreux, J.P.; Weingarten, C.; Renard, M.; Couvreur, P. Increased bone marrow toxicity of doxorubicin bound to nanoparticles. Eur. J. Cancer, 1994, 30A(6), 820-826.
[http://dx.doi.org/10.1016/0959-8049(94)90299-2] [PMID: 7917543]
[12]
Kurtin, S. Myeloid toxicity of cancer treatment. J. Adv. Pract. Oncol., 2012, 3(4), 209-224.
[PMID: 25031949]
[13]
Rajeswara Rao, B.R.; Singh, K.; Sastry, K.P.; Singh, C.P.; Kothari, S.K.; Rajput, D.K.; Bhattacharya, A.K. Cultivation technology for economicaly important medicinal plants.Advances in medicinal Plants; Reddy, K.J.; Bahadur, B.; Bhadraiah, B.; Rao, M.L.N., Eds.; University Press: Hyderabad, 2007, pp. 112-122.
[14]
Wani, M.C.; Taylor, H.L.; Wall, M.E.; Coggon, P.; McPhail, A.T. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc., 1971, 93(9), 2325-2327.
[http://dx.doi.org/10.1021/ja00738a045] [PMID: 5553076]
[15]
Schiff, P.B.; Horwitz, S.B. Taxol stabilizes microtubules in mouse fibroblast cells. Proc. Natl. Acad. Sci. USA, 1980, 77(3), 1561-1565.
[http://dx.doi.org/10.1073/pnas.77.3.1561] [PMID: 6103535]
[16]
Milas, L.; Hunter, N.R.; Kurdoglu, B.; Mason, K.A.; Meyn, R.E.; Stephens, L.C.; Peters, L.J. Kinetics of mitotic arrest and apoptosis in murine mammary and ovarian tumors treated with taxol. Cancer Chemother. Pharmacol., 1995, 35(4), 297-303.
[http://dx.doi.org/10.1007/BF00689448] [PMID: 7828272]
[17]
Jordan, M.A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer, 2004, 4(4), 253-265.
[http://dx.doi.org/10.1038/nrc1317] [PMID: 15057285]
[18]
Weaver, B.A. How Taxol/paclitaxel kills cancer cells. Mol. Biol. Cell, 2014, 25(18), 2677-2681.
[http://dx.doi.org/10.1091/mbc.e14-04-0916] [PMID: 25213191]
[19]
Derry, W.B.; Wilson, L.; Khan, I.A.; Luduena, R.F.; Jordan, M.A. Taxol differentially modulates the dynamics of microtubules assembled from unfractionated and purified beta-tubulin isotypes. Biochemistry, 1997, 36(12), 3554-3562.
[http://dx.doi.org/10.1021/bi962724m] [PMID: 9132006]
[20]
Kingston, D.G. Recent advances in the chemistry of taxol. J. Nat. Prod., 2000, 63(5), 726-734.
[http://dx.doi.org/10.1021/np000064n] [PMID: 10843603]
[21]
Kingston, D.G. Taxol, a molecule for all seasons. Chem. Commun. (Camb.), 2001, 10, 867-880.
[http://dx.doi.org/10.1039/b100070p]
[22]
Ojima, I.; Kumar, K.; Awasthi, D.; Vineberg, J.G. Drug discovery targeting cell division proteins, microtubules and FtsZ. Bioorg. Med. Chem., 2014, 22(18), 5060-5077.
[http://dx.doi.org/10.1016/j.bmc.2014.02.036] [PMID: 24680057]
[23]
Ibrahim, S.; Gao, D.; Sinko, P.J. Selective cytotoxicity and combined effects of camptothecin or paclitaxel with sodium-R-alpha lipoate on A549 human non-small cell lung cancer cells. Nutr. Cancer, 2014, 66(3), 492-499.
[http://dx.doi.org/10.1080/01635581.2013.749290] [PMID: 24063429]
[24]
Fulda, S.; Friesen, C.; Los, M.; Scaffidi, C.; Mier, W.; Benedict, M.; Nuñez, G.; Krammer, P.H.; Peter, M.E.; Debatin, K.M. Betulinic acid triggers CD95 (APO-1/Fas)- and p53-independent apoptosis via activation of caspases in neuroectodermal tumors. Cancer Res., 1997, 57(21), 4956-4964.
[PMID: 9354463]
[25]
Fulda, S. Betulinic Acid for cancer treatment and prevention. Int. J. Mol. Sci., 2008, 9(6), 1096-1107.
[http://dx.doi.org/10.3390/ijms9061096] [PMID: 19325847]
[26]
Potze, L.; Mullauer, F.B.; Colak, S.; Kessler, J.H.; Medema, J.P. Betulinic acid-induced mitochondria-dependent cell death is counterbalanced by an autophagic salvage response. Cell Death Dis., 2014, 5 e1169
[http://dx.doi.org/10.1038/cddis.2014.139] [PMID: 24722294]
[27]
Melzig, M.F.; Bormann, H. Betulinic acid inhibits aminopeptidase N activity. Planta Med., 1998, 64(7), 655-657.
[http://dx.doi.org/10.1055/s-2006-957542] [PMID: 9810272]
[28]
Takada, Y.; Aggarwal, B.B. Betulinic acid suppresses carcinogen-induced NF-kappa B activation through inhibition of I kappa B alpha kinase and p65 phosphorylation: abrogation of cyclooxygenase-2 and matrix metalloprotease-9. J. Immunol., 2003, 171(6), 3278-3286.
[http://dx.doi.org/10.4049/jimmunol.171.6.3278] [PMID: 12960358]
[29]
Kasperczyk, H.; La Ferla-Brühl, K.; Westhoff, M.A.; Behrend, L.; Zwacka, R.M.; Debatin, K.M.; Fulda, S. Betulinic acid as new activator of NF-kappaB: molecular mechanisms and implications for cancer therapy. Oncogene, 2005, 24(46), 6945-6956.
[http://dx.doi.org/10.1038/sj.onc.1208842] [PMID: 16007147]
[30]
Fulda, S.; Jeremias, I.; Debatin, K.M. Cooperation of betulinic acid and TRAIL to induce apoptosis in tumor cells. Oncogene, 2004, 23(46), 7611-7620.
[http://dx.doi.org/10.1038/sj.onc.1207970] [PMID: 15361826]
[31]
Xu, Y.; Li, J.; Li, Q.J.; Feng, Y.L.; Pan, F. Betulinic acid promotes TRAIL function on liver cancer progression inhibition through p53/Caspase-3 signaling activation. Biomed. Pharmacother., 2017, 88, 349-358.
[http://dx.doi.org/10.1016/j.biopha.2017.01.034] [PMID: 28119237]
[32]
Sandur, S.K.; Deorukhkar, A.; Pandey, M.K.; Pabón, A.M.; Shentu, S.; Guha, S.; Aggarwal, B.B.; Krishnan, S. Curcumin modulates the radiosensitivity of colorectal cancer cells by suppressing constitutive and inducible NF-kappaB activity. Int. J. Radiat. Oncol. Biol. Phys., 2009, 75(2), 534-542.
[http://dx.doi.org/10.1016/j.ijrobp.2009.06.034] [PMID: 19735878]
[33]
Singh, S.; Aggarwal, B.B. Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane) [corrected]. J. Biol. Chem., 1995, 270(42), 24995-25000.
[http://dx.doi.org/10.1074/jbc.270.42.24995] [PMID: 7559628]
[34]
Zong, H.; Wang, F.; Fan, Q.X.; Wang, L.X. Curcumin inhibits metastatic progression of breast cancer cell through suppression of urokinase-type plasminogen activator by NF-kappa B signaling pathways. Mol. Biol. Rep., 2012, 39(4), 4803-4808.
[http://dx.doi.org/10.1007/s11033-011-1273-5] [PMID: 21947854]
[35]
Deng, Y.I.; Verron, E.; Rohanizadeh, R. Molecular mechanisms of anti-metastatic activity of curcumin. Anticancer Res., 2016, 36(11), 5639-5647.
[http://dx.doi.org/10.21873/anticanres.11147] [PMID: 27793885]
[36]
Shankar, S.; Srivastava, R.K. Involvement of Bcl-2 family members, phosphatidylinositol 3′-kinase/AKT and mitochondrial p53 in curcumin (diferulolylmethane)-induced apoptosis in prostate cancer. Int. J. Oncol., 2007, 30(4), 905-918.
[http://dx.doi.org/10.3892/ijo.30.4.905] [PMID: 17332930]
[37]
Moragoda, L.; Jaszewski, R.; Majumdar, A.P. Curcumin induced modulation of cell cycle and apoptosis in gastric and colon cancer cells. Anticancer Res., 2001, 21(2A), 873-878.
[PMID: 11396178]
[38]
Li, L.; Braiteh, F.S.; Kurzrock, R. Liposome-encapsulated curcumin: in vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis. Cancer, 2005, 104(6), 1322-1331.
[http://dx.doi.org/10.1002/cncr.21300] [PMID: 16092118]
[39]
Kim, K.; Ryu, K.; Ko, Y.; Park, C. Effects of nuclear factor-kappaB inhibitors and its implication on natural killer T-cell lymphoma cells. Br. J. Haematol., 2005, 131(1), 59-66.
[http://dx.doi.org/10.1111/j.1365-2141.2005.05720.x] [PMID: 16173963]
[40]
Hasima, N.; Aggarwal, B.B. Targeting proteasomal pathways by dietary curcumin for cancer prevention and treatment. Curr. Med. Chem., 2014, 21(14), 1583-1594.
[http://dx.doi.org/10.2174/09298673113206660135] [PMID: 23834173]
[41]
Chen, C.C.; Sureshbabul, M.; Chen, H.W. Curcumin suppresses metastasis via Sp-1, FAK inhibition, and E-cadherin upregulation in colorectal cancer. Evid. Based Complement. Alternat. Med., 2013, 2013 e541685
[42]
Zhou, D.Y.; Zhang, K.; Conney, A.H.; Ding, N.; Cui, X.X.; Wang, H.; Verano, M.; Zhao, S.Q.; Fan, Y.X.; Zheng, X.; Du, Z.Y. Synthesis and evaluation of curcumin-related compounds containing benzyl piperidone for their effects on human cancer cells. Chem. Pharm. Bull. (Tokyo), 2013, 61(11), 1149-1155.
[http://dx.doi.org/10.1248/cpb.c13-00507] [PMID: 23985704]
[43]
Sagrawat, H.; Khan, M.Y. Immunomodulatory plants: A phytopharmacological review. Pharmacogn. Rev., 2007, 1, 248-260.
[44]
Puri, A.; Saxena, R.; Saxena, R.P.; Saxena, K.C.; Srivastava, V.; Tandon, J.S. Immunostimulant agents from Andrographis paniculata. J. Nat. Prod., 1993, 56(7), 995-999.
[http://dx.doi.org/10.1021/np50097a002] [PMID: 8377022]
[45]
Rajagopal, S.; Kumar, R.A.; Deevi, D.S.; Satyanarayana, C.; Rajagopalan, R. Andrographolide, a potential cancer therapeutic agent isolated from Andrographis paniculata. J. Exp. Ther. Oncol., 2003, 3(3), 147-158.
[http://dx.doi.org/10.1046/j.1359-4117.2003.01090.x] [PMID: 14641821]
[46]
Han, Y.; Bu, L.M.; Ji, X.; Liu, C.Y.; Wang, Z.H. Modulation of multidrug resistance by andrographolid in a HCT-8/5-FU multidrug-resistant colorectal cancer cell line. Chin. J. Dig. Dis., 2005, 6(2), 82-86.
[http://dx.doi.org/10.1111/j.1443-9573.2005.00197.x] [PMID: 15904426]
[47]
Yang, L.; Wu, D.; Luo, K.; Wu, S.; Wu, P. Andrographolide enhances 5-fluorouracil-induced apoptosis via caspase-8-dependent mitochondrial pathway involving p53 participation in hepatocellular carcinoma (SMMC-7721) cells. Cancer Lett., 2009, 276(2), 180-188.
[http://dx.doi.org/10.1016/j.canlet.2008.11.015] [PMID: 19097688]
[48]
Dai, L.; Wang, G.; Pan, W. Andrographolide inhibits proliferation and metastasis of SGC7901 gastric cancer cells. BioMed Res. Int., 2017, 2017 6242103
[http://dx.doi.org/10.1155/2017/6242103] [PMID: 28194420]
[49]
Shi, M.D.; Lin, H.H.; Lee, Y.C.; Chao, J.K.; Lin, R.A.; Chen, J.H. Inhibition of cell-cycle progression in human colorectal carcinoma Lovo cells by andrographolide. Chem. Biol. Interact., 2008, 174(3), 201-210.
[http://dx.doi.org/10.1016/j.cbi.2008.06.006] [PMID: 18619950]
[50]
Matsuda, T.; Kuroyanagi, M.; Sugiyama, S.; Umehara, K.; Ueno, A.; Nishi, K. Cell differentiation-inducing diterpenes from Andrographis paniculata Nees. Chem. Pharm. Bull. (Tokyo), 1994, 42(6), 1216-1225.
[http://dx.doi.org/10.1248/cpb.42.1216] [PMID: 8069972]
[51]
Simmons, T.L.; Andrianasolo, E.; McPhail, K.; Flatt, P.; Gerwick, W.H. Marine natural products as anticancer drugs. Mol. Cancer Ther., 2005, 4(2), 333-342.
[PMID: 15713904]
[52]
Glaser, K.B.; Mayer, A.M. A renaissance in marine pharmacology: from preclinical curiosity to clinical reality. Biochem. Pharmacol., 2009, 78(5), 440-448.
[http://dx.doi.org/10.1016/j.bcp.2009.04.015] [PMID: 19393227]
[53]
Hong, K.; Gao, A.H.; Xie, Q.Y.; Gao, H.; Zhuang, L.; Lin, H.P.; Yu, H.P.; Li, J.; Yao, X.S.; Goodfellow, M.; Ruan, J.S. Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. Mar. Drugs, 2009, 7(1), 24-44.
[http://dx.doi.org/10.3390/md7010024] [PMID: 19370169]
[54]
Radisky, D.C.; Radisky, E.S.; Barrows, L.R.; Copp, B.R.; Kramer, R.A.; Ireland, C.M. Novel cytotoxic topoisomerase II inhibiting pyrroloiminoquinones from Fijian sponges of the genus Zyzzya. J. Am. Chem. Soc., 1993, 115, 1632-1638.
[http://dx.doi.org/10.1021/ja00058a003]
[55]
Dias, N.; Vezin, H.; Lansiaux, A.; Bailly, C. Topoisomerase Inhibitors of Marine Origin and Their Potential Use as Anticancer Agents. In: Topics in Current Chemistry; Waring, M.J.; Chaires, J.B., Eds.; DNA Binders and Related Subjects. Springer, Berlin, Heidelberg, 2005; Vol. 253, .
[http://dx.doi.org/10.1007/b100444]
[56]
Wang, W.; Rayburn, E.R.; Velu, S.E.; Nadkarni, D.H.; Murugesan, S.; Zhang, R. In vitro and in vivo anticancer activity of novel synthetic makaluvamine analogues. Clin. Cancer Res., 2009, 15(10), 3511-3518.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2689] [PMID: 19451594]
[57]
Dijoux, M.G.; Schnabel, P.C.; Hallock, Y.F.; Boswell, J.L.; Johnson, T.R.; Wilson, J.A.; Ireland, C.M.; van Soest, R.; Boyd, M.R.; Barrows, L.R.; Cardellina, J.H., II Antitumor activity and distribution of pyrroloiminoquinones in the sponge genus Zyzzya. Bioorg. Med. Chem., 2005, 13(21), 6035-6044.
[http://dx.doi.org/10.1016/j.bmc.2005.06.019] [PMID: 16009557]
[58]
Chen, T.; Xu, Y.; Guo, H.; Liu, Y.; Hu, P.; Yang, X.; Li, X.; Ge, S.; Velu, S.E.; Nadkarni, D.H.; Wang, W.; Zhang, R.; Wang, H. Experimental therapy of ovarian cancer with synthetic makaluvamine analog: in vitro and in vivo anticancer activity and molecular mechanisms of action. PLoS One, 2011, 6(6) e20729
[http://dx.doi.org/10.1371/journal.pone.0020729] [PMID: 21673964]
[59]
Kortmansky, J.; Schwartz, G.K. Bryostatin-1: a novel PKC inhibitor in clinical development. Cancer Invest., 2003, 21(6), 924-936.
[http://dx.doi.org/10.1081/CNV-120025095] [PMID: 14735696]
[60]
Dassonneville, L.; Wattez, N.; Baldeyrou, B.; Mahieu, C.; Lansiaux, A.; Banaigs, B.; Bonnard, I.; Bailly, C. Inhibition of topoisomerase II by the marine alkaloid ascididemin and induction of apoptosis in leukemia cells. Biochem. Pharmacol., 2000, 60(4), 527-537.
[http://dx.doi.org/10.1016/S0006-2952(00)00351-8] [PMID: 10874127]
[61]
Facompré, M.; Tardy, C.; Bal-Mahieu, C.; Colson, P.; Perez, C.; Manzanares, I.; Cuevas, C.; Bailly, C. Lamellarin D: A novel potent inhibitor of topoisomerase I. Cancer Res., 2003, 63(21), 7392-7399.
[PMID: 14612538]
[62]
Tardy, C.; Facompré, M.; Laine, W.; Baldeyrou, B.; García-Gravalos, D.; Francesch, A.; Mateo, C.; Pastor, A.; Jiménez, J.A.; Manzanares, I.; Cuevas, C.; Bailly, C. Topoisomerase I-mediated DNA cleavage as a guide to the development of antitumor agents derived from the marine alkaloid lamellarin D: triester derivatives incorporating amino acid residues. Bioorg. Med. Chem., 2004, 12(7), 1697-1712.
[http://dx.doi.org/10.1016/j.bmc.2004.01.020] [PMID: 15028262]
[63]
Mohammed, K.A.; Hossain, C.F.; Zhang, L.; Bruick, R.K.; Zhou, Y.D.; Nagle, D.G. Laurenditerpenol, a new diterpene from the tropical marine alga Laurenciaintricata that potently inhibits HIF-1 mediated hypoxic signaling in breast tumor cells. J. Nat. Prod., 2004, 67(12), 2002-2007.
[http://dx.doi.org/10.1021/np049753f] [PMID: 15620241]
[64]
Hodges, T.W.; Hossain, C.F.; Kim, Y.P.; Zhou, Y.D.; Nagle, D.G. Molecular-targeted antitumor agents: the Saururus cernuus dineolignans manassantin B and 4-O-demethylmanassantin B are potent inhibitors of hypoxia-activated HIF-1. J. Nat. Prod., 2004, 67(5), 767-771.
[http://dx.doi.org/10.1021/np030514m] [PMID: 15165135]
[65]
Xie, S.; Xiao, J.; Xu, J. [Advance in microbial ribosome engineering]. Wei Sheng Wu Xue Bao, 2009, 49(8), 981-986.
[PMID: 19835157]
[66]
Cragg, G.; Suffness, M. Mechanism of action of antitumor drug etoposide: A review. Pharmacol. Ther., 1988, 37, 425.
[http://dx.doi.org/10.1016/0163-7258(88)90006-X] [PMID: 3290912]
[67]
Kashiwada, Y.; Nonaka, G.; Nishioka, I.; Chang, J.J.; Lee, K.H. Antitumor agents, 129. Tannins and related compounds as selective cytotoxic agents. J. Nat. Prod., 1992, 55(8), 1033-1043.
[http://dx.doi.org/10.1021/np50086a002] [PMID: 1431932]
[68]
Lü, S.; Wang, J. Homoharringtonine and omacetaxine for myeloid hematological malignancies. J. Hematol. Oncol., 2014, 7, 2.
[http://dx.doi.org/10.1186/1756-8722-7-2] [PMID: 24387717]
[69]
Singh, B.; Kumar, A.; Joshi, P.; Guru, S.K.; Kumar, S.; Wani, Z.A.; Mahajan, G.; Hussain, A.; Qazi, A.K.; Kumar, A.; Bharate, S.S.; Gupta, B.D.; Sharma, P.R.; Hamid, A.; Saxena, A.K.; Mondhe, D.M.; Bhushan, S.; Bharate, S.B.; Vishwakarma, R.A. Colchicine derivatives with potent anticancer activity and reduced P-glycoprotein induction liability. Org. Biomol. Chem., 2015, 13(20), 5674-5689.
[http://dx.doi.org/10.1039/C5OB00406C] [PMID: 25895604]
[70]
Kashiwada, Y.; Bastow, K.F.; Lee, K.H. Novel lignan derivatives as selective inhibitors of DNA topoisomerase II. Bioorg. Med. Chem. Lett., 1995, 5, 905.
[http://dx.doi.org/10.1016/0960-894X(95)00138-J]
[71]
Shi, Q.; Verdier-Pinard, P.; Brossi, A.; Hamel, E.; McPhail, A.T.; Lee, K.H. Antitumor agents. 172. Synthesis and biological evaluation of novel deacetamidothiocolchicin-7-ols and ester analogs as antitubulin agents. J. Med. Chem., 1997, 40(6), 961-966.
[http://dx.doi.org/10.1021/jm960663k] [PMID: 9083485]
[72]
Liu, Y.Q.; Li, W.Q.; Morris-Natschke, S.L.; Qian, K.; Yang, L.; Zhu, G.X.; Wu, X.B.; Chen, A.L.; Zhang, S.Y.; Nan, X.; Lee, K.H. Perspectives on biologically active camptothecin derivatives. Med. Res. Rev., 2015, 35(4), 753-789.
[http://dx.doi.org/10.1002/med.21342] [PMID: 25808858]
[73]
Matsumoto, S.S.; Biggs, J.; Copp, B.R.; Holden, J.A.; Barrows, L.R. Mechanism of ascididemin-induced cytotoxicity. Chem. Res. Toxicol., 2003, 16(2), 113-122.
[http://dx.doi.org/10.1021/tx025618w] [PMID: 12588181]
[74]
Panda, D.; Jordan, M.A.; Chu, K.C.; Wilson, L. Differential effects of vinblastine on polymerization and dynamics at opposite microtubule ends. J. Biol. Chem., 1996, 271(47), 29807-29812.
[http://dx.doi.org/10.1074/jbc.271.47.29807] [PMID: 8939919]
[75]
Ding, A.; Sanchez, E.; Nathan, C.F. Taxol shares the ability of bacterial lipopolysaccharide to induce tyrosine phosphorylation of microtubule-associated protein kinase. J. Immunol., 1993, 151(10), 5596-5602.
[PMID: 7901279]
[76]
Shamanna, R.A.; Lu, H.; Croteau, D.L.; Arora, A.; Agarwal, D.; Ball, G.; Aleskandarany, M.A.; Ellis, I.O.; Pommier, Y.; Madhusudan, S.; Bohr, V.A. Camptothecin targets WRN protein: mechanism and relevance in clinical breast cancer. Oncotarget, 2016, 7(12), 13269-13284.
[http://dx.doi.org/10.18632/oncotarget.7906] [PMID: 26959889]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy