Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Dysregulation of Circadian Rhythms in Autism Spectrum Disorders

Author(s): Luciana Pinato*, Caio Sergio Galina Spilla, Regina Pekelmann Markus and Sanseray da Silveira Cruz-Machado

Volume 25, Issue 41, 2019

Page: [4379 - 4393] Pages: 15

DOI: 10.2174/1381612825666191102170450

Price: $65

Abstract

Background: The alterations in neurological and neuroendocrine functions observed in the autism spectrum disorder (ASD) involves environmentally dependent dysregulation of neurodevelopment, in interaction with multiple coding gene defects. Disturbed sleep-wake patterns, as well as abnormal melatonin and glucocorticoid secretion, show the relevance of an underlying impairment of the circadian timing system to the behavioral phenotype of ASD. Thus, understanding the mechanisms involved in the circadian dysregulation in ASD could help to identify early biomarkers to improve the diagnosis and therapeutics as well as providing a significant impact on the lifelong prognosis.

Objective: In this review, we discuss the organization of the circadian timing system and explore the connection between neuroanatomic, molecular, and neuroendocrine responses of ASD and its clinical manifestations. Here we propose interconnections between circadian dysregulation, inflammatory baseline and behavioral changes in ASD. Taking into account, the high relevancy of melatonin in orchestrating both circadian timing and the maintenance of physiological immune quiescence, we raise the hypothesis that melatonin or analogs should be considered as a pharmacological approach to suppress inflammation and circadian misalignment in ASD patients.

Strategy: This review provides a comprehensive update on the state-of-art of studies related to inflammatory states and ASD with a special focus on the relationship with melatonin and clock genes. The hypothesis raised above was analyzed according to the published data.

Conclusion: Current evidence supports the existence of associations between ASD to circadian dysregulation, behavior problems, increased inflammatory levels of cytokines, sleep disorders, as well as reduced circadian neuroendocrine responses. Indeed, major effects may be related to a low melatonin rhythm. We propose that maintaining the proper rhythm of the circadian timing system may be helpful to improve the health and to cope with several behavioral changes observed in ASD subjects.

Keywords: Autism, neuroinflammation, circadian rhythm, sleep-wake cycle, clock genes, suprachiasmatic nucleus, melatonin.

[1]
Lauritsen MB. Autism spectrum disorders. Eur Child Adolesc Psychiatry 2013; 22(Suppl. 1): S37-42.
[http://dx.doi.org/10.1007/s00787-012-0359-5] [PMID: 23300017]
[2]
Won J, Jin Y, Choi J, et al. Melatonin as a novel interventional candidate for fragile X syndrome with autism spectrum disorder in humans. Int J Mol Sci 2017; 18(6) pii: E1314
[3]
Kim YS, Leventhal BL. Genetic epidemiology and insights into interactive genetic and environmental effects in autism spectrum disorders. Biol Psychiatry 2015; 77(1): 66-74.
[http://dx.doi.org/10.1016/j.biopsych.2014.11.001] [PMID: 25483344]
[4]
Modabbernia A, Velthorst E, Reichenberg A. Environmental risk factors for autism: an evidence-based review of systematic reviews and meta-analyses. Mol Autism 2017; 8: 13.
[http://dx.doi.org/10.1186/s13229-017-0121-4] [PMID: 28331572]
[5]
Prata J, Machado AS, von Doellinger O, et al. The contribution of inflammation to autism spectrum disorders: recent clinical evidence. Methods Mol Biol 2019; 2011: 493-510.
[http://dx.doi.org/10.1007/978-1-4939-9554-7_29] [PMID: 31273718]
[6]
Ning M, Daniels J, Schwartz J, et al. Identification and quantification of gaps in access to autism resources in the United States: an infodemiological study. J Med Internet Res 2019; 21(7) e13094
[http://dx.doi.org/10.2196/13094] [PMID: 31293243]
[7]
American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. 2013.
[8]
Buxbaum JD, Bolshakova N, Brownfeld JM, et al. The autism simplex collection: an international, expertly phenotyped autism sample for genetic and phenotypic analyses. Mol Autism 2014; 5: 34.
[http://dx.doi.org/10.1186/2040-2392-5-34] [PMID: 25392729]
[9]
Nascimento PP, Bossolani-Martins AL, Rosan DB, Mattos LC, Brandão-Mattos C. Fett- Conte AC. Single nucleotide polymorphisms in the CNTNAP2 gene in Brazilian patients with autistic spectrum disorder. Genet Mol Res 2016; 15(1)
[http://dx.doi.org/10.4238/gmr.15017422]
[10]
Canetta S, Bolkan S, Padilla-Coreano N, et al. Maternal immune activation leads to selective functional deficits in offspring parvalbumin interneurons. Mol Psychiatry 2016; 21(7): 956-68.
[http://dx.doi.org/10.1038/mp.2015.222] [PMID: 26830140]
[11]
Gumusoglu SB, Stevens HE. Maternal inflammation and neurodevelopmental programming: A review of preclinical outcomes and implications for translational psychiatry. Biol Psychiatry 2019; 85(2): 107-21.
[http://dx.doi.org/10.1016/j.biopsych.2018.08.008] [PMID: 30318336]
[12]
Ronovsky M, Berger S, Molz B, Berger A, Pollak DD. Animal models of maternal immune activation in depression research. Curr Neuropharmacol 2016; 14(7): 688-704.
[http://dx.doi.org/10.2174/1570159X14666151215095359] [PMID: 26666733]
[13]
Murphy CM, Christakou A, Giampietro V, et al. Abnormal functional activation and maturation of ventromedial prefrontal cortex and cerebellum during temporal discounting in autism spectrum disorder. Hum Brain Mapp 2017; 38(11): 5343-55.
[http://dx.doi.org/10.1002/hbm.23718] [PMID: 28744969]
[14]
Bourgeron T. The possible interplay of synaptic and clock genes in autism spectrum disorders. Cold Spring Harb Symp Quant Biol 2007; 72: 645-54.
[http://dx.doi.org/10.1101/sqb.2007.72.020] [PMID: 18419324]
[15]
Russo FB, Freitas BC, Pignatari GC, et al. Modeling the interplay between neurons and astrocytes in autism using human induced pluripotent stem cells. Biol Psychiatry 2018; 83(7): 569-78.
[http://dx.doi.org/10.1016/j.biopsych.2017.09.021] [PMID: 29129319]
[16]
Nicholas B, Rudrasingham V, Nash S, Kirov G, Owen MJ, Wimpory DC. Association of Per1 and Npas2 with autistic disorder: support for the clock genes/social timing hypothesis. Mol Psychiatry 2007; 12(6): 581-92.
[http://dx.doi.org/10.1038/sj.mp.4001953] [PMID: 17264841]
[17]
Pagan C, Goubran-Botros H, Delorme R, et al. Disruption of melatonin synthesis is associated with impaired 14-3-3 and miR-451 levels in patients with autism spectrum disorders. Sci Rep 2017; 7(1): 2096.
[http://dx.doi.org/10.1038/s41598-017-02152-x] [PMID: 28522826]
[18]
Carmassi C, Palagini L, Caruso D, et al. Systematic review of sleep disturbances and circadian sleep desynchronization in autism spectrum disorder: toward an integrative model of a self-reinforcing loop. Front Psychiatry 2019; 10: 366.
[http://dx.doi.org/10.3389/fpsyt.2019.00366] [PMID: 31244687]
[19]
Díaz-Román A, Zhang J, Delorme R, Beggiato A, Cortese S. Sleep in youth with autism spectrum disorders: systematic review and meta-analysis of subjective and objective studies. Evid Based Ment Health 2018; 21(4): 146-54.
[http://dx.doi.org/10.1136/ebmental-2018-300037] [PMID: 30361331]
[20]
Fadini CC, Lamônica DA, Fett-Conte AC, et al. Influence of sleep disorders on the behavior of individuals with autism spectrum disorder. Front Hum Neurosci 2015; 9: 347.
[http://dx.doi.org/10.3389/fnhum.2015.00347] [PMID: 26150777]
[21]
Humphreys JS, Gringras P, Blair PS, et al. Sleep patterns in children with autistic spectrum disorders: a prospective cohort study. Arch Dis Child 2014; 99(2): 114-8.
[http://dx.doi.org/10.1136/archdischild-2013-304083] [PMID: 24061777]
[22]
Richdale AL, Schreck KA. Sleep problems in autism spectrum disorders: prevalence, nature, & possible biopsychosocial aetiologies. Sleep Med Rev 2009; 13(6): 403-11.
[http://dx.doi.org/10.1016/j.smrv.2009.02.003] [PMID: 19398354]
[23]
Elia M, Ferri R, Musumeci SA, et al. Sleep in subjects with autistic disorder: a neurophysiological and psychological study. Brain Dev 2000; 22(2): 88-92.
[http://dx.doi.org/10.1016/S0387-7604(99)00119-9] [PMID: 10722958]
[24]
Schwichtenberg AJ, Young GS, Hutman T, et al. Behavior and sleep problems in children with a family history of autism. Autism Res 2013; 6(3): 169-76.
[http://dx.doi.org/10.1002/aur.1278] [PMID: 23436793]
[25]
Taylor MA, Schreck KA, Mulick JA. Sleep disruption as a correlate to cognitive and adaptive behavior problems in autism spectrum disorders. Res Dev Disabil 2012; 33(5): 1408-17.
[http://dx.doi.org/10.1016/j.ridd.2012.03.013] [PMID: 22522199]
[26]
Zuculo GM, Gonçalves BSB, Brittes C, Menna-Barreto L, Pinato L. Melatonin and circadian rhythms in autism: case report. Chronobiol Int 2017; 34(4): 527-30.
[http://dx.doi.org/10.1080/07420528.2017.1308375] [PMID: 28426389]
[27]
Corbett BA, Mendoza S, Wegelin JA, Carmean V, Levine S. Variable cortisol circadian rhythms in children with autism and anticipatory stress. J Psychiatry Neurosci 2008; 33(3): 227-34.
[PMID: 18592041]
[28]
Curin JM, Terzić J, Petković ZB, Zekan L, Terzić IM, Susnjara IM. Lower cortisol and higher ACTH levels in individuals with autism. J Autism Dev Disord 2003; 33(4): 443-8.
[http://dx.doi.org/10.1023/A:1025019030121] [PMID: 12959423]
[29]
Tordjman S, Anderson GM, Pichard N, Charbuy H, Touitou Y. Nocturnal excretion of 6-sulphatoxymelatonin in children and adolescents with autistic disorder. Biol Psychiatry 2005; 57(2): 134-8.
[http://dx.doi.org/10.1016/j.biopsych.2004.11.003] [PMID: 15652871]
[30]
Geoffray MM, Nicolas A, Speranza M, Georgieff N. Are circadian rhythms new pathways to understand autism spectrum disorder? J Physiol Paris 2016; 110(4 Pt B): 434-8.
[http://dx.doi.org/10.1016/j.jphysparis.2017.06.002] [PMID: 28625682]
[31]
Tordjman S, Davlantis KS, Georgieff N, et al. Autism as a disorder of biological and behavioral rhythms: toward new therapeutic perspectives. Front Pediatr 2015; 3: 1.
[http://dx.doi.org/10.3389/fped.2015.00001]
[32]
Dong L, Gumport NB, Martinez AJ, Harvey AG. Is improving sleep and circadian problems in adolescence a pathway to improved health? A mediation analysis. J Consult Clin Psychol 2019; 87(9): 757-71.
[http://dx.doi.org/10.1037/ccp0000423] [PMID: 31246052]
[33]
Gau SS, Kessler RC, Tseng WL, et al. Association between sleep problems and symptoms of attention-deficit/hyperactivity disorder in young adults. Sleep 2007; 30(2): 195-201.
[http://dx.doi.org/10.1093/sleep/30.2.195] [PMID: 17326545]
[34]
Hysing M, Lundervold AJ, Posserud MB, Sivertsen B. Association between sleep problems and symptoms of attention deficit hyperactivity disorder in adolescence: results from a large population-based study. Behav Sleep Med 2016; 14(5): 550-64.
[http://dx.doi.org/10.1080/15402002.2015.1048448] [PMID: 26503122]
[35]
Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature 2002; 418(6901): 935-41.
[http://dx.doi.org/10.1038/nature00965] [PMID: 12198538]
[36]
Chang CH, Liu CY, Chen SJ, Tsai HC. Efficacy of light therapy on nonseasonal depression among elderly adults: a systematic review and meta-analysis. [Corrigendum] Neuropsychiatr Dis Treat 2019; 15: 1427.
[http://dx.doi.org/10.2147/NDT.S214219] [PMID: 31213816]
[37]
Gooley JJ, Rajaratnam SM, Brainard GC, Kronauer RE, Czeisler CA, Lockley SW. Spectral responses of the human circadian system depend on the irradiance and duration of exposure to light. Sci Transl Med 2010; 2(31) 31ra33
[http://dx.doi.org/10.1126/scitranslmed.3000741] [PMID: 20463367]
[38]
Buhr ED, Takahashi JS. Molecular components of the mammalian circadian clock. Handb Exp Pharmacol 2013; (217): 3-27.
[http://dx.doi.org/10.1007/978-3-642-25950-0_1] [PMID: 23604473]
[39]
Lowrey PL, Takahashi JS. Genetics of circadian rhythms in mammalian model organisms. Adv Genet 2011; 74: 175-230.
[http://dx.doi.org/10.1016/B978-0-12-387690-4.00006-4] [PMID: 21924978]
[40]
Moore RY. The suprachiasmatic nucleus and the circadian timing system. Prog Mol Biol Transl Sci 2013; 119: 1-28.
[http://dx.doi.org/10.1016/B978-0-12-396971-2.00001-4] [PMID: 23899592]
[41]
Guissoni Campos LM, Buchaim RL, da Silva NC, Spilla CSG, Hataka A, Pinato L. Suprachiasmatic nucleus and subordinate brain oscillators: clock gene desynchronization by neuroinflammation. Neuroimmunomodulation 2017; 24(4-5): 231-41.
[http://dx.doi.org/10.1159/000484931] [PMID: 29301134]
[42]
Irwin MR. Sleep and inflammation: partners in sickness and in health. Nat Rev Immunol 2019; 19: 702-15.
[http://dx.doi.org/10.1038/s41577-019-0190-z] [PMID: 31289370]
[43]
Morin LP. Neuroanatomy of the extended circadian rhythm system. Exp Neurol 2013; 243: 4-20.
[http://dx.doi.org/10.1016/j.expneurol.2012.06.026] [PMID: 22766204]
[44]
Watts AG, Swanson LW. Efferent projections of the suprachiasmatic nucleus: II. Studies using retrograde transport of fluorescent dyes and simultaneous peptide immunohistochemistry in the rat. J Comp Neurol 1987; 258(2): 230-52.
[http://dx.doi.org/10.1002/cne.902580205] [PMID: 2438309]
[45]
Roenneberg T, Kumar CJ, Merrow M. The human circadian clock entrains to sun time. Curr Biol 2007; 17(2): R44-5.
[http://dx.doi.org/10.1016/j.cub.2006.12.011] [PMID: 17240323]
[46]
Leak RK, Moore RY. Topographic organization of suprachiasmatic nucleus projection neurons. J Comp Neurol 2001; 433(3): 312-34.
[http://dx.doi.org/10.1002/cne.1142] [PMID: 11298358]
[47]
Kalsbeek A, Merrow MT, Foster RG. Neurobiology of circadian timing Preface Prog Brain Res 2012; 199: 11-2
[48]
Asher G, Sassone-Corsi P. Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock. Cell 2015; 161(1): 84-92.
[http://dx.doi.org/10.1016/j.cell.2015.03.015] [PMID: 25815987]
[49]
Cavadini G, Petrzilka S, Kohler P, et al. TNF-alpha suppresses the expression of clock genes by interfering with E-box-mediated transcription. Proc Natl Acad Sci USA 2007; 104(31): 12843-8.
[http://dx.doi.org/10.1073/pnas.0701466104] [PMID: 17646651]
[50]
Ballester P, Martínez MJ, Javaloyes A, et al. Sleep problems in adults with autism spectrum disorder and intellectual disability. Autism Res 2019; 12(1): 66-79.
[http://dx.doi.org/10.1002/aur.2000] [PMID: 30273974]
[51]
Gliga T, Jones EJ, Bedford R, Charman T, Johnson MH. From early markers to neuro-developmental mechanisms of autism. Dev Rev 2014; 34(3): 189-207.
[http://dx.doi.org/10.1016/j.dr.2014.05.003] [PMID: 25187673]
[52]
Hill SD, Wagner EA, Shedlarski JG Jr, Sears SP. Diurnal cortisol and temperature variation of normal and autistic children. Dev Psychobiol 1977; 10(6): 579-83.
[http://dx.doi.org/10.1002/dev.420100612] [PMID: 563824]
[53]
Kobayashi Y, Ye Z, Hensch TK. Clock genes control cortical critical period timing. Neuron 2015; 86(1): 264-75.
[http://dx.doi.org/10.1016/j.neuron.2015.02.036] [PMID: 25801703]
[54]
Wimpory D, Nicholas B, Nash S. Social timing, clock genes and autism: a new hypothesis. J Intellect Disabil Res 2002; 46(Pt 4): 352-8.
[http://dx.doi.org/10.1046/j.1365-2788.2002.00423.x] [PMID: 12000587]
[55]
Goto M, Mizuno M, Matsumoto A, et al. Role of a circadian-relevant gene NR1D1 in brain development: possible involvement in the pathophysiology of autism spectrum disorders. Sci Rep 2017; 7: 43945.
[http://dx.doi.org/10.1038/srep43945] [PMID: 28262759]
[56]
Yang Z, Matsumoto A, Nakayama K, et al. Circadian-relevant genes are highly polymorphic in autism spectrum disorder patients. Brain Dev 2016; 38(1): 91-9.
[http://dx.doi.org/10.1016/j.braindev.2015.04.006] [PMID: 25957987]
[57]
Laposky A, Easton A, Dugovic C, Walisser J, Bradfield C, Turek F. Deletion of the mammalian circadian clock gene BMAL1/Mop3 alters baseline sleep architecture and the response to sleep deprivation. Sleep 2005; 28(4): 395-409.
[http://dx.doi.org/10.1093/sleep/28.4.395] [PMID: 16171284]
[58]
Naylor E, Bergmann BM, Krauski K, et al. The circadian clock mutation alters sleep homeostasis in the mouse. J Neurosci 2000; 20(21): 8138-43.
[http://dx.doi.org/10.1523/JNEUROSCI.20-21-08138.2000] [PMID: 11050136]
[59]
Zee PC, Vitiello MV. Circadian rhythm sleep disorder: irregular sleep wake rhythm type. Sleep Med Clin 2009; 4(2): 213-8.
[http://dx.doi.org/10.1016/j.jsmc.2009.01.009] [PMID: 20160950]
[60]
Deliens G, Peigneux P. Sleep-behaviour relationship in children with autism spectrum disorder: methodological pitfalls and insights from cognition and sensory processing. Dev Med Child Neurol 2019.
[http://dx.doi.org/10.1111/dmcn.14235] [PMID: 30968406]
[61]
Hirata I, Mohri I, Kato-Nishimura K, et al. Sleep problems are more frequent and associated with problematic behaviors in preschoolers with autism spectrum disorder. Res Dev Disabil 2016; 49-50: 86-99.
[http://dx.doi.org/10.1016/j.ridd.2015.11.002] [PMID: 26672680]
[62]
Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W. Isolation of melatonin, the pineal gland factor that lightens melanocytes. J Am Chem Soc 1958; 80(10): 2587-7.
[http://dx.doi.org/10.1021/ja01543a060]
[63]
Coomans CP, Ramkisoensing A, Meijer JH. The suprachiasmatic nuclei as a seasonal clock. Front Neuroendocrinol 2015; 37: 29-42.
[http://dx.doi.org/10.1016/j.yfrne.2014.11.002] [PMID: 25451984]
[64]
Markus RP, Fernandes PA, Kinker GS, da Silveira Cruz-Machado S, Marçola M. Immune-pineal axis - acute inflammatory responses coordinate melatonin synthesis by pinealocytes and phagocytes. Br J Pharmacol 2018; 175(16): 3239-50.
[http://dx.doi.org/10.1111/bph.14083] [PMID: 29105727]
[65]
Teclemariam-Mesbah R, Ter Horst GJ, Postema F, Wortel J, Buijs RM. Anatomical demonstration of the suprachiasmatic nucleus-pineal pathway. J Comp Neurol 1999; 406(2): 171-82.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19990405)406:2<171:AID-CNE3>3.0.CO;2-U] [PMID: 10096604]
[66]
Klein DC, Smoot R, Weller JL, et al. Lesions of the paraventricular nucleus area of the hypothalamus disrupt the suprachiasmatic leads to spinal cord circuit in the melatonin rhythm generating system. Brain Res Bull 1983; 10(5): 647-52.
[http://dx.doi.org/10.1016/0361-9230(83)90033-3] [PMID: 6307491]
[67]
Buijs RM, van Eden CG, Goncharuk VD, Kalsbeek A. The biological clock tunes the organs of the body: timing by hormones and the autonomic nervous system. J Endocrinol 2003; 177(1): 17-26.
[http://dx.doi.org/10.1677/joe.0.1770017] [PMID: 12697033]
[68]
da Silveira Cruz-Machado S, Tamura EK, Carvalho-Sousa CE, et al. Daily corticosterone rhythm modulates pineal function through NFκB-related gene transcriptional program. Sci Rep 2017; 7(1): 2091.
[http://dx.doi.org/10.1038/s41598-017-02286-y] [PMID: 28522814]
[69]
Teclemariam-Mesbah R, Kalsbeek A, Buijs RM, Pévet P. Oxytocin innervation of spinal preganglionic neurons projecting to the superior cervical ganglion in the rat. Cell Tissue Res 1997; 287(3): 481-6.
[http://dx.doi.org/10.1007/s004410050772] [PMID: 9023079]
[70]
Drijfhout WJ, van der Linde AG, Kooi SE, Grol CJ, Westerink BH. Norepinephrine release in the rat pineal gland: the input from the biological clock measured by in vivo microdialysis. J Neurochem 1996; 66(2): 748-55.
[http://dx.doi.org/10.1046/j.1471-4159.1996.66020748.x] [PMID: 8592148]
[71]
Mortani Barbosa EJ, Ferreira ZS, Markus RP. Purinergic and noradrenergic cotransmission in the rat pineal gland. Eur J Pharmacol 2000; 401(1): 59-62.
[http://dx.doi.org/10.1016/S0014-2999(00)00416-7] [PMID: 10915838]
[72]
Simonneaux V, Ribelayga C. Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol Rev 2003; 55(2): 325-95.
[http://dx.doi.org/10.1124/pr.55.2.2] [PMID: 12773631]
[73]
Harmouch A, Guerrero JM, Osuna C. Different sensitivity of rat pineal N-acetyltransferase to alpha- and beta-adrenergic receptor agonists during development: in vitro studies. Neurosci Lett 1994; 182(2): 303-5.
[http://dx.doi.org/10.1016/0304-3940(94)90822-2] [PMID: 7715833]
[74]
Maronde E, Wicht H, Taskén K, et al. CREB phosphorylation and melatonin biosynthesis in the rat pineal gland: involvement of cyclic AMP dependent protein kinase type II. J Pineal Res 1999; 27(3): 170-82.
[http://dx.doi.org/10.1111/j.1600-079X.1999.tb00613.x] [PMID: 10535767]
[75]
Stehle JH, von Gall C, Korf HW. Organisation of the circadian system in melatonin-proficient C3H and melatonin-deficient C57BL mice: a comparative investigation. Cell Tissue Res 2002; 309(1): 173-82.
[http://dx.doi.org/10.1007/s00441-002-0583-2] [PMID: 12111547]
[76]
Ferreira ZS, Markus RP. Characterisation of P2Y(1)-like receptor in cultured rat pineal glands. Eur J Pharmacol 2001; 415(2-3): 151-6.
[http://dx.doi.org/10.1016/S0014-2999(01)00823-8] [PMID: 11274993]
[77]
White BH, Klein DC. Developmental appearance of pineal adrenergic-->guanosine 3′,5′-monophosphate response is determined by a process down-stream from elevation of intracellular Ca2+: possible involvement of a diffusible factor. Endocrinology 1993; 132(3): 1026-34.
[http://dx.doi.org/10.1210/endo.132.3.8095011] [PMID: 8095011]
[78]
Ferreira ZS, Garcia CR, Spray DC, Markus RP. P2Y(1) receptor activation enhances the rate of rat pinealocyte-induced extracellular acidification via a calcium-dependent mechanism. Pharmacology 2003; 69(1): 33-7.
[http://dx.doi.org/10.1159/000071264] [PMID: 12886028]
[79]
Reiter RJ. Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev 1991; 12(2): 151-80.
[http://dx.doi.org/10.1210/edrv-12-2-151] [PMID: 1649044]
[80]
Sugden D. Comparison of circadian expression of tryptophan hydroxylase isoform mRNAs in the rat pineal gland using real-time PCR. J Neurochem 2003; 86(5): 1308-11.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01959.x] [PMID: 12911638]
[81]
Axelrod J, Shein HM, Wurtman RJ. Stimulation of C14-melatonin synthesis from C14-tryptophan by noradrenaline in rat pineal in organ culture. Proc Natl Acad Sci USA 1969; 62(2): 544-9.
[http://dx.doi.org/10.1073/pnas.62.2.544] [PMID: 5256232]
[82]
Borjigin J, Zhang LS, Calinescu AA. Circadian regulation of pineal gland rhythmicity. Mol Cell Endocrinol 2012; 349(1): 13-9.
[http://dx.doi.org/10.1016/j.mce.2011.07.009] [PMID: 21782887]
[83]
Roseboom PH, Coon SL, Baler R, McCune SK, Weller JL, Klein DC. Melatonin synthesis: analysis of the more than 150-fold nocturnal increase in serotonin N-acetyltransferase messenger ribonucleic acid in the rat pineal gland. Endocrinology 1996; 137(7): 3033-45.
[http://dx.doi.org/10.1210/endo.137.7.8770929] [PMID: 8770929]
[84]
Coon SL, Del Olmo E, Young WS III, Klein DC. Melatonin synthesis enzymes in Macaca mulatta: focus on arylalkylamine N-acetyltransferase (EC 2.3.1.87). J Clin Endocrinol Metab 2002; 87(10): 4699-706.
[http://dx.doi.org/10.1210/jc.2002-020683] [PMID: 12364461]
[85]
Pandi-Perumal SR, Srinivasan V, Maestroni GJ, Cardinali DP, Poeggeler B, Hardeland R. Melatonin: nature’s most versatile biological signal? FEBS J 2006; 273(13): 2813-38.
[http://dx.doi.org/10.1111/j.1742-4658.2006.05322.x] [PMID: 16817850]
[86]
Reiter RJ, Tan DX, Terron MP, Flores LJ, Czarnocki Z. Melatonin and its metabolites: new findings regarding their production and their radical scavenging actions. Acta Biochim Pol 2007; 54(1): 1-9.
[PMID: 17351668]
[87]
Zawilska JB, Skene DJ, Arendt J. Physiology and pharmacology of melatonin in relation to biological rhythms. Pharmacol Rep 2009; 61(3): 383-410.
[http://dx.doi.org/10.1016/S1734-1140(09)70081-7] [PMID: 19605939]
[88]
Tan DX, Manchester LC, Esteban-Zubero E, Zhou Z, Reiter RJ. Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. Molecules 2015; 20(10): 18886-906.
[http://dx.doi.org/10.3390/molecules201018886] [PMID: 26501252]
[89]
Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 2016; 61(3): 253-78.
[http://dx.doi.org/10.1111/jpi.12360] [PMID: 27500468]
[90]
Benítez-King G, Huerto-Delgadillo L, Antón-Tay F. Binding of 3H-melatonin to calmodulin. Life Sci 1993; 53(3): 201-7.
[http://dx.doi.org/10.1016/0024-3205(93)90670-X] [PMID: 8321083]
[91]
Cecon E, Fernandes PA, Pinato L, Ferreira ZS, Markus RP. Daily variation of constitutively activated nuclear factor kappa B (NFKB) in rat pineal gland. Chronobiol Int 2010; 27(1): 52-67.
[http://dx.doi.org/10.3109/07420521003661615] [PMID: 20205557]
[92]
Markus RP, Cecon E, Pires-Lapa MA. Immune-pineal axis: nuclear factor κB (NF-kB) mediates the shift in the melatonin source from pinealocytes to immune competent cells. Int J Mol Sci 2013; 14(6): 10979-97.
[http://dx.doi.org/10.3390/ijms140610979] [PMID: 23708099]
[93]
Zmijewski MA, Sweatman TW, Slominski AT. The melatonin-producing system is fully functional in retinal pigment epithelium (ARPE-19). Mol Cell Endocrinol 2009; 307(1-2): 211-6.
[http://dx.doi.org/10.1016/j.mce.2009.04.010] [PMID: 19409957]
[94]
Konturek SJ, Konturek PC, Brzozowski T, Bubenik GA. Role of melatonin in upper gastrointestinal tract. J Physiol Pharmacol; 2007(58 S): 623-52.
[95]
Slominski AT, Hardeland R, Zmijewski MA, Slominski RM, Reiter RJ, Paus R. Melatonin: a cutaneous perspective on its production, metabolism, and functions. J Invest Dermatol 2018; 138(3): 490-9.
[http://dx.doi.org/10.1016/j.jid.2017.10.025] [PMID: 29428440]
[96]
Carrillo-Vico A, Calvo JR, Abreu P, et al. Evidence of melatonin synthesis by human lymphocytes and its physiological significance: possible role as intracrine, autocrine, and/or paracrine substance. FASEB J 2004; 18(3): 537-9.
[http://dx.doi.org/10.1096/fj.03-0694fje] [PMID: 14715696]
[97]
Carrillo-Vico A, Lardone PJ, Alvarez-Sánchez N, Rodríguez-Rodríguez A, Guerrero JM. Melatonin: buffering the immune system. Int J Mol Sci 2013; 14(4): 8638-83.
[http://dx.doi.org/10.3390/ijms14048638] [PMID: 23609496]
[98]
Pontes GN, Cardoso EC, Carneiro-Sampaio MM, Markus RP. Pineal melatonin and the innate immune response: the TNF-alpha increase after cesarean section suppresses nocturnal melatonin production. J Pineal Res 2007; 43(4): 365-71.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00487.x] [PMID: 17910605]
[99]
Jimenez-Jorge S, Guerrero JM, Jimenez-Caliani AJ, et al. Evidence for melatonin synthesis in the rat brain during development. J Pineal Res 2007; 42(3): 240-6.
[http://dx.doi.org/10.1111/j.1600-079X.2006.00411.x] [PMID: 17349021]
[100]
Pinato L, da Silveira Cruz-Machado S, Franco DG, et al. Selective protection of the cerebellum against intracerebroventricular LPS is mediated by local melatonin synthesis. Brain Struct Funct 2015; 220(2): 827-40.
[http://dx.doi.org/10.1007/s00429-013-0686-4] [PMID: 24363121]
[101]
Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah I, Van de Water J. Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immun 2011; 25(1): 40-5.
[http://dx.doi.org/10.1016/j.bbi.2010.08.003] [PMID: 20705131]
[102]
Hardeland R. Melatonin and inflammation-story of a double-edged blade. J Pineal Res 2018; 65(4) e12525
[http://dx.doi.org/10.1111/jpi.12525] [PMID: 30242884]
[103]
Xia MZ, Liang YL, Wang H, et al. Melatonin modulates TLR4-mediated inflammatory genes through MyD88- and TRIF-dependent signaling pathways in lipopolysaccharide-stimulated RAW264.7 cells. J Pineal Res 2012; 53(4): 325-34.
[http://dx.doi.org/10.1111/j.1600-079X.2012.01002.x] [PMID: 22537289]
[104]
Tocharus J, Khonthun C, Chongthammakun S, Govitrapong P. Melatonin attenuates methamphetamine-induced overexpression of pro-inflammatory cytokines in microglial cell lines. J Pineal Res 2010; 48(4): 347-52.
[http://dx.doi.org/10.1111/j.1600-079X.2010.00761.x] [PMID: 20374443]
[105]
Lotufo CM, Lopes C, Dubocovich ML, Farsky SH, Markus RP. Melatonin and N-acetylserotonin inhibit leukocyte rolling and adhesion to rat microcirculation. Eur J Pharmacol 2001; 430(2-3): 351-7.
[http://dx.doi.org/10.1016/S0014-2999(01)01369-3] [PMID: 11711054]
[106]
Franco DG, Markus RP. The cellular state determines the effect of melatonin on the survival of mixed cerebellar cell culture. PLoS One 2014; 9(9) e106332
[http://dx.doi.org/10.1371/journal.pone.0106332] [PMID: 25184316]
[107]
Golan K, Kollet O, Markus RP, Lapidot T. Daily light and darkness onset and circadian rhythms metabolically synchronize hematopoietic stem cell differentiation and maintenance: the role of bone marrow norepinephrine, TNF and melatonin cycles. Exp Hematol 2019; 78: 1-10.
[108]
Cruz-Chamorro I, Álvarez-Sánchez N, Escalante-Andicoechea C, et al. Temporal expression patterns of the melatoninergic system in the human thymus of children. Mol Metab 2019; 28: 83-90.
[109]
Álvarez-Sánchez N, Cruz-Chamorro I, López-González A, et al. Melatonin controls experimental autoimmune encephalomyelitis by altering the T effector/regulatory balance. Brain Behav Immun 2015; 50: 101-14.
[http://dx.doi.org/10.1016/j.bbi.2015.06.021] [PMID: 26130320]
[110]
Choudhury A, Singh S, Palit G, Shukla S, Ganguly S. Administration of N-acetylserotonin and melatonin alleviate chronic ketamine-induced behavioural phenotype accompanying BDNF-independent and dependent converging cytoprotective mechanisms in the hippocampus. Behav Brain Res 2016; 297: 204-12.
[http://dx.doi.org/10.1016/j.bbr.2015.10.027] [PMID: 26475510]
[111]
Franklin AM, Giacheti CM, Silva NCD, Campos LMG, Pinato L. Correlation between sleep profile and behavior in individuals with specific learning disorder. CoDAS 2018; 30(3) e20170104
[PMID: 29972444]
[112]
The sleep-wake cycle: its physiology and impact on health Arlington: National Sleep Foundation. Available at: https://sleepfoundation.org/sites/default/files/SleepWakeCycle.pdf
[113]
O’Brien LM, Tauman R, Gozal D. Sleep pressure correlates of cognitive and behavioral morbidity in snoring children. Sleep 2004; 27(2): 279-82.
[http://dx.doi.org/10.1093/sleep/27.2.279] [PMID: 15124723]
[114]
Santos JS, Giacheti CM, Dornelas LS, et al. Day/night melatonin content in cerebral palsy. Neurosci Lett 2018; 686: 23-7.
[http://dx.doi.org/10.1016/j.neulet.2018.08.045] [PMID: 30176339]
[115]
Santoro SD, Giacheti CM, Rossi NF, Campos LM, Pinato L. Correlations between behavior, memory, sleep-wake and melatonin in Williams-Beuren syndrome. Physiol Behav 2016; 159: 14-9.
[http://dx.doi.org/10.1016/j.physbeh.2016.03.010] [PMID: 26976740]
[116]
Kervezee L, Kosmadopoulos A, Boivin DB. Metabolic and cardiovascular consequences of shift work: the role of circadian disruption and sleep disturbances. Eur J Neurosci 2018.
[http://dx.doi.org/10.1111/ejn.14216] [PMID: 30357975]
[117]
Dement WC. History of sleep physiology and medicine In: Kryger MH, Roth T, Dement WC, Eds Principles and practice of sleep medicine (Fourth Edition) 2005; 1-12.
[http://dx.doi.org/10.1016/B0-72-160797-7/50008-2]
[118]
Kurth S, Dean DC III, Achermann P, et al. Increased sleep depth in developing neural networks. Front Hum Neurosci 2016; 10: 456.
[http://dx.doi.org/10.3389/fnhum.2016.00456] [PMID: 27708567]
[119]
Schroder CM, Malow BA, Maras A, et al. Pediatric prolonged-release melatonin for sleep in children with autism spectrum disorder: impact on child behavior and Caregiver’s quality of life. J Autism Dev Disord 2019; 49(8): 3218-30.
[http://dx.doi.org/10.1007/s10803-019-04046-5] [PMID: 31079275]
[120]
Kahn A, Dan B, Groswasser J, Franco P, Sottiaux M. Normal sleep architecture in infants and children. J Clin Neurophysiol 1996; 13(3): 184-97.
[http://dx.doi.org/10.1097/00004691-199605000-00002] [PMID: 8714339]
[121]
Roffwarg HP, Muzio JN, Dement WC. Ontogenetic development of the human sleep-dream cycle. Science 1966; 152(3722): 604-19.
[http://dx.doi.org/10.1126/science.152.3722.604] [PMID: 17779492]
[122]
Moore M, Evans V, Hanvey G, Johnson C. Assessment of sleep in children with autism spectrum disorder. Children (Basel) 2017; 4(8) E72
[http://dx.doi.org/10.3390/children4080072] [PMID: 28786962]
[123]
Borbély AA. A two process model of sleep regulation. Hum Neurobiol 1982; 1(3): 195-204.
[PMID: 7185792]
[124]
Dijk DJ, Czeisler CA. Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci 1995; 15(5 Pt 1): 3526-38.
[http://dx.doi.org/10.1523/JNEUROSCI.15-05-03526.1995] [PMID: 7751928]
[125]
McMillen IC, Kok JSM, Adamson TM, Deayton JM, Nowak R. Development of circadian sleep-wake rhythms in preterm and full-term infants. Pediatr Res 1991; 29(4 Pt 1): 381-4.
[http://dx.doi.org/10.1203/00006450-199104000-00010] [PMID: 1852533]
[126]
Thomas KA, Burr RL, Spieker S, Lee J, Chen J. Mother-infant circadian rhythm: development of individual patterns and dyadic synchrony. Early Hum Dev 2014; 90(12): 885-90.
[http://dx.doi.org/10.1016/j.earlhumdev.2014.09.005] [PMID: 25463836]
[127]
Cousins JC, Whalen DJ, Dahl RE, et al. The bidirectional association between daytime affect and nighttime sleep in youth with anxiety and depression. J Pediatr Psychol 2011; 36(9): 969-79.
[http://dx.doi.org/10.1093/jpepsy/jsr036] [PMID: 21795377]
[128]
Zuculo GM, Knap CC, Pinato L. Correlation between sleep and quality of life in cerebral palsy. CoDAS 2014; 26(6): 447-56.
[http://dx.doi.org/10.1590/2317-1782/20140201435] [PMID: 25590906]
[129]
Sateia MJ. International classification of sleep disorders-third edition: highlights and modifications. Chest 2014; 146(5): 1387-94.
[130]
Allik H, Larsson JO, Smedje H. Sleep patterns in school-age children with Asperger syndrome or high-functioning autism: a follow-up study. J Autism Dev Disord 2008; 38(9): 1625-33.
[http://dx.doi.org/10.1007/s10803-008-0543-0] [PMID: 18293072]
[131]
Kotagal S, Broomall E. Sleep in children with autism spectrum disorder. Pediatr Neurol 2012; 47(4): 242-51.
[http://dx.doi.org/10.1016/j.pediatrneurol.2012.05.007] [PMID: 22964437]
[132]
Malow BA, Marzec ML, McGrew SG, Wang L, Henderson LM, Stone WL. Characterizing sleep in children with autism spectrum disorders: a multidimensional approach. Sleep 2006; 29(12): 1563-71.
[http://dx.doi.org/10.1093/sleep/29.12.1563] [PMID: 17252887]
[133]
Nguyen AKD, Murphy LE, Kocak M, Tylavsky FA, Pagani LS. Prospective associations between infant sleep at 12 months and autism spectrum disorder screening scores at 24 months in a community- based birth cohort. J Clin Psychiatry 2018; 79(1): 16m11127.
[http://dx.doi.org/10.4088/JCP.16m11127] [PMID: 29325234]
[134]
Verhoeff ME, Blanken LME, Kocevska D, et al. The bidirectional association between sleep problems and autism spectrum disorder: a population-based cohort study. Mol Autism 2018; 9: 8.
[http://dx.doi.org/10.1186/s13229-018-0194-8] [PMID: 29423134]
[135]
Wiggs L, Stores G. Sleep patterns and sleep disorders in children with autistic spectrum disorders: insights using parent report and actigraphy. Dev Med Child Neurol 2004; 46(6): 372-80.
[http://dx.doi.org/10.1017/S0012162204000611] [PMID: 15174528]
[136]
Hare DJ, Jones S, Evershed K. A comparative study of circadian rhythm functioning and sleep in people with Asperger syndrome. Autism 2006; 10(6): 565-75.
[http://dx.doi.org/10.1177/1362361306068509] [PMID: 17088273]
[137]
Liu X, Hubbard JA, Fabes RA, Adam JB. Sleep disturbances and correlates of children with autism spectrum disorders. Child Psychiatry Hum Dev 2006; 37(2): 179-91.
[http://dx.doi.org/10.1007/s10578-006-0028-3] [PMID: 17001527]
[138]
Thirumalai SS, Shubin RA, Robinson R. Rapid eye movement sleep behavior disorder in children with autism. J Child Neurol 2002; 17(3): 173-8.
[http://dx.doi.org/10.1177/088307380201700304] [PMID: 12026231]
[139]
Okada K, Yano M, Doki Y, et al. Injection of LPS causes transient suppression of biological clock genes in rats. J Surg Res 2008; 145(1): 5-12.
[http://dx.doi.org/10.1016/j.jss.2007.01.010] [PMID: 18279697]
[140]
Brancaccio M, Edwards MD, Patton AP, et al. Cell-autonomous clock of astrocytes drives circadian behavior in mammals. Science 2019; 363(6423): 187-92.
[http://dx.doi.org/10.1126/science.aat4104] [PMID: 30630934]
[141]
Spilla CSG, Souza ALDM, Guissoni Campos LM, da Silveira Cruz Machado S, Pinato L. Effect of prenatal inflammation on spatial memory, motor control and hippocampal and cerebellar neurochemistry
[142]
Shomrat T, Nesher N. Updated view on the relation of the pineal gland to autism spectrum disorders. Front Endocrinol (Lausanne) 2019; 10: 37.
[http://dx.doi.org/10.3389/fendo.2019.00037] [PMID: 30804889]
[143]
Maruani A, Dumas G, Beggiato A, et al. Morning plasma melatonin differences in autism: beyond the impact of pineal gland volume. Front Psychiatry 2019; 10: 11.
[http://dx.doi.org/10.3389/fpsyt.2019.00011] [PMID: 30787884]
[144]
Melke J, Goubran Botros H, Chaste P, et al. Abnormal melatonin synthesis in autism spectrum disorders. Mol Psychiatry 2008; 13(1): 90-8.
[http://dx.doi.org/10.1038/sj.mp.4002016] [PMID: 17505466]
[145]
Hu VW, Sarachana T, Kim KS, et al. Gene expression profiling differentiates autism case-controls and phenotypic variants of autism spectrum disorders: evidence for circadian rhythm dysfunction in severe autism. Autism Res 2009; 2(2): 78-97.
[http://dx.doi.org/10.1002/aur.73] [PMID: 19418574]
[146]
Botros HG, Legrand P, Pagan C, et al. Crystal structure and functional mapping of human ASMT, the last enzyme of the melatonin synthesis pathway. J Pineal Res 2013; 54(1): 46-57.
[http://dx.doi.org/10.1111/j.1600-079X.2012.01020.x] [PMID: 22775292]
[147]
Chaste P, Clement N, Mercati O, et al. Identification of pathway-biased and deleterious melatonin receptor mutants in autism spectrum disorders and in the general population. PLoS One 2010; 5(7) e11495
[http://dx.doi.org/10.1371/journal.pone.0011495] [PMID: 20657642]
[148]
Cui W, Mizukami H, Yanagisawa M, et al. Glial dysfunction in the mouse habenula causes depressive-like behaviors and sleep disturbance. J Neurosci 2014; 34(49): 16273-85.
[http://dx.doi.org/10.1523/JNEUROSCI.1465-14.2014] [PMID: 25471567]
[149]
Wisor JP, Schmidt MA, Clegern WC. Cerebral microglia mediate sleep/wake and neuroinflammatory effects of methamphetamine. Brain Behav Immun 2011; 25(4): 767-76.
[http://dx.doi.org/10.1016/j.bbi.2011.02.002] [PMID: 21333736]
[150]
Malow BA, McGrew SG. Sleep and quality of life in autism. In: Sleep and quality of life in medical illness 2008; 221-7.
[http://dx.doi.org/10.1007/978-1-60327-343-5_24]
[151]
Johnson CR, Smith T, DeMand A, et al. Exploring sleep quality of young children with autism spectrum disorder and disruptive behaviors. Sleep Med 2018; 44: 61-6.
[http://dx.doi.org/10.1016/j.sleep.2018.01.008] [PMID: 29530371]
[152]
Turygin N, Matson JL, Tureck K. ADHD symptom prevalence and risk factors in a sample of toddlers with ASD or who are at risk for developmental delay. Res Dev Disabil 2013; 34(11): 4203-9.
[http://dx.doi.org/10.1016/j.ridd.2013.07.020] [PMID: 24077069]
[153]
da Silveira Cruz-Machado S, Guissoni Campos LM, Fadini CC, Anderson G, Markus RP, Pinato L. Disrupted nocturnal melatonin rhythm in Autism: correlation with TNF and sleep disturbances In press
[154]
Muscatello RA, Corbett BA. Comparing the effects of age, pubertal development, and symptom profile on cortisol rhythm in children and adolescents with autism spectrum disorder. Autism Res 2018; 11(1): 110-20.
[http://dx.doi.org/10.1002/aur.1879] [PMID: 29030905]
[155]
Tordjman S, Najjar I, Bellissant E, et al. Advances in the research of melatonin in autism spectrum disorders: literature review and new perspectives. Int J Mol Sci 2013; 14(10): 20508-42.
[http://dx.doi.org/10.3390/ijms141020508] [PMID: 24129182]
[156]
Nir I, Meir D, Zilber N, Knobler H, Hadjez J, Lerner Y. Brief report: circadian melatonin, thyroid-stimulating hormone, prolactin, and cortisol levels in serum of young adults with autism. J Autism Dev Disord 1995; 25(6): 641-54.
[http://dx.doi.org/10.1007/BF02178193] [PMID: 8720032]
[157]
Garstang J, Wallis M. Randomized controlled trial of melatonin for children with autistic spectrum disorders and sleep problems. Child Care Health Dev 2006; 32(5): 585-9.
[http://dx.doi.org/10.1111/j.1365-2214.2006.00616.x] [PMID: 16919138]
[158]
Lam KS, Aman MG, Arnold LE. Neurochemical correlates of autistic disorder: a review of the literature. Res Dev Disabil 2006; 27(3): 254-89.
[http://dx.doi.org/10.1016/j.ridd.2005.03.003] [PMID: 16002261]
[159]
Kulman G, Lissoni P, Rovelli F, Roselli MG, Brivio F, Sequeri P. Evidence of pineal endocrine hypofunction in autistic children. Neuroendocrinol Lett 2000; 21(1): 31-4.
[PMID: 11455326]
[160]
Braam W, Ehrhart F, Maas APHM, Smits MG, Curfs L. Low maternal melatonin level increases autism spectrum disorder risk in children. Res Dev Disabil 2018; 82: 79-89.
[http://dx.doi.org/10.1016/j.ridd.2018.02.017] [PMID: 29501372]
[161]
Rossignol DA, Frye RE. Melatonin in autism spectrum disorders: a systematic review and meta-analysis. Dev Med Child Neurol 2011; 53(9): 783-92.
[http://dx.doi.org/10.1111/j.1469-8749.2011.03980.x] [PMID: 21518346]
[162]
Johansson AEE, Dorman JS, Chasens ER, Feeley CA, Devlin B. Variations in genes related to sleep patterns in children with autism spectrum disorder. Biol Res Nurs 2019; 21(3): 335-42.
[http://dx.doi.org/10.1177/1099800419843604] [PMID: 30983407]
[163]
da Silveira Cruz-Machado S, Carvalho-Sousa CE, Tamura EK, et al. TLR4 and CD14 receptors expressed in rat pineal gland trigger NFKB pathway. J Pineal Res 2010; 49(2): 183-92.
[http://dx.doi.org/10.1111/j.1600-079X.2010.00785.x] [PMID: 20586888]
[164]
de Oliveira Tatsch-Dias M, Levandovski RM, Custódio de Souza IC, et al. The concept of the immune-pineal axis tested in patients undergoing an abdominal hysterectomy. Neuroimmunomodulation 2013; 20(4): 205-12.
[http://dx.doi.org/10.1159/000347160] [PMID: 23689687]
[165]
Pinto AR, da Silva NC, Pinato L. Analyses of melatonin, cytokines, and sleep in chronic renal failure. Sleep Breath 2016; 20(1): 339-44.
[http://dx.doi.org/10.1007/s11325-015-1240-9] [PMID: 26271951]
[166]
Ziats MN, Rennert OM. Expression profiling of autism candidate genes during human brain development implicates central immune signaling pathways. PLoS One 2011; 6(9) e24691
[http://dx.doi.org/10.1371/journal.pone.0024691] [PMID: 21935439]
[167]
Harry GJ, Lefebvre d’Hellencourt C, McPherson CA, Funk JA, Aoyama M, Wine RN. Tumor necrosis factor p55 and p75 receptors are involved in chemical-induced apoptosis of dentate granule neurons. J Neurochem 2008; 106(1): 281-98.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05382.x] [PMID: 18373618]
[168]
Belarbi K, Jopson T, Tweedie D, et al. TNF-α protein synthesis inhibitor restores neuronal function and reverses cognitive deficits induced by chronic neuroinflammation. J Neuroinflammation 2012; 9: 23.
[http://dx.doi.org/10.1186/1742-2094-9-23] [PMID: 22277195]
[169]
Carvalho-Sousa CE, da Silveira Cruz-Machado S, Tamura EK, et al. Molecular basis for defining the pineal gland and pinealocytes as targets for tumor necrosis factor. Front Endocrinol (Lausanne) 2011; 2: 10.
[http://dx.doi.org/10.3389/fendo.2011.00010] [PMID: 22654792]
[170]
da Silveira Cruz-Machado S, Pinato L, Tamura EK, Carvalho-Sousa CE, Markus RP. Glia-pinealocyte network: the paracrine modulation of melatonin synthesis by tumor necrosis factor (TNF). PLoS One 2012; 7(7) e40142
[http://dx.doi.org/10.1371/journal.pone.0040142] [PMID: 22768337]
[171]
Felder-Schmittbuhl MP, Buhr ED, Dkhissi-Benyahya O, et al. Ocular clocks: adapting mechanisms for eye functions and health. Invest Ophthalmol Vis Sci 2018; 59(12): 4856-70.
[http://dx.doi.org/10.1167/iovs.18-24957] [PMID: 30347082]
[172]
Tosini G, Pozdeyev N, Sakamoto K, Iuvone PM. The circadian clock system in the mammalian retina. BioEssays 2008; 30(7): 624-33.
[http://dx.doi.org/10.1002/bies.20777] [PMID: 18536031]
[173]
Dubocovich ML, Delagrange P, Krause DN, Sugden D, Cardinali DP, Olcese J. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol Rev 2010; 62(3): 343-80.
[http://dx.doi.org/10.1124/pr.110.002832] [PMID: 20605968]
[174]
Pinato L, Ramos D, Hataka A, et al. Day/night expression of MT1 and MT2 receptors in hypothalamic nuclei of the primate Sapajus apella. J Chem Neuroanat 2017; 81: 10-7.
[http://dx.doi.org/10.1016/j.jchemneu.2017.01.005] [PMID: 28159659]
[175]
Jonsson L, Ljunggren E, Bremer A, et al. Mutation screening of melatonin-related genes in patients with autism spectrum disorders. BMC Med Genomics 2010; 3: 10.
[http://dx.doi.org/10.1186/1755-8794-3-10] [PMID: 20377855]
[176]
Kawabe K, Horiuchi F, Oka Y, Ueno S. The melatonin receptor agonist ramelteon effectively treats insomnia and behavioral symptoms in autistic disorder. Case Rep Psychiatry 2014; 2014 561071
[http://dx.doi.org/10.1155/2014/561071] [PMID: 24955274]
[177]
Pevet P, Challet E. Melatonin: both master clock output and internal time-giver in the circadian clocks network. J Physiol Paris 2011; 105(4-6): 170-82.
[http://dx.doi.org/10.1016/j.jphysparis.2011.07.001] [PMID: 21914478]
[178]
Messager S, Garabette ML, Hastings MH, Hazlerigg DG. Tissue-specific abolition of Per1 expression in the pars tuberalis by pinealectomy in the Syrian hamster. Neuroreport 2001; 12(3): 579-82.
[http://dx.doi.org/10.1097/00001756-200103050-00029] [PMID: 11234767]
[179]
Agez L, Laurent V, Guerrero HY, Pévet P, Masson-Pévet M, Gauer F. Endogenous melatonin provides an effective circadian message to both the suprachiasmatic nuclei and the pars tuberalis of the rat. J Pineal Res 2009; 46(1): 95-105.
[http://dx.doi.org/10.1111/j.1600-079X.2008.00636.x] [PMID: 19090912]
[180]
Ballester P, Martínez MJ, Inda MD, et al. Evaluation of agomelatine for the treatment of sleep problems in adults with autism spectrum disorder and co-morbid intellectual disability. J Psychopharmacol (Oxford) 2019; 33(11): 1395-406.
[http://dx.doi.org/10.1177/0269881119864968] [PMID: 31423939]
[181]
Kwon KJ, Kim JN, Kim MK, et al. Melatonin synergistically increases resveratrol-induced heme oxygenase-1 expression through the inhibition of ubiquitin-dependent proteasome pathway: a possible role in neuroprotection. J Pineal Res 2011; 50(2): 110-23.
[PMID: 21073519]
[182]
Jin X, von Gall C, Pieschl RL, et al. Targeted disruption of the mouse Mel(1b) melatonin receptor. Mol Cell Biol 2003; 23(3): 1054-60.
[http://dx.doi.org/10.1128/MCB.23.3.1054-1060.2003] [PMID: 12529409]
[183]
von Gall C, Weaver DR, Kock M, Korf HW, Stehle JH. Melatonin limits transcriptional impact of phosphoCREB in the mouse SCN via the Mel1a receptor. Neuroreport 2000; 11(9): 1803-7.
[http://dx.doi.org/10.1097/00001756-200006260-00002] [PMID: 10884023]
[184]
Wang LM, Suthana NA, Chaudhury D, Weaver DR, Colwell CS. Melatonin inhibits hippocampal long-term potentiation. Eur J Neurosci 2005; 22(9): 2231-7.
[http://dx.doi.org/10.1111/j.1460-9568.2005.04408.x] [PMID: 16262661]
[185]
Marquez de Prado B, Castañeda TR, Galindo A, et al. Melatonin disrupts circadian rhythms of glutamate and GABA in the neostriatum of the aware rat: a microdialysis study. J Pineal Res 2000; 29(4): 209-16.
[http://dx.doi.org/10.1034/j.1600-0633.2002.290403.x] [PMID: 11068943]
[186]
Motta-Teixeira LC, Machado-Nils AV, Battagello DS, et al. The absence of maternal pineal melatonin rhythm during pregnancy and lactation impairs offspring physical growth, neurodevelopment, and behavior. Horm Behav 2018; 105: 146-56.
[http://dx.doi.org/10.1016/j.yhbeh.2018.08.006] [PMID: 30114430]
[187]
Giannotti F, Cortesi F, Cerquiglini A, Bernabei P. An open-label study of controlled-release melatonin in treatment of sleep disorders in children with autism. J Autism Dev Disord 2006; 36(6): 741-52.
[http://dx.doi.org/10.1007/s10803-006-0116-z] [PMID: 16897403]
[188]
Gringras P, Nir T, Breddy J, Frydman-Marom A, Findling RL. Efficacy and safety of pediatric prolonged-release melatonin for insomnia in children with autism spectrum disorder. J Am Acad Child Adolesc Psychiatry 2017; 56(11): 948-957.e4.
[http://dx.doi.org/10.1016/j.jaac.2017.09.414] [PMID: 29096777]
[189]
Cuomo BM, Vaz S, Lee EAL, Thompson C, Rogerson JM, Falkmer T. Effectiveness of sleep-based interventions for children with autism spectrum disorder: a meta-synthesis. Pharmacotherapy 2017; 37(5): 555-78.
[http://dx.doi.org/10.1002/phar.1920] [PMID: 28258648]
[190]
Houdek P, Nováková M, Polidarová L, Sládek M, Sumová A. Melatonin is a redundant entraining signal in the rat circadian system. Horm Behav 2016; 83: 1-5.
[http://dx.doi.org/10.1016/j.yhbeh.2016.05.006] [PMID: 27167607]
[191]
Lavie P. Melatonin: role in gating nocturnal rise in sleep propensity. J Biol Rhythms 1997; 12(6): 657-65.
[http://dx.doi.org/10.1177/074873049701200622] [PMID: 9406042]
[192]
Claustrat B, Brun J, Chazot G. The basic physiology and pathophysiology of melatonin. Sleep Med Rev 2005; 9(1): 11-24.
[http://dx.doi.org/10.1016/j.smrv.2004.08.001] [PMID: 15649735]
[193]
Marçola M, da Silveira Cruz-Machado S, Fernandes PACM, Monteiro AW, Markus RP, Tamura EK. Endothelial cell adhesiveness is a function of environmental lighting and melatonin level. J Pineal Res 2013; 54(2): 162-9.
[http://dx.doi.org/10.1111/j.1600-079X.2012.01025.x] [PMID: 22812624]
[194]
Buonfiglio D, Parthimos R, Dantas R, et al. Melatonin absence leads to long-term leptin resistance and overweight in rats. Front Endocrinol (Lausanne) 2018; 9: 122.
[http://dx.doi.org/10.3389/fendo.2018.00122] [PMID: 29636725]
[195]
Mühlbauer E, Gross E, Labucay K, Wolgast S, Peschke E. Loss of melatonin signalling and its impact on circadian rhythms in mouse organs regulating blood glucose. Eur J Pharmacol 2009; 606(1-3): 61-71.
[http://dx.doi.org/10.1016/j.ejphar.2009.01.029] [PMID: 19374844]
[196]
Nogueira TC, Lellis-Santos C, Jesus DS, et al. Absence of melatonin induces night-time hepatic insulin resistance and increased gluconeogenesis due to stimulation of nocturnal unfolded protein response. Endocrinology 2011; 152(4): 1253-63.
[http://dx.doi.org/10.1210/en.2010-1088] [PMID: 21303940]
[197]
Abdolsamadi H, Goodarzi MT, Ahmadi Motemayel F, et al. Reduction of melatonin level in patients with type II diabetes and periodontal diseases. J Dent Res Dent Clin Dent Prospect 2014; 8(3): 160-5.
[PMID: 25346835]
[198]
Korf HW. Signaling pathways to and from the hypophysial pars tuberalis, an important center for the control of seasonal rhythms. Gen Comp Endocrinol 2018; 258: 236-43.
[http://dx.doi.org/10.1016/j.ygcen.2017.05.011] [PMID: 28511899]
[199]
Borges-Silva CN, Fonseca-Alaniz MH, Alonso-Vale MI, et al. Reduced lipolysis and increased lipogenesis in adipose tissue from pinealectomized rats adapted to training. J Pineal Res 2005; 39(2): 178-84.
[http://dx.doi.org/10.1111/j.1600-079X.2005.00241.x] [PMID: 16098096]
[200]
de Farias T da S, de Oliveira AC, Andreotti S, et al. Pinealectomy interferes with the circadian clock genes expression in white adipose tissue. J Pineal Res 2015; 58(3): 251-61.
[http://dx.doi.org/10.1111/jpi.12211] [PMID: 25626464]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy