Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

Novel Aspects of Insulin-like Growth Factor 1/insulin Network in Chronic Inflammatory Airway Disease

Author(s): Wenjing Ruan, Jing Deng and Kejing Ying*

Volume 27, Issue 42, 2020

Page: [7256 - 7263] Pages: 8

DOI: 10.2174/0929867326666191113140826

Price: $65

Abstract

At least a proportion of patients suffering from chronic inflammatory airway diseases respond poorly to the bronchodilator and corticosteroid therapies. There is a need for the development of improved anti-inflammatory treatment. Insulin Growth Factor 1 (IGF1) and insulin participate in not only metabolism and glucose homeostasis, but also many other physiological and pathophysiological processes, including growth and inflammation. Recently, it was shown that not only the classical IGF1 and IGF1 Receptor (IGF1R), but also the other molecules in the IGF1/insulin network, including insulin, insulin-like growth factor-binding protein (IGFBP), and IGFBP protease, have roles in chronic inflammatory airway diseases. This review aims to provide a comprehensive insight into recent endeavors devoted to the role of the IGF1/insulin network in chronic inflammatory airway diseases. Its participation in airway inflammation, remodeling, and hyper-responsiveness (AHR), as well as acute exacerbation, has been conclusively demonstrated. Its possible relation to glucocorticoid insensitivity has also been indicated. A better understanding of the IGF1/insulin network by further bench-to-bedside research may provide us with rational clinical therapeutic approaches against chronic inflammatory airway diseases.

Keywords: IGF1, insulin, IGFBP, chronic inflammatory airway disease, COPD, asthma.

[1]
Boulet, L.P.; Reddel, H.K.; Bateman, E.; Pedersen, S.; FitzGerald, J.M.; O’Byrne, P.M. The Global Initiative for Asthma (GINA): 25 years later. Eur. Respir. J., 2019, 54(2)1900598
[http://dx.doi.org/10.1183/13993003.00598-2019] [PMID: 31273040]
[2]
Halpin, D.M.G.; Celli, B.R.; Criner, G.J.; Frith, P.; López Varela, M.V.; Salvi, S.; Vogelmeier, C.F.; Chen, R.; Mortimer, K.; Montes de Oca, M.; Aisanov, Z.; Obaseki, D.; Decker, R.; Agusti, A. It is time for the world to take COPD seriously: a statement from the GOLD board of directors. Eur. Respir. J., 2019, 54(1)1900914
[http://dx.doi.org/10.1183/13993003.00914-2019] [PMID: 31273036]
[3]
Wang, Z.; Li, W.; Guo, Q.; Wang, Y.; Ma, L.; Zhang, X. Insulin-like growth factor-1 signaling in lung development and inflammatory lung diseases. BioMed Res. Int., 2018, 20186057589
[http://dx.doi.org/10.1155/2018/6057589] [PMID: 30018981]
[4]
Yamanaka, Y.; Wilson, E.M.; Rosenfeld, R.G.; Oh, Y. Inhibition of insulin receptor activation by insulin-like growth factor binding proteins. J. Biol. Chem., 1997, 272(49), 30729-30734.
[http://dx.doi.org/10.1074/jbc.272.49.30729] [PMID: 9388210]
[5]
Mazerbourg, S.; Monget, P. Insulin-like growth factor binding proteins and IGFBP proteases: a dynamic system regulating the ovarian folliculogenesis. Front. Endocrinol. (Lausanne), 2018, 9, 134.
[http://dx.doi.org/10.3389/fendo.2018.00134] [PMID: 29643837]
[6]
Wetterau, L.A.; Moore, M.G.; Lee, K.W.; Shim, M.L.; Cohen, P. Novel aspects of the insulin-like growth factor binding proteins. Mol. Genet. Metab., 1999, 68(2), 161-181.
[http://dx.doi.org/10.1006/mgme.1999.2920] [PMID: 10527667]
[7]
Noveral, J.P.; Bhala, A.; Hintz, R.L.; Grunstein, M.M.; Cohen, P. Insulin-like growth factor axis in airway smooth muscle cells. Am. J. Physiol., 1994, 267(6 Pt 1), L761-L765.
[http://dx.doi.org/10.1152/ajplung.1994.267.6.L761] [PMID: 7528983]
[8]
Chand, H.S.; Harris, J.F.; Mebratu, Y.; Chen, Y.; Wright, P.S.; Randell, S.H.; Tesfaigzi, Y. Intracellular insulin-like growth factor-1 induces Bcl-2 expression in airway epithelial cells. J. Immunol., 2012, 188(9), 4581-4589.
[http://dx.doi.org/10.4049/jimmunol.1102673] [PMID: 22461702]
[9]
Chetty, A.; Cao, G.J.; Nielsen, H.C. Insulin-like growth factor-I signaling mechanisms, type I collagen and alpha smooth muscle actin in human fetal lung fibroblasts. Pediatr. Res., 2006, 60(4), 389-394.
[http://dx.doi.org/10.1203/01.pdr.0000238257.15502.f4] [PMID: 16940243]
[10]
Singh, S.; Bodas, M.; Bhatraju, N.K.; Pattnaik, B.; Gheware, A.; Parameswaran, P.K.; Thompson, M.; Freeman, M.; Mabalirajan, U.; Gosens, R.; Ghosh, B.; Pabelick, C.; Linneberg, A.; Prakash, Y.S.; Agrawal, A. Hyperinsulinemia adversely affects lung structure and function. Am. J. Physiol. Lung Cell. Mol. Physiol., 2016, 310(9), L837-L845.
[http://dx.doi.org/10.1152/ajplung.00091.2015] [PMID: 26919895]
[11]
Rajah, R.; Nachajon, R.V.; Collins, M.H.; Hakonarson, H.; Grunstein, M.M.; Cohen, P. Elevated levels of the IGF-binding protein protease MMP-1 in asthmatic airway smooth muscle. Am. J. Respir. Cell Mol. Biol., 1999, 20(2), 199-208.
[http://dx.doi.org/10.1165/ajrcmb.20.2.3148] [PMID: 9922210]
[12]
Rajah, R.; Nunn, S.E.; Herrick, D.J.; Grunstein, M.M.; Cohen, P. Leukotriene D4 induces MMP-1, which functions as an IGFBP pro-tease in human airway smooth muscle cells. Am. J. Physiol., 1996, 271(6 Pt 1), L1014-L1022.
[http://dx.doi.org/10.1152/ajplung.1996.271.6.L1014] [PMID: 8997273]
[13]
Meyer, K.F.; Krauss-Etschmann, S.; Kooistra, W.; Reinders-Luinge, M.; Timens, W.; Kobzik, L.; Plösch, T.; Hylkema, M.N. Prenatal exposure to tobacco smoke sex dependently influences methylation and mRNA levels of the Igf axis in lungs of mouse offspring. Am. J. Physiol. Lung Cell. Mol. Physiol., 2017, 312(4), L542-L555.
[http://dx.doi.org/10.1152/ajplung.00271.2016] [PMID: 28130259]
[14]
Veraldi, K.L.; Gibson, B.T.; Yasuoka, H.; Myerburg, M.M.; Kelly, E.A.; Balzar, S.; Jarjour, N.N.; Pilewski, J.M.; Wenzel, S.E.; Feghali-Bostwick, C.A. Role of insulin-like growth factor binding protein-3 in allergic airway remodeling. Am. J. Respir. Crit. Care Med., 2009, 180(7), 611-617.
[http://dx.doi.org/10.1164/rccm.200810-1555OC] [PMID: 19608721]
[15]
He, J.; Mu, M.; Wang, H.; Ma, H.; Tang, X.; Fang, Q.; Guo, S.; Song, C. Upregulated IGF 1 in the lungs of asthmatic mice originates from alveolar macrophages. Mol. Med. Rep., 2019, 19(2), 1266-1271.
[http://dx.doi.org/10.3892/mmr.2018.9726] [PMID: 30535455]
[16]
Ye, M.; Yu, H.; Yu, W.; Zhang, G.; Xiao, L.; Zheng, X.; Wu, J. Evaluation of the significance of circulating insulin-like growth factor-1 and C-reactive protein in patients with chronic obstructive pulmonary disease. J. Int. Med. Res., 2012, 40(3), 1025-1035.
[http://dx.doi.org/10.1177/147323001204000321] [PMID: 22906275]
[17]
Ruan, W.; Yan, C.; Zhu, H.; Wang, S.; Jia, X.; Shao, L.; Xu, Z.; Ying, K. Downregulated level of insulin in COPD patients during AE; role beyond glucose control? Int. J. Chron. Obstruct. Pulmon. Dis., 2019, 14, 1559-1566.
[http://dx.doi.org/10.2147/COPD.S197164] [PMID: 31409982]
[18]
Machado, F.V.C.; Pitta, F.; Hernandes, N.A.; Bertolini, G.L. Physiopathological relationship between chronic obstructive pulmonary disease and insulin resistance. Endocrine, 2018, 61(1), 17-22.
[http://dx.doi.org/10.1007/s12020-018-1554-z] [PMID: 29512058]
[19]
Esnault, S.; Kelly, E.A.; Schwantes, E.A.; Liu, L.Y.; DeLain, L.P.; Hauer, J.A.; Bochkov, Y.A.; Denlinger, L.C.; Malter, J.S.; Mathur, S.K.; Jarjour, N.N. Identification of genes expressed by human airway eosinophils after an in vivo allergen challenge. PLoS One, 2013, 8(7)e67560
[http://dx.doi.org/10.1371/journal.pone.0067560] [PMID: 23844029]
[20]
Acat, M.; Toru Erbay, U.; Sahin, S.; Arik, O.; Ayada, C. High serum levels of IGF-I and IGFBP3 may increase comorbidity risk for asthmatic patients. Bratisl. Lek Listy, 2017, 118(11), 691-694.
[http://dx.doi.org/10.4149/BLL_2017_130] [PMID: 29216726]
[21]
Lee, Y.C.; Jogie-Brahim, S.; Lee, D.Y.; Han, J.; Harada, A.; Murphy, L.J.; Oh, Y. Insulin-like growth factor-binding protein-3 (IGFBP-3) blocks the effects of asthma by negatively regulating NF-κB signaling through IGFBP-3R-mediated activation of caspases. J. Biol. Chem., 2011, 286(20), 17898-17909.
[http://dx.doi.org/10.1074/jbc.M111.231035] [PMID: 21383009]
[22]
Ruan, W.; Wu, M.; Shi, L.; Li, F.; Dong, L.; Qiu, Y.; Wu, X.; Ying, K. Serum levels of IGFBP7 are elevated during acute exacerbation in COPD patients. Int. J. Chron. Obstruct. Pulmon. Dis., 2017, 12, 1775-1780.
[http://dx.doi.org/10.2147/COPD.S132652] [PMID: 28684903]
[23]
(a)Drake, K.A.; Torgerson, D.G.; Gignoux, C.R.; Galanter, J.M.; Roth, L.A.; Huntsman, S.; Eng, C.; Oh, S.S.; Yee, S.W. A genome-wide association study of bronchodilator response in Latinos implicates rare variants. J. Allergy Clin. Immunol., 2014, 133(2), 370-378.
[http://dx.doi.org/10.1016/j.jaci.2013.06.043] [PMID: 23992748]
(b)Yan, X.; Baxter, R.C.; Firth, S.M. Involvement of pregnancy-associated plasma protein-A2 in insulin-like growth factor (IGF) binding protein-5 proteoly-sis during pregnancy: a potential mechanism for increasing IGF bioavailability. J. Clin. Endocrinol. Metab., 2010, 95(3), 1412-1420.
[http://dx.doi.org/10.1210/jc.2009-2277] [PMID: 20103653]
[24]
Talay, F.; Tosun, M.; Yaşar, Z.A.; Kar Kurt, Ö.; Karği, A.; Öztürk, S.; Özlü, M.F.; Alçelik, A. Evaluation of pregnancy-associated plasma protein-A levels in patients with chronic obstructive pulmonary disease and associations with disease severity. Inflammation, 2016, 39(3), 1130-1133.
[http://dx.doi.org/10.1007/s10753-016-0345-z] [PMID: 27090654]
[25]
Corbo, G.M.; Di Marco Berardino, A.; Mancini, A.; Inchingolo, R.; Smargiassi, A.; Raimondo, S.; Valente, S. Serum level of testos-terone, dihydrotestosterone and IGF-1 during an acute exacerbation of COPD and their relationships with inflammatory and prognostic indices: a pilot study. Minerva Med., 2014, 105(4), 289-294.
[PMID: 24844347]
[26]
Piñeiro-Hermida, S.; López, I.P.; Alfaro-Arnedo, E.; Torrens, R.; Iñiguez, M.; Alvarez-Erviti, L.; Ruíz-Martínez, C.; Pichel, J.G. IGF1R deficiency attenuates acute inflammatory response in a bleomycin-induced lung injury mouse model. Sci. Rep., 2017, 7(1), 4290.
[http://dx.doi.org/10.1038/s41598-017-04561-4] [PMID: 28655914]
[27]
López, I.P.; Piñeiro-Hermida, S.; Pais, R.S.; Torrens, R.; Hoeflich, A.; Pichel, J.G. Involvement of Igf1r in Bronchiolar Epithelial Regeneration: Role during repair kinetics after selective club cell ablation. PLoS One, 2016, 11(11)e0166388
[http://dx.doi.org/10.1371/journal.pone.0166388] [PMID: 27861515]
[28]
Piñeiro-Hermida, S.; Gregory, J.A.; López, I.P.; Torrens, R.; Ruíz-Martínez, C.; Adner, M.; Pichel, J.G. Attenuated airway hyperre-sponsiveness and mucus secretion in HDM-exposed Igf1r-deficient mice. Allergy, 2017, 72(9), 1317-1326.
[http://dx.doi.org/10.1111/all.13142] [PMID: 28207927]
[29]
(a)Shao, Y.; Chong, L.; Lin, P.; Li, H.; Zhu, L.; Wu, Q.; Li, C. MicroRNA-133a alleviates airway remodeling in asthtama through PI3K/AKT/mTOR signaling pathway by targeting IGF1R. J. Cell. Physiol., 2019, 234(4), 4068-4080.
[http://dx.doi.org/10.1002/jcp.27201] [PMID: 30146725]
(b)Piñeiro-Hermida, S.; Alfaro-Arnedo, E.; Gregory, J.A.; Torrens, R.; Ruíz-Martínez, C.; Adner, M.; López, I.P. Characterization of the acute inflammatory profile and resolu-tion of airway inflammation after Igf1r-gene targeting in a murine model of HDM-induced asthma. PLoS One, 2017, 12(12)e0190159
[http://dx.doi.org/10.1371/journal.pone.0190159] [PMID: 29272313]
(c)Liu, D.; Pan, J.; Zhao, D.; Liu, F. MicroRNA-223 inhibits deposition of the extracellular matrix by airway smooth muscle cells through targeting IGF-1R in the PI3K/Akt pathway. Am. J. Transl. Res., 2018, 10(3), 744-752.
[PMID: 29636864]
[30]
Ferreira, S.S.; Nunes, F.P.B.; Casagrande, F.B.; Martins, J.O. Insulin modulates cytokine release, collagen and mucus secretion in lung remodeling of allergic diabetic mice. Front. Immunol., 2017, 8, 633.
[http://dx.doi.org/10.3389/fimmu.2017.00633] [PMID: 28649241]
[31]
Kim, S.R.; Lee, K.S.; Lee, K.B.; Lee, Y.C. Recombinant IGFBP-3 inhibits allergic lung inflammation, VEGF production, and vascular leak in a mouse model of asthma. Allergy, 2012, 67(7), 869-877.
[http://dx.doi.org/10.1111/j.1398-9995.2012.02837.x] [PMID: 22563687]
[32]
Vijayan, A.; Guha, D.; Ameer, F.; Kaziri, I.; Mooney, C.C.; Bennett, L.; Sureshbabu, A.; Tonner, E.; Beattie, J.; Allan, G.J.; Edwards, J.; Flint, D.J. IGFBP-5 enhances epithelial cell adhesion and protects epithelial cells from TGFβ1-induced mesenchymal invasion. Int. J. Biochem. Cell Biol., 2013, 45(12), 2774-2785.
[http://dx.doi.org/10.1016/j.biocel.2013.10.001] [PMID: 24120850]
[33]
Yin, H.; Zhang, S.; Sun, Y.; Li, S.; Ning, Y.; Dong, Y.; Shang, Y.; Bai, C. MicroRNA-34/449 targets IGFBP-3 and attenuates airway remodeling by suppressing Nur77-mediated autophagy. Cell Death Dis., 2017, 8(8)e2998
[http://dx.doi.org/10.1038/cddis.2017.357] [PMID: 28796252]
[34]
Coskun, A.; Balbay, O.; Duran, S.; Annakkaya, A.N.; Bulut, I.; Yavuz, O.; Kurt, E. Pregnancy-associated plasma protein-A and asthma. Adv. Ther., 2007, 24(2), 362-367.
[http://dx.doi.org/10.1007/BF02849905] [PMID: 17565927]
[35]
Frystyk, J.; Schou, A.J.; Heuck, C.; Vorum, H.; Lyngholm, M.; Flyvbjerg, A.; Wolthers, O.D. Prednisolone reduces the ability of serum to activate the IGF1 receptor in vitro without affecting circulating total or free IGF1. Eur. J. Endocrinol., 2012, 168(1), 1-8.
[http://dx.doi.org/10.1530/EJE-12-0518] [PMID: 23038624]
[36]
Escoll, P.; Ranz, I.; Muñoz-Antón, N.; van-den-Rym, A.; Alvarez-Mon, M.; Martínez-Alonso, C.; Sanz, E.; de-la-Hera, A. Sustained interleukin-1β exposure modulates multiple steps in glucocorticoid receptor signaling, promoting split-resistance to the transactivation of prominent anti-inflammatory genes by glucocorticoids. Mediators Inflamm., 2015, 2015347965
[http://dx.doi.org/10.1155/2015/347965] [PMID: 25977599]
[37]
Bui, H.; Amrani, Y.; Deeney, B.; Panettieri, R.A.; Tliba, O. Airway smooth muscle cells are insensitive to the anti-proliferative effects of corticosteroids: the novel role of insulin growth factor binding Protein-1 in asthma. Immunobiology, 2019, 224(4), 490-496.
[http://dx.doi.org/10.1016/j.imbio.2019.05.006] [PMID: 31133345]
[38]
Castaldi, P.J.; Benet, M.; Petersen, H.; Rafaels, N.; Finigan, J.; Paoletti, M.; Marike Boezen, H.; Vonk, J.M.; Bowler, R.; Pistolesi, M.; Puhan, M.A.; Anto, J.; Wauters, E.; Lambrechts, D.; Janssens, W.; Bigazzi, F.; Camiciottoli, G.; Cho, M.H.; Hersh, C.P.; Barnes, K.; Rennard, S.; Boorgula, M.P.; Dy, J.; Hansel, N.N.; Crapo, J.D.; Tesfaigzi, Y.; Agusti, A.; Silverman, E.K.; Garcia-Aymerich, J. Do COPD subtypes really exist? COPD heterogeneity and clustering in 10 independent cohorts. Thorax, 2017, 72(11), 998-1006.
[http://dx.doi.org/10.1136/thoraxjnl-2016-209846] [PMID: 28637835]
[39]
Yousuf, A.; Brightling, C.E. Biologic drugs: a new target therapy in COPD? COPD, 2018, 15(2), 99-107.
[http://dx.doi.org/10.1080/15412555.2018.1437897] [PMID: 29683730]
[40]
Stein, C.A.; Castanotto, D. FDA-approved oligonucleotide therapies in 2017. Mol. Ther., 2017, 25(5), 1069-1075.
[http://dx.doi.org/10.1016/j.ymthe.2017.03.023] [PMID: 28366767]
[41]
Ti, H.; Zhou, Y.; Liang, X.; Li, R.; Ding, K.; Zhao, X. Targeted treatments for chronic obstructive pulmonary disease (COPD) using low-molecular-weight drugs (LMWDs). J. Med. Chem., 2019, 62(13), 5944-5978.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01520] [PMID: 30682248]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy