Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

从海洋生物资源中分离出抗阿尔茨海默氏病的材料:综述

卷 16, 期 10, 2019

页: [895 - 906] 页: 12

弟呕挨: 10.2174/1567205016666191024144044

价格: $65

摘要

在老年人口中发现的最常见的痴呆类型是阿尔茨海默氏病。该病不仅影响患者及其家人,而且影响整个社会,因此,研究人员的主要重点是寻找治疗AD的新生物活性材料。海洋环境是功能成分的丰富来源,迄今为止,我们可以找到与从海洋环境中分离出的抗阿尔茨海默氏病化合物有关的充分研究。因此,本综述着重于海洋生物资源中的抗阿尔茨海默氏病物质,然后阐述了海洋海藻,海洋动物和海洋微生物中的抗阿尔茨海默氏病化合物。此外,由于疾病的复杂性,已经阐明了不同的假设,并且已经分离出活性化合物以抑制病理生理机制的不同阶段。本综述总结了海洋动物的硫酸化多糖,糖蛋白和海洋藻类的酶水解产物,海洋动物的肽,饮食中的omega-3多不饱和脂肪酸和骨骼多糖以及海洋微生物的次生代谢产物,这些物质是来自海洋的抗阿尔茨海默氏病化合物。

关键词: 阿尔茨海默氏病,淀粉样β蛋白,tau蛋白,海藻,神经退行性变,生物活性化合物,痴呆。

[1]
Hippius H, Neundörfer G. The discovery of Alzheimer’s disease. Dialogues Clin Neurosci 5(1): 101-8. (2003)
[PMID: 22034141]
[2]
Parihar MS, Hemnani T. Alzheimer’s disease pathogenesis and therapeutic interventions. J Clin Neurosci 11(5): 456-67. (2004)
[http://dx.doi.org/10.1016/j.jocn.2003.12.007] [PMID: 15177383]
[3]
Alzheimer’s Association. 2018 Alzheimer’s Disease Facts And Figures. Alzheimers Dement 14(3): 367-429. (2018)
[http://dx.doi.org/10.1016/j.jalz.2018.02.001]
[4]
Cooper EL, Ma MJ. Alzheimer Disease: clues from traditional and complementary medicine. J Tradit Complement Med 7(4): 380-5. (2017)
[5]
van Dyck CH. Anti-amyloid-β monoclonal antibodies for Alzheimer’s disease: pitfalls and promise. Biol Psychiatry 83(4): 311-9. (2018)
[6]
Willis JCD, Lord GM. Immune biomarkers: the promises and pitfalls of personalized medicine. Nat Rev Immunol 15: 323. (2015)
[http://dx.doi.org/10.1038/nri3820] [PMID: 25814400]
[7]
Wijesekara I, Pangestuti R, Kim SK. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr Polym 84(1): 14-21. (2011)
[http://dx.doi.org/10.1016/j.carbpol.2010.10.062]
[8]
Ulep MG, Saraon SK, McLea S. Alzheimer Disease. J Nurse Pract 14(3): 129-35. (2018)
[http://dx.doi.org/10.1016/j.nbd.2018.07.006] [PMID: 30003951]
[9]
Chouraki V, Seshadri S. Genetics of Alzheimer ’ s Disease. Bs: Adgen 87: 245-94. (2014)
[http://dx.doi.org/10.1016/B978-0-12-800149-3.00005-6] [PMID: 25311924]
[10]
Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer’s Disease Redox Biol 14(October 2017): 10.1016/j.redox.2017.10.014 (2017).
[11]
Sangubotla R, Kim J. Sc Trends Anal Chem 105: 240-50. (2018)
[http://dx.doi.org/10.1016/j.trac.2018.05.014]
[12]
Monczor M. diagnosis and treatment of Alzheimer ’s disease. Curr Med Chem 5: 5-13. (2005)
[13]
Bianchetti A, Ranieri P, Margiotta A, Trabucchi M. Pharmacological treatment of Alzheimer’s Disease. Aging Clin Exp Res 18(2): 158-62. (2006)
[http://dx.doi.org/10.1007/BF03327433] [PMID: 16702787]
[14]
Brodaty H, Ames D, Boundy KL, Hecker J, Snowdon J, Storey E, et al. Pharmacological treatment of cognitive deficits in Alzheimer’s disease. Med J Aust 175(6): 324-9. (2001)
[http://dx.doi.org/10.5694/j.1326-5377.2001.tb143593.x] [PMID: 11665948]
[15]
Leslie RA. Imaging Alzheimer’s disease in vivo: Not so “implaqueable” anymore (2002)
[16]
Torreilles F, Touchon J. Pathogenic theories and intrathecal analysis of the sporadic form of Alzheimer’s disease. Prog Neurobiol 66(3): 191-203. (2002)
[http://dx.doi.org/10.1016/S0301-0082(01)00030-2]
[17]
McGhee DJM, Ritchie CW, Thompson PA, Wright DE, Zajicek JP, Counsell CE. A systematic review of biomarkers for disease progression in Alzheimer’s disease. PLoS One 9(2)e88854 (2014)
[http://dx.doi.org/10.1371/journal.pone.0088854] [PMID: 24558437]
[18]
Cho H, Lee HS, Choi JY, Lee JH, Ryu YH, Lee MS, et al. Predicted sequence of cortical tau and amyloid-β deposition in Alzheimer disease spectrum. Neurobiol Aging 68: 76-84. (2018)
[http://dx.doi.org/10.1016/j.neurobiolaging.2018.04.007] [PMID: 29751288]
[19]
Jakob-Roetne R, Jacobsen H. Alzheimer’s disease: from pathology to therapeutic approaches. Angew Chem Int Ed Engl 48(17): 3030-59. (2009)
[http://dx.doi.org/10.1002/anie.200802808] [PMID: 19330877]
[20]
Ittner A, Ittner LM. Dendritic tau in Alzheimer’s disease. Neuron 99(1): 13-27. (2018)
[http://dx.doi.org/10.1016/j.neuron.2018.06.003] [PMID: 30001506]
[21]
Pereira L. Therapeutical and Nutritional Uses of Algae. 673 (2018)
[22]
Caruso A, Nicoletti F, Mango D, Saidi A, Orlando R, Scaccianoce S. Stress as risk factor for Alzheimer’s disease. Pharmacol Res 132(April): 130-4. (2018)
[http://dx.doi.org/10.1016/j.phrs.2018.04.017] [PMID: 29689315]
[23]
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer ’ s disease : progress and problems on the road to therapeutics. Science 297(5580): 353-6. (2002)
[24]
Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8(6): 595-608. (2016)
[http://dx.doi.org/10.15252/emmm.201606210] [PMID: 27025652]
[25]
Russo P, Kisialiou A, Lamonaca P, Moroni R, Prinzi G, Fini M. New Drugs from Marine Organisms in Alzheimer’s Disease. Mar Drugs 14(1): 5. (2015)
[http://dx.doi.org/10.3390/md14010005] [PMID: 26712769]
[26]
Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease (2018)
[http://dx.doi.org/10.1016/j.redox.2017.10.014]
[27]
Giacobini E, Gold G. Alzheimer disease therapy-moving from amyloid-β to tau. Nat Rev Neurol 9: 677. (2013)
[http://dx.doi.org/10.1038/nrneurol.2013.223] [PMID: 24217510]
[28]
Hendrix JA, Bateman RJ, Brashear HR, Duggan C, Carrillo MC, Bain LJ, et al. Challenges, solutions, and recommendations for Alzheimer’s disease combination therapy. Alzheimers Dement 12(5): 623-30. (2016)
[http://dx.doi.org/10.1016/j.jalz.2016.02.007]
[29]
Sanjeewa KKA, Kim EA, Son KT, Jeon YJ. Bioactive properties and potentials cosmeceutical applications of phlorotannins isolated from brown seaweeds: a review. J Photochem Photobiol B 162: 100-5. (2016)
[http://dx.doi.org/10.1016/j.jphotobiol.2016.06.027] [PMID: 27362368]
[30]
Wijesinghe WAJP, Jeon YJ. Biological activities and potential cosmeceutical applications of bioactive components from brown seaweeds: a review. Phytochem Rev 10(3): 431-43. (2011)
[31]
Jumaidin R, Sapuan SM, Jawaid M, Ishak MR, Sahari J. Characteristics of Eucheuma cottonii waste from East Malaysia: physical, thermal and chemical composition. Eur J Phycol Heart Rhythm 11(6): 1055-62. (2014)
[http://dx.doi.org/10.1080/09670262.2016.1248498]
[32]
Wijesekara I, Kim SK. Angiotensin-I-converting enzyme (ACE) inhibitors from marine resources: prospects in the pharmaceutical industry. Mar Drugs 8(4): 1080-93. (2010)
[33]
Jumaidin R, Sapuan SM, Jawaid M, Ishak MR, Sahari J. Effect of seaweed on mechanical, thermal, and biodegradation properties of thermoplastic sugar palm starch/agar composites. Int J Biol Macromol 99: 265-73. (2017)
[http://dx.doi.org/10.1016/j.ijbiomac.2017.02.092] [PMID: 28249765]
[34]
Alghazwi M, Kan YQ, Zhang W, Gai WP, Garson MJ, Smid S. Neuroprotective activities of natural products from marine macroalgae during 1999-2015. J Appl Psychol 28(6): 3599-6. (2016)
[35]
Groth I, Grünewald N, Alban S. Pharmacological profiles of animal- and nonanimal-derived sulfated polysaccharides comparison of unfractionated heparin, the semisynthetic glucan sulfate PS3, and the sulfated polysaccharide fraction isolated from Delesseria sanguinea. Glycobiology 19(4): 408-17. (2009)
[http://dx.doi.org/10.1093/glycob/cwn151] [PMID: 19106233]
[36]
Sithranga Boopathy N, Kathiresan K. Anticancer drugs from marine flora: An overview. J Oncol 2010: 214186 (2010). doi: 10.1155/2010/214186. (2010).
[37]
Gao Y, Li C, Yin J, Shen J, Wang H, Wu Y, et al. Fucoidan, a sulfated polysaccharide from brown algae, improves cognitive impairment induced by infusion of Aβ peptide in rats. Environ Toxicol Pharmacol 33(2): 304-11. (2012)
[http://dx.doi.org/10.1016/j.etap.2011.12.022] [PMID: 22301160]
[38]
Edlich F. BCL-2 proteins and apoptosis: recent insights and unknowns. Biochem Biophys Res Commun 500(1): 26-34. (2018)
[http://dx.doi.org/10.1016/j.bbrc.2017.06.190] [PMID: 28676391]
[39]
Tong Q, Zhang M, Cao X, Xu S, Wang D, Zhao Y. Expression and activation of Daphnia pulex Caspase-3 are involved in regulation of aging. Gene 634: 37-46. (2017)
[http://dx.doi.org/10.1016/j.gene.2017.08.035] [PMID: 28867563]
[40]
Hu J, Geng M, Li J, Xin X, Wang J, Tang M, et al. Acidic oligosaccharide sugar chain, a marine-derived acidic oligosaccharide, inhibits the cytotoxicity and aggregation of amyloid beta protein. J Pharmacol Sci 95(2): 248-55. (2004)
[http://dx.doi.org/10.1254/jphs.FPJ04004X] [PMID: 15215650]
[41]
Yoon NY, Lee SH. Yong-Li, Kim SK. Phlorotannins from Ishige okamurae and their acetyl- and butyrylcholinesterase inhibitory effects. J Funct Foods 1(4): 331-5. (2009)
[http://dx.doi.org/10.1016/j.jff.2009.07.002]
[42]
Yoon NY, Chung HY, Kim HR, Choi JS. Acetyl- and butyrylcholinesterase inhibitory activities of sterols and phlorotannins from Ecklonia stolonifera. Fish Sci 74(1): 200-7. (2008)
[http://dx.doi.org/10.1111/j.1444-2906.2007.01511.x]
[43]
Kannan RRR, Aderogba MA, Ndhlala AR, Stirk WA, Van Staden J. Acetylcholinesterase inhibitory activity of phlorotannins isolated from the brown alga, Ecklonia maxima (Osbeck) Papenfuss. Food Res Int 54(1): 1250-4. (2013)
[http://dx.doi.org/10.1016/j.foodres.2012.11.017]
[44]
Elgorashi EE, Stafford GI, Van Staden J. Acetylcholinesterase enzyme inhibitory effects of Amaryllidaceae alkaloids. Planta Med 70(3): 260-2. (2004)
[http://dx.doi.org/10.1055/s-2004-818919] [PMID: 15114506]
[45]
Nair JJ, Aremu AO, Van Staden J. Isolation of narciprimine from Cyrtanthus contractus (Amaryllidaceae) and evaluation of its acetylcholinesterase inhibitory activity. J Ethnopharmacol 137(3): 1102-6. (2011)
[http://dx.doi.org/10.1016/j.jep.2011.07.028] [PMID: 21787856]
[46]
Rengasamy KRR, Amoo SO, Aremu AO, Stirk WA, Gruz J, Šubrtová M, et al. Phenolic profiles, antioxidant capacity, and acetylcholinesterase inhibitory activity of eight South African seaweeds. J Appl Phycol 27(4): 1599-605. (2015)
[http://dx.doi.org/10.1007/s10811-014-0438-8]
[47]
Suganthy N, Karutha Pandian S, Pandima Devi K. Neuroprotective effect of seaweeds inhabiting South Indian coastal area (Hare Island, Gulf of Mannar Marine Biosphere Reserve): Cholinesterase inhibitory effect of Hypnea valentiae and Ulva reticulata. Neurosci Lett 468(3): 216-9. (2010)
[http://dx.doi.org/10.1016/j.neulet.2009.11.001] [PMID: 19897016]
[48]
Ina A, Hayashi KI, Nozaki H, Kamei Y. Pheophytin a, a low molecular weight compound found in the marine brown alga Sargassum fulvellum, promotes the differentiation of PC12 cells. Int J Dev Neurosci 25(1): 63-8. (2007)
[http://dx.doi.org/10.1016/j.ijdevneu.2006.09.323] [PMID: 17092682]
[49]
Itzhaki RF, Lin WR, Shang DH, Wilcock GK, Faragher B, Jamieson GA. Herpes simplex virus type 1 in brain and risk of Alzheimers disease. Lancet 349(9047): 241-4. (1997)
[http://dx.doi.org/10.1016/S0140-6736(96)10149-5] [PMID: 9014911]
[50]
Wozniak MA, Itzhaki RF, Shipley SJ, Dobson CB. Herpes simplex virus infection causes cellular beta-amyloid accumulation and secretase upregulation. Neurosci Lett 429(2-3): 95-100. (2007)
[http://dx.doi.org/10.1016/j.neulet.2007.09.077] [PMID: 17980964]
[51]
Wozniak M1. Bell T, Dénes Á, Falshaw R, Itzhaki R. Anti-HSV1 activity of brown algal polysaccharides and possible relevance to the treatment of Alzheimer’s disease. Int J Biol Macromol 74: 530-40. (2015)
[http://dx.doi.org/10.1016/j.ijbiomac.2015.01.003] [PMID: 25583021]
[52]
Sevevirathne M, Lee KH, Ahn CB, Park PJ, Je JY. Evaluation of antioxidant, anti-alzheimer’s and anti-inflammatory activities of enzymatic hydrolysates from edible brown seaweed (laminaria japonica). J Food Biochem 36(2): 207-16. (2012)
[http://dx.doi.org/10.1111/j.1745-4514.2010.00527.x]
[53]
Sun YL, Jae WL, Lee H, Han SY, Yeo PY, Ki WO, et al. Inhibitory effect of green tea extract on β-amyloid-induced PC12 cell death by inhibition of the activation of NF-κB and ERK/p38 MAP kinase pathway through antioxidant mechanisms. Brain Res Mol Brain Res 140(1-2): 45-54. (2005)
[54]
Zhang L. Xing G qaing, Barker JL, Chang Y, Maric D, Ma W, et al. α-lipoic acid protects rat cortical neurons against cell death induced by amyloid and hydrogen peroxide through the Akt signalling pathway. Neurosci Lett 312(3): 125-8. (2001)
[http://dx.doi.org/10.1016/S0304-3940(01)02205-4] [PMID: 11602326]
[55]
Schroeter H, Spencer JPE, Rice-evans C. WIlliams RJ. Flavonoids protect neurons from oxidized low-density-lipoprotein-induced apoptosis involving c-Jun N-terminal kinase (JNK), c-Jun and caspase-3. Biochem J 358(Pt 3): 547-57. (2001)
[56]
Rindi F, Soler-Vila A, Guiry MD. Taxonomy of marine macroalgae used as sources of bioactive compounds In marine bioactive compounds: sources, characterization and applications Marine Bioactive Comp 1-53 (2012)
[http://dx.doi.org/10.1007/978-1-4614-1247-2_1]
[57]
Kang IJ, Jeon YE, Yin XF, Nam JS, You SG, Hong MS, et al. Butanol extract of Ecklonia cava prevents production and aggregation of beta-amyloid, and reduces beta-amyloid mediated neuronal death. Food Chem Toxicol 49(9): 2252-9. (2011)
[http://dx.doi.org/10.1016/j.fct.2011.06.023] [PMID: 21693162]
[58]
Jung HA, Ali MY, Choi RJ, Jeong HO, Chung HY, Choi JS. Kinetics and molecular docking studies of fucosterol and fucoxanthin, BACE1 inhibitors from brown algae Undaria pinnatifida and Ecklonia stolonifera. Food Chem Toxicol 89: 104-11. (2016)
[http://dx.doi.org/10.1016/j.fct.2016.01.014] [PMID: 26825629]
[59]
Rafiquzzaman SM, Kim EY, Lee JM, Mohibbullah M, Alam MB, Soo Moon I, et al. Anti-Alzheimers and anti-inflammatory activities of a glycoprotein purified from the edible brown alga Undaria pinnatifida. Food Res Int 77: 118-24. (2015)
[http://dx.doi.org/10.1016/j.foodres.2015.08.021]
[60]
McGeer EG, McGeer PL. Inflammatory processes in Alzheimer’s disease. J Neuroimmunol 184(1-2): 69-91. (2007)
[http://dx.doi.org/10.1016/S0278-5846(03)00124-6]
[61]
Jin DQ, Lim CS, Sung JY, Choi HG, Ha I, Han JS. Ulva conglobata, a marine algae, has neuroprotective and anti-inflammatory effects in murine hippocampal and microglial cells. Neurosci Lett 402(1-2): 154-8. (2006)
[http://dx.doi.org/10.1016/j.neulet.2006.03.068] [PMID: 16644126]
[62]
Olasehinde T, Olaniran A, Okoh A. Therapeutic potentials of microalgae in the treatment of Alzheimer’s disease. Molecules 22(3): 480. (2017)
[http://dx.doi.org/10.3390/molecules22030480] [PMID: 28335462]
[63]
Li-Chan ECY, Cheung IWY, Byun HG. Shrimp (Pandalopsis dispar) waste hydrolysate as a source of novel β-secretase inhibitors. Fish Aquat Sci 19(2): (2016)
[64]
Lee JK, Li-Chan ECYY, Byun H-GG. Characterization of β-secretase inhibitory peptide purified from skate skin protein hydrolysate. Eur Food Res Technol 240(1): 129-36. (2014)
[http://dx.doi.org/10.1007/s00217-014-2314-9]
[65]
Abuine R, Rathnayake AU, Byun HG. Biological activity of peptides purified from fish skin hydrolysates. Fish Aquat Sci 22(1): 1-14. (2019)
[http://dx.doi.org/10.1186/s41240-019-0125-4]
[66]
Hajji S, Younes I, Ghorbel-Bellaaj O, Hajji R, Rinaudo M, Nasri M, et al. Structural differences between chitin and chitosan extracted from three different marine sources. Int J Biol Macromol 65: 298-306. (2014)
[http://dx.doi.org/10.1016/j.ijbiomac.2014.01.045] [PMID: 24468048]
[67]
Wadsworth SA, Zikakis JP. Chitinolytic activity of commercially available β-glucosidase. In Chitin, Chitosan, and Related Enzymes pp. 181-190. (1984)
[68]
Byun HG, Kim YT, Park PJ, Lin X, Kim SK. Chitooligosaccharides as a novel b-secretase inhibitor. Carbohydr Polym 61(2): 198-202. (2005)
[http://dx.doi.org/10.1016/j.carbpol.2005.05.003]
[69]
Alghazwi M, Kan YQ, Zhang W, Gai WP, Yan X-X. Neuroprotective activities of marine natural products from marine sponges. Curr Med Chem 23(4): 360-82. (2016)
[http://dx.doi.org/10.2174/0929867323666151127201249] [PMID: 26630920]
[70]
Zhang H, Conte MM, Huang XC, Khalil Z, Capon RJ. A search for BACE inhibitors reveals new biosynthetically related pyrrolidones, furanones and pyrroles from a southern Australian marine sponge, Ianthella sp. Org Biomol Chem 10(13): 2656-63. (2012)
[http://dx.doi.org/10.1039/c2ob06747a] [PMID: 22361689]
[71]
Beedessee G, Ramanjooloo A, Surnam-Boodhun R, Van Soest RWM, Marie DEP. Acetylcholinesterase-inhibitory activities of the extracts from sponges collected in Mauritius waters. Chem Biodivers 10(3): 442-51. (2013)
[http://dx.doi.org/10.1002/cbdv.201200343] [PMID: 23495160]
[72]
Zhu YZ, Liu JW, Wang X, Jeong IH, Ahn YJ, Zhang CJ. Anti-BACE1 and antimicrobial activities of steroidal compounds isolated from marine urechis unicinctus. Mar Drugs 16(3)pii E94 (2018)
[http://dx.doi.org/10.3390/md16030094] [PMID: 29538306]
[73]
Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, Wilson RS, et al. Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch Neurol 60: 940-6. (2003)
[http://dx.doi.org/10.1001/archneur.60.7.940] [PMID: 12873849]
[74]
Wu S, Ding Y, Wu F, Li R, Hou J, Mao P. Omega-3 fatty acids intake and risks of dementia and Alzheimer’s disease: a meta-analysis. Neurosci Biobehav Rev 48: 1-9. (2015)
[75]
Solfrizzi V, D’Introno A, Colacicco AM, Capurso C, Del Parigi A, Capurso S, et al. Dietary fatty acids intake: Possible role in cognitive decline and dementia. Exp Gerontol 40(4): 257-70. (2005)
[76]
Kerdiles O, Layé S, Calon F. Omega-3 polyunsaturated fatty acids and brain health: Preclinical evidence for the prevention of neurodegenerative diseases. Trends Food Sci Technol 69: 203-13. (2017)
[http://dx.doi.org/10.1016/j.tifs.2017.09.003]
[77]
Denis I, Potier B, Heberden C, Vancassel S. Omega-3 polyunsaturated fatty acids and brain aging. Curr Opin Clin Nutr Metab Care 18(2): 139-46. (2015)
[http://dx.doi.org/10.1097/MCO.0000000000000141] [PMID: 25501348]
[78]
Luchtman DW, Song C. Cognitive enhancement by omega-3 fatty acids from child-hood to old age: findings from animal and clinical studies. Neuropharmacology 64: 550-65. (2013)
[79]
Cutuli D, Pagani M, Caporali P, Galbusera A, Laricchiuta D, Foti F, et al. Effects of omega-3 fatty acid supplementation on cognitive functions and neural substrates: A voxel-based morphometry study in aged mice. Front Aging Neurosci 8: 38. (2016)
[http://dx.doi.org/10.3389/fnagi.2016.00038] [PMID: 26973513]
[80]
Shirooie Samira. Seyed Fazel Nabavi, Ahmad R. Dehpour, Tarun Belwal, Solomon Habtemariam, Sandro Argüelles, Antoni Sureda et al. Targeting mTORs by omega-3 fatty acids: A possible novel therapeutic strategy for neurodegeneration? Pharmacol Res 135: 37-48. (2018)
[81]
Song C, Shieh C-H, Wu Y-S, Kalueff A, Gaikwad S, Su K-P. The role of omega-3 polyunsaturated fatty acids eicosapentaenoic and docosahexaenoic acids in the treatment of major depression and Alzheimer’s disease: acting separately or synergistically? Prog Lipid Res 62: 41-54. (2016)
[http://dx.doi.org/10.1016/j.plipres.2015.12.003] [PMID: 26763196]
[82]
Zhang YP, Brown RE, Zhang PC, Zhao YT, Ju XH, Song C. DHA, EPA and their combination at various ratios differently modulated Aβ25-35-induced neurotoxicity in SH-SY5Y cells. Prostaglandins Leukot Essent Fatty Acids 136: 85-94. (2018)
[83]
Che H, Zhou M, Zhang T, Zhang L, Ding L, Yanagita T, et al. EPA enriched ethanolamine plasmalogens significantly improve cognition of Alzheimer’s disease mouse model by suppressing β-amyloid generation. J Funct Foods 41: 9-18. (2018)
[84]
Wen M, Xu J, Ding L, Zhang L, Du L, Wang J, et al. Eicosapentaenoic acid-enriched phospholipids improve Aβ1-40-induced cognitive deficiency in a rat model of Alzheimer’s disease. J Funct Foods 24: 537-48. (2016)
[http://dx.doi.org/10.1016/j.jff.2016.04.034]
[85]
Wu FJ, Xue Y, Liu XF, Xue CH, Wang JF, Du L, et al. The protective effect of eicosapentaenoic acid-enriched phospholipids from sea cucumber Cucumaria frondosa on oxidative stress in PC12 cells and SAMP8 mice. Neurochem Int 64(1): 9-17. (2014)
[http://dx.doi.org/10.1016/j.neuint.2013.10.015] [PMID: 24231470]
[86]
Colovic MB, Krstic DZ, Lazarevic-Pasti TD, Vasic AMB, and VM Acetylcholinesterase Inhibitors. Pharmacology and Toxicology. Curr Neuropharmacol 11(3): 315-35. (2013)
[http://dx.doi.org/10.2174/1570159X11311030006] [PMID: 24179466]
[87]
Darreh-Shori T, Soininen H. Effects of cholinesterase inhibitors on the activities and protein levels of cholinesterases in the cerebrospinal fluid of patients with Alzheimer’s disease: a review of recent clinical studies. Curr Alzheimer Res 7(1): 67-73. (2010)
[http://dx.doi.org/10.2174/156720510790274455] [PMID: 20205672]
[88]
Sung JHS, Lee MJS. Antioxidant, ACE inhibitory, and acetylcholinesterase inhibitory activities of subcritical water extract of blue mussel. Food Sci Biotechnol 27(3): 923-7. (2018)
[PMID: 31093451]
[89]
Tommonaro G, García-Font N, Vitale RM, Pejin B, Iodice C, Cañadas S, et al. Avarol derivatives as competitive AChE inhibitors, non hepatotoxic and neuroprotective agents for Alzheimer’s disease. Eur J Med Chem 122: 326-38. (2016)
[http://dx.doi.org/10.1016/j.ejmech.2016.06.036] [PMID: 27376495]
[90]
Botić T, Defant A, Zanini P, Žužek MC, Frangež R, Janussen D, et al. Discorhabdin alkaloids from Antarctic Latrunculia spp. sponges as a new class of cholinesterase inhibitors. Eur J Med Chem 136: 294-304. (2017)
[http://dx.doi.org/10.1016/j.ejmech.2017.05.019] [PMID: 28505534]
[91]
Leirós M, Alonso E, Rateb ME, Houssen WE, Ebel R, Jaspars M, et al. Gracilins: Spongionella-derived promising compounds for Alzheimer disease. Neuropharmacology 93: 285-93. (2015)
[http://dx.doi.org/10.1016/j.neuropharm.2015.02.015] [PMID: 25724081]
[92]
Almeida C, Hemberger Y, Schmitt SM, Bouhired S, Natesan L, Kehraus S, et al. Marilines A-C: Novel phthalimidines from the sponge-derived fungus Stachylidium sp. Chem A Eur J 18(28): 882-34. (2012)
[http://dx.doi.org/10.1002/chem.201103278] [PMID: 22711513]
[93]
Elsebai MF, Kehraus S, König GM. Caught between triterpene-and steroid-metabolism: 4a-Carboxylic pregnane-derivative from the marine alga-derived fungus Phaeosphaeria spartinae. Steroids 78(9): 880-3. (2013)
[http://dx.doi.org/10.1016/j.steroids.2013.05.003] [PMID: 23684924]
[94]
Felder S, Dreisigacker S, Kehraus S, Neu E, Bierbaum G, Wright PR, et al. Salimabromide: Unexpected chemistry from the obligate marine myxobacterium enhygromxya salina. Chem A Eur J 19(28): 9319-24. (2013)
[http://dx.doi.org/10.1002/chem.201301379] [PMID: 23703738]
[95]
Leng T, Liu A, Wang Y, Chen X, Zhou S, Li Q, et al. Naturally occurring marine steroid 24-methylenecholestane-3β,5α,6β,19-tetraol functions as a novel neuroprotectant. Steroids 105: 96-05. (2016)
[http://dx.doi.org/10.1016/j.steroids.2015.11.005] [PMID: 26631550]
[96]
Harms H, Kehraus S, Nesaei-Mosaferan D, Hufendieck P, Meijer L, König GM. Aβ-42 lowering agents from the marine-derived fungus Dichotomomyces cejpii. Steroids 104: 182-8. (2015)
[http://dx.doi.org/10.1016/j.steroids.2015.09.012] [PMID: 26440473]
[97]
Tan LT. Filamentous tropical marine cyanobacteria: A rich source of natural products for anticancer drug discovery. J App Phycol 22(5): 659-76| (2010).
[http://dx.doi.org/10.1007/s10811-010-9506-x]
[98]
Liu Y, Zhang W, Li L, Salvador LA, Chen T, Chen W, et al. Cyanobacterial peptides as a prototype for the design of potent β-secretase inhibitors and the development of selective chemical probes for other aspartic proteases. J Med Chem 55(23): 10749-65. (2012)
[http://dx.doi.org/10.1021/jm301630s] [PMID: 23181502]
[99]
Glezer I, Simard AR, Rivest S. Neuroprotective role of the innate immune system by microglia. Neuroscience 147(4): 867-83. (2007)
[http://dx.doi.org/10.1016/j.neuroscience.2007.02.055]
[100]
Tremblay M-È, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A. The role of microglia in the healthy brain. J Neurosci 31(45): 16064-9. (2011)
[http://dx.doi.org/10.1523/JNEUROSCI.4158-11.2011] [PMID: 22072657]
[101]
Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nat Rev Neurosci 8(1): 57-69. (2007)
[102]
Boje KM, Arora PK. Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res 587(2): 250-6. (1992)
[http://dx.doi.org/10.1016/0006-8993(92)91004-X] [PMID: 1381982]
[103]
Chao CC, Hu S, Molitor TW, Shaskan EG, Peterson PK. Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol 149(8): 2736-41. (1992)
[PMID: 1383325]
[104]
Dewapriya P, Li YX, Himaya SWA, Pangestuti R, Kim SK. Neoechinulin A suppresses amyloid-β oligomer-induced microglia activation and thereby protects PC-12 cells from inflammation-mediated toxicity. Neurotoxicology 35(1): 30-40. (2013)
[http://dx.doi.org/10.1016/j.neuro.2012.12.004] [PMID: 23261590]
[105]
He FQ, Qiu BY, Zhang XH, Li TK, Xie Q, Cui DJ, et al. Tetrandrine attenuates spatial memory impairment and hippocampal neuroinflammation via inhibiting NF-κB activation in a rat model of Alzheimer’s disease induced by amyloid-β(1-42). Brain Res 1384: 89-96. (2011)
[http://dx.doi.org/10.1016/j.brainres.2011.01.103] [PMID: 21300035]
[106]
O’Neill. Kaltschmidt. NF-kappa B: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci 20(6): 252-8. (1997)
[http://dx.doi.org/10.1016/S0166-2236(96)01035-1] [PMID: 9185306]
[107]
Zhang G, Ghosh S. Toll-like receptor-mediated NF-κB activation: a phylogenetically conserved paradigm in innate immunity. J Clin Invest 107(1): 13-9. (2001)
[http://dx.doi.org/10.1172/JCI11837]
[108]
Yoon CS, Kim DC, Lee DS, Kim KS, Ko W, Sohn JH, et al. Anti-neuroinflammatory effect of aurantiamide acetate from the marine fungus Aspergillus sp. SF-5921: Inhibition of NF-κB and MAPK pathways in lipopolysaccharide-induced mouse BV2 microglial cells. Int Immunopharmacol 23(2): 568-74. (2014)
[http://dx.doi.org/10.1016/j.intimp.2014.10.006] [PMID: 25448500]
[109]
Pandey S, Sree A, Sethi DP, Kumar CG, Kakollu S, Chowdhury L, et al. A marine sponge associated strain of Bacillus subtilis and other marine bacteria can produce anticholinesterase compounds. Microb Cell Fact Microb Cell Fact 13(1): 24. (2014)
[http://dx.doi.org/10.1186/1475-2859-13-24] [PMID: 24528673]
[110]
Loeffler W, Tschen JS. Vanittanakom N, Kugler M, Knorpp E, Hsieh TF, et al. Antifungal effects of bacilysin and fengymycin from bacillus subtilis f‐29‐3 a comparison with activities of other bacillus antibiotics. J Phytopathol 115(3): 204-13. (1986)
[http://dx.doi.org/10.1111/j.1439-0434.1986.tb00878.x]
[111]
Sangnoi Y, Sakulkeo O, Yuenyongsawad S, Kanjana-opas A, Ingkaninan K, Plubrukarn A, et al. Acetylcholinesterase-inhibiting activity of pyrrole derivatives from a novel marine gliding bacterium, Rapidithrix thailandica. Mar Drugs 6(4): 578-86. (2008)
[http://dx.doi.org/10.3390/md6040578] [PMID: 19172195]
[112]
Qi C, Bao J, Wang J, Zhu H, Xue Y, Wang X, et al. Asperterpenes A and B, two unprecedented meroterpenoids from: Aspergillus terreus with BACE1 inhibitory activities. Chem Sci 7(10): 6563-72. (2016)
[http://dx.doi.org/10.1039/C6SC02464E] [PMID: 28042460]
[113]
Samira S, Nabavi SF, Dehpour AR, Belwal T, Habtemariam S, Argüelles S, et al. Targeting mTORs by omega-3 fatty acids: A possible novel therapeutic strategy for neurodegeneration? Pharmacol Res 135: 37-48. (2018)
[114]
Chen G, Chen KS, Knox J, Inglis J, Bernard A, Martin SJ, et al. A learning deficit related to age and beta-amyloid plaques in a mouse model of Alzheimer’s disease. Nature 408(6815): 975-9. (2000)
[http://dx.doi.org/10.1038/35050103] [PMID: 11140684]
[115]
Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis Science (80- ) 300(5618): 486-89 (2003).
[http://dx.doi.org/10.1126/science.1079469]
[116]
Barage SH, Sonawane KD. Amyloid cascade hypothesis: pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides 52: 1-18. (2015)
[http://dx.doi.org/10.1016/j.npep.2015.06.008] [PMID: 26149638]
[117]
Kumar K, Kumar A, Keegan RM, Deshmukh R. Recent advances in the neurobiology and neuropharmacology of Alzheimer’s disease. Biomed Pharmacother 98: 297-307. (2018)
[http://dx.doi.org/10.1016/j.biopha.2017.12.053]
[118]
Butterfield DA, Pocernich CB. The glutamatergic system and Alzheimer’s disease: therapeutic implications. CNS Drugs 17(9): 641-52. (2003)
[119]
Wang X, Ma Z, Fu Z, Gao S, Yang L, Jin Y, et al. Hydroxysafflor yellow A protects neurons from excitotoxic death through inhibition of NMDARs. ASN Neuro 8(2)pii 1759091416642345 (2016)
[http://dx.doi.org/10.1177/1759091416642345] [PMID: 27067428]
[120]
Conn PJ, Pin J-P. Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37(1): 205-37. (1997)
[http://dx.doi.org/10.1146/annurev.pharmtox.37.1.205] [PMID: 9131252]
[121]
Lee H, Zhu X, O’Neill MJ, Webber K, Casadesus G, Marlatt M, et al. The role of metabotropic glutamate receptors in Alzheimer’s disease. Acta Neurobiol Exp (Warsz) 64(1): 89-98. (2004)
[PMID: 15190683]
[122]
Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113): 787-95. (2006)
[http://dx.doi.org/10.1038/nature05292]
[123]
Mao P, Reddy PH. Aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction in Alzheimer’s disease: implications for early intervention and therapeutics. Biochim Biophys Acta 1812(11): 1359-70. (2011)
[124]
Craig LA, Hong NS, McDonald RJ. Revisiting the cholinergic hypothesis in the development of Alzheimer’s disease. Neurosci Biobehav Rev 35(6): 1397-409. (2011)
[http://dx.doi.org/10.1016/j.neubiorev.2011.03.001]
[125]
Contestabile A. The history of the cholinergic hypothesis (2011)
[http://dx.doi.org/10.1016/j.bbr.2009.12.044]
[126]
Wang SC, Oeize B, Schumacher A. Age-specific epigenetic drift in late-onset Alzheimer’s disease. PLoS One 3(7)e2698 (2008)
[http://dx.doi.org/10.1371/journal.pone.0002698] [PMID: 18628954]
[127]
Carballo JL, Zubía E, Ortega MJ. Biological and chemical characterizations of three new species of Dysidea (Porifera: Demospongiae) from the Pacific Mexican coast. Biochem Syst Ecol 34(6): 498-508. (2006)
[128]
Guo ZK, Wang R, Chen FX, Liu TM, Yang MQ. Bioactive aromatic metabolites from the sea urchin-derived actinomycete Streptomyces spectabilis strain HDa1. Phytochem Lett 25: 132-5. (2018)

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy