Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

A Study for Therapeutic Treatment against Parkinson’s Disease via Chou’s 5-steps Rule

Author(s): Jianqiang Lan, Zhongqiang Liu, Chenghong Liao, David J. Merkler, Qian Han* and Jianyong Li*

Volume 19, Issue 25, 2019

Page: [2318 - 2333] Pages: 16

DOI: 10.2174/1568026619666191019111528

Price: $65

Abstract

The enzyme L-DOPA decarboxylase (DDC), also called aromatic-L-amino-acid decarboxylase, catalyzes the biosynthesis of dopamine, serotonin, and trace amines. Its deficiency or perturbations in expression result in severe motor dysfunction or a range of neurodegenerative and psychiatric disorders. A DDC substrate, L-DOPA, combined with an inhibitor of the enzyme is still the most effective treatment for symptoms of Parkinson's disease. In this review, we provide an update regarding the structures, functions, and inhibitors of DDC, particularly with regards to the treatment of Parkinson's disease. This information will provide insight into the pharmacological treatment of Parkinson's disease.

Keywords: L-DOPA decarboxylase, Aromatic-L-amino-acid decarboxylase, Inhibitor, Parkinson’s disease, Enzyme, Biosynthesis.

Graphical Abstract

[1]
Feng, P-M.; Chen, W.; Lin, H.; Chou, K-C. iHSP-PseRAAAC: Identifying the heat shock protein families using pseudo reduced amino acid alphabet composition. Anal. Biochem., 2013, 442(1), 118-125.
[http://dx.doi.org/10.1016/j.ab.2013.05.024] [PMID: 23756733]
[2]
Chen, W.; Feng, P-M.; Deng, E-Z.; Lin, H.; Chou, K-C. iTIS-PseTNC: a sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition. Anal. Biochem., 2014, 462, 76-83.
[http://dx.doi.org/10.1016/j.ab.2014.06.022] [PMID: 25016190]
[3]
Chen, W.; Feng, P.; Yang, H.; Ding, H.; Lin, H.; Chou, K.C. iRNA-AI: identifying the adenosine to inosine editing sites in RNA sequences. Oncotarget, 2017, 8(3), 4208-4217.
[http://dx.doi.org/10.18632/oncotarget.13758] [PMID: 27926534]
[4]
Cheng, X.; Xiao, X.; Chou, K-C. pLoc_bal-mGneg: Predict subcellular localization of Gram-negative bacterial proteins by quasi-balancing training dataset and general PseAAC. J. Theor. Biol., 2018, 458, 92-102.
[http://dx.doi.org/10.1016/j.jtbi.2018.09.005] [PMID: 30201434]
[5]
Feng, P.; Yang, H.; Ding, H.; Lin, H.; Chen, W.; Chou, K-C. iDNA6mA-PseKNC: Identifying DNA N6-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC. Genomics, 2019, 111(1), 96-102.
[http://dx.doi.org/10.1016/j.ygeno.2018.01.005] [PMID: 29360500]
[6]
Jia, J.; Li, X.; Qiu, W.; Xiao, X.; Chou, K-C. iPPI-PseAAC(CGR): Identify protein-protein interactions by incorporating chaos game representation into PseAAC. J. Theor. Biol., 2019, 460, 195-203.
[http://dx.doi.org/10.1016/j.jtbi.2018.10.021] [PMID: 30312687]
[7]
Khan, Y.D.; Jamil, M.; Hussain, W.; Rasool, N.; Khan, S.A.; Chou, K-C. pSSbond-PseAAC: Prediction of disulfide bonding sites by integration of PseAAC and statistical moments. J. Theor. Biol., 2019, 463, 47-55.
[http://dx.doi.org/10.1016/j.jtbi.2018.12.015] [PMID: 30550863]
[8]
Li, J-X.; Wang, S-Q.; Du, Q-S.; Wei, H.; Li, X-M.; Meng, J-Z.; Wang, Q-Y.; Xie, N-Z.; Huang, R-B.; Chou, K-C. Simulated protein thermal detection (SPTD) for enzyme thermostability study and an application example for pullulanase from Bacillus deramificans. Curr. Pharm. Des., 2018, 24(34), 4023-4033.
[http://dx.doi.org/10.2174/1381612824666181113120948] [PMID: 30421671]
[9]
Xiao, X.; Cheng, X.; Su, S.; Mao, Q.; Chou, K-C. pLoc-mGpos: incorporate key gene ontology information into general PseAAC for predicting subcellular localization of Gram-positive bacterial proteins. Nat. Sci., 2017, 9(09), 330.
[http://dx.doi.org/10.4236/ns.2017.99032]
[10]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mVirus: Predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC. Gene, 2017, 13(9)
[http://dx.doi.org/10.1016/j.gene.2017.07.036]
[11]
Chou, K-C. Some remarks on protein attribute prediction and pseudo amino acid composition. J. Theor. Biol., 2011, 273(1), 236-247.
[http://dx.doi.org/10.1016/j.jtbi.2010.12.024] [PMID: 21168420]
[12]
Chou, K-C. Advance in predicting subcellular localization of multi-label proteins and its implication for developing multi-target drugs. Curr. Med. Chem., 2019. Epub ahead of print
[http://dx.doi.org/10.2174/0929867326666190507082559] [PMID: 31060481]
[13]
Eisenhofer, G.; Åneman, A.; Friberg, P.; Hooper, D.; Fåndriks, L.; Lonroth, H.; Hunyady, B.; Mezey, E. Substantial production of dopamine in the human gastrointestinal tract. J. Clin. Endocrinol. Metab., 1997, 82(11), 3864-3871.
[http://dx.doi.org/10.1210/jcem.82.11.4339] [PMID: 9360553]
[14]
Boomsma, F.; van der Hoorn, F.A.; Schalekamp, M.A. Determination of aromatic-L-amino acid decarboxylase in human plasma. Clin. Chim. Acta, 1986, 159(2), 173-183.
[http://dx.doi.org/10.1016/0009-8981(86)90050-1] [PMID: 3769207]
[15]
Lovenberg, W.; Weissbach, H.; Udenfriend, S. Aromatic L-amino acid decarboxylase. J. Biol. Chem., 1962, 237(237), 89-93.
[PMID: 14466899]
[16]
Rahman, M.K.; Nagatsu, T.; Kato, T. Aromatic L-amino acid decarboxylase activity in central and peripheral tissues and serum of rats with L-DOPA and L-5-hydroxytryptophan as substrates. Biochem. Pharmacol., 1981, 30(6), 645-649.
[http://dx.doi.org/10.1016/0006-2952(81)90139-8] [PMID: 7271902]
[17]
Siaterli, M-Z.; Vassilacopoulou, D.; Fragoulis, E.G. Cloning and expression of human placental L-Dopa decarboxylase. Neurochem. Res., 2003, 28(6), 797-803.
[http://dx.doi.org/10.1023/A:1023246620276] [PMID: 12718431]
[18]
Lindström, P.; Sehlin, J. Mechanisms underlying the effects of 5-hydroxytryptamine and 5-hydroxytryptophan in pancreatic islets. A proposed role for L-aromatic amino acid decarboxylase. Endocrinology, 1983, 112(4), 1524-1529.
[http://dx.doi.org/10.1210/endo-112-4-1524] [PMID: 6339207]
[19]
Mappouras, D.G.; Stiakakis, J.; Fragoulis, E.G. Purification and characterization of L-dopa decarboxylase from human kidney. Mol. Cell. Biochem., 1990, 94(2), 147-156.
[http://dx.doi.org/10.1007/BF00214121] [PMID: 2374548]
[20]
Zhu, M.Y.; Juorio, A.V. Aromatic L-amino acid decarboxylase: biological characterization and functional role. Gen. Pharmacol., 1995, 26(4), 681-696.
[http://dx.doi.org/10.1016/0306-3623(94)00223-A] [PMID: 7635243]
[21]
Guenter, J.; Lenartowski, R. Molecular characteristic and physiological role of DOPA-decarboxylase. Postepy Hig. Med. Dosw., 2016, 70(0), 1424-1440.
[http://dx.doi.org/10.5604/17322693.1227773] [PMID: 28100850]
[22]
Hwu, W.; Muramatsu, S.; Tseng, S.; Tzen, K.; Lee, N.; Chien, Y.; Snyder, R.O.; Byrne, B.J.; Tai, C.; Wu, R. Gene therapy for aromatic L-amino acid decarboxylase deficiency. Sci. Transl. Med., 2012, 4(134)134ra61
[23]
Boomsma, F.; Meerwaldt, J.D.; Man in ’t Veld, A.J.; Hovestadt, A.; Schalekamp, M.A. Induction of aromatic-L-amino acid decarboxylase by decarboxylase inhibitors in idiopathic parkinsonism. Ann. Neurol., 1989, 25(6), 624-628.
[http://dx.doi.org/10.1002/ana.410250616] [PMID: 2742363]
[24]
Brun, L.; Ngu, L.H.; Keng, W.T.; Ch’ng, G.S.; Choy, Y.S.; Hwu, W.L.; Lee, W.T.; Willemsen, M.A.; Verbeek, M.M.; Wassenberg, T.; Régal, L.; Orcesi, S.; Tonduti, D.; Accorsi, P.; Testard, H.; Abdenur, J.E.; Tay, S.; Allen, G.F.; Heales, S.; Kern, I.; Kato, M.; Burlina, A.; Manegold, C.; Hoffmann, G.F.; Blau, N. Clinical and biochemical features of aromatic L-amino acid decarboxylase deficiency. Neurology, 2010, 75(1), 64-71.
[http://dx.doi.org/10.1212/WNL.0b013e3181e620ae] [PMID: 20505134]
[25]
Blaschko, H. The activity of l(-)-dopa decarboxylase. J. Physiol., 1942, 101(3), 337-349.
[http://dx.doi.org/10.1113/jphysiol.1942.sp003988] [PMID: 16991567]
[26]
Blaschko, H. The decarboxylation of o-hydroxyphenylalanine. Biochem. J., 1949, 44(3), 268-270.
[http://dx.doi.org/10.1042/bj0440268] [PMID: 16748513]
[27]
Schales, O. Amino acid decarboxylases of animals., 1955, Vol. 2, 195-199.
[28]
Kiehn, O.; Kjaerulff, O. Spatiotemporal characteristics of 5-HT and dopamine-induced rhythmic hindlimb activity in the in vitro neonatal rat. J. Neurophysiol., 1996, 75(4), 1472-1482.
[http://dx.doi.org/10.1152/jn.1996.75.4.1472] [PMID: 8727391]
[29]
Marder, E.; Eisen, J.S. Electrically coupled pacemaker neurons respond differently to same physiological inputs and neurotransmitters. J. Neurophysiol., 1984, 51(6), 1362-1374.
[http://dx.doi.org/10.1152/jn.1984.51.6.1362] [PMID: 6145758]
[30]
Schotland, J.; Shupliakov, O.; Wikström, M.; Brodin, L.; Srinivasan, M.; You, Z.B.; Herrera-Marschitz, M.; Zhang, W.; Hökfelt, T.; Grillner, S. Control of lamprey locomotor neurons by colocalized monoamine transmitters. Nature, 1995, 374(6519), 266-268.
[http://dx.doi.org/10.1038/374266a0] [PMID: 7885446]
[31]
Berry, M.D. The potential of trace amines and their receptors for treating neurological and psychiatric diseases. Rev. Recent Clin. Trials, 2007, 2(1), 3-19.
[http://dx.doi.org/10.2174/157488707779318107] [PMID: 18473983]
[32]
Fellman, J.H. Inhibition of DOPA decarboxylase by aromatic acids associated with phenylpyruvic oligophrenia. Proc. Soc. Exp. Biol. Med., 1956, 93(3), 413-414.
[http://dx.doi.org/10.3181/00379727-93-22773] [PMID: 13389476]
[33]
Laduron, P.; Belpaire, F. Tissue fractionation and catecholamines. II. Intracellular distribution patterns of tyrosine hydroxylase, dopa decarboxylase, dopamine-β-hydroxylase, phenylethanolamine N-methyltransferase and monoamine oxidase in adrenal medulla. Biochem. Pharmacol., 1968, 17(7), 1127-1140.
[http://dx.doi.org/10.1016/0006-2952(68)90048-8] [PMID: 4298204]
[34]
Nadler, H.L.; Hsia, D.Y-Y. Epinephrine metabolism in phenylke-tonuria. Proc. Soc. Exp. Biol. Med., 1961, 107(4), 721-723.
[http://dx.doi.org/10.3181/00379727-107-26734] [PMID: 14477803]
[35]
Stjärne, L.; Lishajko, F. Localization of different steps in noradrenaline synthesis to different fractions of a bovine splenic nerve homogenate. Biochem. Pharmacol., 1967, 16(9), 1719-1728.
[http://dx.doi.org/10.1016/0006-2952(67)90247-X] [PMID: 6053214]
[36]
Klingman, G.I. Catecholamine levels and dopa-decarboxylase activity in peripheral organs and adrenergic tissues in the rat after immunosympathectomy. J. Pharmacol. Exp. Ther., 1965, 148(1), 14-21.
[PMID: 14279178]
[37]
Romero, J.A.; Lytle, L.D.; Ordonez, L.A.; Wurtman, R.J. Effects of L-dopa administration of the concentrations of dopa, dopamine and norepinephrine in various rat tissues. J. Pharmacol. Exp. Ther., 1973, 184(1), 67-72.
[PMID: 4686016]
[38]
Tate, S.S.; Sweet, R.; McDowell, F.H.; Meister, A. Decrease of the 3,4-dihydroxyphenylalanine (DOPA) decarboxylase activities in human erythrocytes and mouse tissues after administration of DOPA. Proc. Natl. Acad. Sci. USA, 1971, 68(9), 2121-2123.
[http://dx.doi.org/10.1073/pnas.68.9.2121] [PMID: 5289372]
[39]
Harris, J.W.; Woodring, J. Effects of stress, age, season, and source colony on levels of octopamine, dopamine and serotonin in the honey bee (Apis mellifera L.) brain. J. Insect Physiol., 1992, 38(1), 29-35.
[http://dx.doi.org/10.1016/0022-1910(92)90019-A]
[40]
Klemm, N.; Axelsson, S. Detection of dopamine, noradrenaline and 5-hydroxy-tryptamine in the cerebral ganglion of the desert locust, Schistocerca gregaria Forsk (Insecta: Orthoptera). Brain Res., 1973, 57(2), 289-298.
[http://dx.doi.org/10.1016/0006-8993(73)90137-6] [PMID: 4722056]
[41]
Osborne, R.H. Insect neurotransmission: neurotransmitters and their receptors. Pharmacol. Ther., 1996, 69(2), 117-142.
[http://dx.doi.org/10.1016/0163-7258(95)02054-3] [PMID: 8984507]
[42]
Beall, C.J.; Hirsh, J.; Dewhurst, S.A.; Croker, S.G.; Ikeda, K.; McCaman, R.E. Regulation of the Drosophila dopa decarboxylase gene in neuronal and glial cells. Genes Dev., 1987, 1(5), 510-520.
[http://dx.doi.org/10.1101/gad.1.5.510] [PMID: 3119425]
[43]
Dewhurst, S. A.; Croker, S. G.; Ikeda, K.; McCaman, R. E. Metabolism of biogenetic amines in Drosophila nervous tissue, 1972, 43, 975-981.
[http://dx.doi.org/10.1016/0305-0491(72)90241-6]
[44]
Konrad, K.D.; Marsh, J.L. Developmental expression and spatial distribution of dopa decarboxylase in Drosophila. Dev. Biol., 1987, 122(1), 172-185.
[http://dx.doi.org/10.1016/0012-1606(87)90343-5] [PMID: 3297852]
[45]
Livingstone, M.S.; Tempel, B.L. Genetic dissection of monoamine neurotransmitter synthesis in Drosophila. Nature, 1983, 303(5912), 67-70.
[http://dx.doi.org/10.1038/303067a0] [PMID: 6133219]
[46]
Erber, J.; Kloppenburg, P.; Scheidler, A. Neuromodulation by serotonin and octopamine in the honeybee: behaviour, neuroanatomy and electrophysiology. Experientia, 1993, 49(12), 1073-1083.
[http://dx.doi.org/10.1007/BF01929916]
[47]
Scholnick, S.B.; Morgan, B.A.; Hirsh, J. The cloned dopa decarboxylase gene is developmentally regulated when reintegrated into the Drosophila genome. Cell, 1983, 34(1), 37-45.
[http://dx.doi.org/10.1016/0092-8674(83)90134-4] [PMID: 6192936]
[48]
Li, J. Egg chorion tanning in Aedes aegypti mosquito. Comp. Biochem. Physiol. A Physiol., 1994, 109(4), 835-843.
[http://dx.doi.org/10.1016/0300-9629(94)90231-3] [PMID: 7828027]
[49]
Hopkins, T.L.; Kramer, K.J. Insect cuticle sclerotization. Annu. Rev. Entomol., 1992, 37(1), 273-302.
[http://dx.doi.org/10.1146/annurev.en.37.010192.001421]
[50]
Li, J.; Hodgeman, B.A.; Christensen, B.M. Involvement of peroxidase in chorion hardening in Aedes aegypti. Insect Biochem. Mol. Biol., 1996, 26(3), 309-317.
[http://dx.doi.org/10.1016/0965-1748(95)00099-2] [PMID: 8900599]
[51]
Sugumaran, M. Molecular mechanisms for cuticular sclerotization. Adv. Insect Physiol., 1988, 21, 179-231.
[http://dx.doi.org/10.1016/S0065-2806(08)60124-1]
[52]
Li, J.; Christensen, B.M. Involvement of l-tyrosine and phenol oxidase in the tanning of Aedes aegypti eggs. Insect Biochem. Mol. Biol., 1993, 23(6), 739-748.
[http://dx.doi.org/10.1016/0965-1748(93)90048-W]
[53]
Schlaeger, D.A.; Fuchs, M.S. Localization of dopa decarboxylase in adult Aedes aegypti females. J. Exp. Zool., 1974, 187(2), 217-221.
[http://dx.doi.org/10.1002/jez.1401870204]
[54]
Han, Q.; Ding, H.; Robinson, H.; Christensen, B.M.; Li, J. Crystal structure and substrate specificity of Drosophila 3,4-dihydroxyphenylalanine decarboxylase. PLoS One, 2010, 5(1)e8826
[http://dx.doi.org/10.1371/journal.pone.0008826] [PMID: 20098687]
[55]
Vavricka, C.J.; Han, Q.; Mehere, P.; Ding, H.; Christensen, B.M.; Li, J. Tyrosine metabolic enzymes from insects and mammals: a comparative perspective. Insect Sci., 2014, 21(1), 13-19.
[http://dx.doi.org/10.1111/1744-7917.12038] [PMID: 23955993]
[56]
Børglum, A.D.; Bruun, T.G.; Kjeldsen, T.E.; Ewald, H.; Mors, O.; Kirov, G.; Russ, C.; Freeman, B.; Collier, D.A.; Kruse, T.A. Two novel variants in the DOPA decarboxylase gene: association with bipolar affective disorder. Mol. Psychiatry, 1999, 4(6), 545-551.
[http://dx.doi.org/10.1038/sj.mp.4000559] [PMID: 10578236]
[57]
Reith, J.; Benkelfat, C.; Sherwin, A.; Yasuhara, Y.; Kuwabara, H.; Andermann, F.; Bachneff, S.; Cumming, P.; Diksic, M.; Dyve, S.E.; Etienne, P.; Evans, A.C.; Lal, S.; Shevell, M.; Savard, G.; Wong, D.F.; Chouinard, G.; Gjedde, A. Elevated dopa decarboxylase activity in living brain of patients with psychosis. Proc. Natl. Acad. Sci. USA, 1994, 91(24), 11651-11654.
[http://dx.doi.org/10.1073/pnas.91.24.11651] [PMID: 7972118]
[58]
Margiotti, K.; Wafa, L.A.; Cheng, H.; Novelli, G.; Nelson, C.C.; Rennie, P.S. Androgen-regulated genes differentially modulated by the androgen receptor coactivator L-dopa decarboxylase in human prostate cancer cells. Mol. Cancer, 2007, 6, 38.
[http://dx.doi.org/10.1186/1476-4598-6-38] [PMID: 17553164]
[59]
Avgeris, M.; Koutalellis, G.; Fragoulis, E.G.; Scorilas, A. Expression analysis and clinical utility of L-Dopa decarboxylase (DDC) in prostate cancer. Clin. Biochem., 2008, 41(14-15), 1140-1149.
[http://dx.doi.org/10.1016/j.clinbiochem.2008.04.026] [PMID: 18586020]
[60]
Koutalellis, G.; Stravodimos, K.; Avgeris, M.; Mavridis, K.; Scorilas, A.; Lazaris, A.; Constantinides, C. L-dopa decarboxylase (DDC) gene expression is related to outcome in patients with prostate cancer. BJU Int., 2012, 110(6 Pt B), E267-E273.
[http://dx.doi.org/10.1111/j.1464-410X.2012.11152.x] [PMID: 22571720]
[61]
Le Van Thai, A.; Coste, E.; Allen, J.M.; Palmiter, R.D.; Weber, M.J. Identification of a neuron-specific promoter of human aromatic L-amino acid decarboxylase gene. Brain Res. Mol. Brain Res., 1993, 17(3-4), 227-238.
[http://dx.doi.org/10.1016/0169-328X(93)90006-B] [PMID: 8510497]
[62]
Grace, A.A. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience, 1991, 41(1), 1-24.
[http://dx.doi.org/10.1016/0306-4522(91)90196-U] [PMID: 1676137]
[63]
Børglum, A.D.; Hampson, M.; Kjeldsen, T.E.; Muir, W.; Murray, V.; Ewald, H.; Mors, O.; Blackwood, D.; Kruse, T.A. Dopa decarboxylase genotypes may influence age at onset of schizophrenia. Mol. Psychiatry, 2001, 6(6), 712-717.
[http://dx.doi.org/10.1038/sj.mp.4000902] [PMID: 11673800]
[64]
Corominas, R.; Sobrido, M.J.; Ribasés, M.; Cuenca-León, E.; Blanco-Arias, P.; Narberhaus, B.; Roig, M.; Leira, R.; López-González, J.; Macaya, A.; Cormand, B. Association study of the serotoninergic system in migraine in the Spanish population. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2010, 153B(1), 177-184.
[PMID: 19455600]
[65]
Guan, L.; Wang, B.; Chen, Y.; Yang, L.; Li, J.; Qian, Q.; Wang, Z.; Faraone, S.V.; Wang, Y. A high-density single-nucleotide polymorphism screen of 23 candidate genes in attention deficit hyperactivity disorder: suggesting multiple susceptibility genes among Chinese Han population. Mol. Psychiatry, 2009, 14(5), 546-554.
[http://dx.doi.org/10.1038/sj.mp.4002139] [PMID: 18180757]
[66]
Lasky-Su, J.; Neale, B.M.; Franke, B.; Anney, R.J.; Zhou, K.; Maller, J.B.; Vasquez, A.A.; Chen, W.; Asherson, P.; Buitelaar, J.; Banaschewski, T.; Ebstein, R.; Gill, M.; Miranda, A.; Mulas, F.; Oades, R.D.; Roeyers, H.; Rothenberger, A.; Sergeant, J.; Sonuga-Barke, E.; Steinhausen, H.C.; Taylor, E.; Daly, M.; Laird, N.; Lange, C.; Faraone, S.V. Genome-wide association scan of quantitative traits for attention deficit hyperactivity disorder identifies novel associations and confirms candidate gene associations. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2008, 147B(8), 1345-1354.
[http://dx.doi.org/10.1002/ajmg.b.30867] [PMID: 18821565]
[67]
Toma, C.; Hervás, A.; Balmaña, N.; Salgado, M.; Maristany, M.; Vilella, E.; Aguilera, F.; Orejuela, C.; Cuscó, I.; Gallastegui, F.; Pérez-Jurado, L.A.; Caballero-Andaluz, R.; Diego-Otero, Yd.; Guzmán-Alvarez, G.; Ramos-Quiroga, J.A.; Ribasés, M.; Bayés, M.; Cormand, B. Neurotransmitter systems and neurotrophic factors in autism: association study of 37 genes suggests involvement of DDC. World J. Biol. Psychiatry, 2013, 14(7), 516-527.
[http://dx.doi.org/10.3109/15622975.2011.602719] [PMID: 22397633]
[68]
Zhu, B.; Chen, C.; Moyzis, R.K.; Dong, Q.; Chen, C.; He, Q.; Li, J.; Li, J.; Lei, X.; Lin, C. The DOPA decarboxylase (DDC) gene is associated with alerting attention. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 43, 140-145.
[http://dx.doi.org/10.1016/j.pnpbp.2012.12.020] [PMID: 23276884]
[69]
Eisenberg, D.P.; Kohn, P.D.; Hegarty, C.E.; Ianni, A.M.; Kolachana, B.; Gregory, M.D.; Masdeu, J.C.; Berman, K.F. Common variation in the DOPA Decarboxylase (DDC) gene and human striatal DDC activity in vivo. Neuropsychopharmacology, 2016, 41(9), 2303-2308.
[http://dx.doi.org/10.1038/npp.2016.31] [PMID: 26924680]
[70]
Ma, J.Z.; Beuten, J.; Payne, T.J.; Dupont, R.T.; Elston, R.C.; Li, M.D. Haplotype analysis indicates an association between the DOPA decarboxylase (DDC) gene and nicotine dependence. Hum. Mol. Genet., 2005, 14(12), 1691-1698.
[http://dx.doi.org/10.1093/hmg/ddi177] [PMID: 15879433]
[71]
Pan, Y.; Luo, X.; Liu, X.; Wu, L.Y.; Zhang, Q.; Wang, L.; Wang, W.; Zuo, L.; Wang, K.S. Genome-wide association studies of maximum number of drinks. J. Psychiatr. Res., 2013, 47(11), 1717-1724.
[http://dx.doi.org/10.1016/j.jpsychires.2013.07.013] [PMID: 23953852]
[72]
Giegling, I.; Moreno-De-Luca, D.; Rujescu, D.; Schneider, B.; Hartmann, A.M.; Schnabel, A.; Maurer, K.; Möller, H.J.; Serretti, A. Dopa decarboxylase and tyrosine hydroxylase gene variants in suicidal behavior. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2008, 147(3), 308-315.
[http://dx.doi.org/10.1002/ajmg.b.30599] [PMID: 17948905]
[73]
Gjedde, A.; Léger, G.C.; Cumming, P.; Yasuhara, Y.; Evans, A.C.; Guttman, M.; Kuwabara, H. Striatal L-dopa decarboxylase activity in Parkinson’s disease in vivo: implications for the regulation of dopamine synthesis. J. Neurochem., 1993, 61(4), 1538-1541.
[http://dx.doi.org/10.1111/j.1471-4159.1993.tb13651.x] [PMID: 8377003]
[74]
Lloyd, K.; Hornykiewicz, O. Parkinson’s disease: activity of L-dopa decarboxylase in discrete brain regions. Science, 1970, 170(3963), 1212-1213.
[http://dx.doi.org/10.1126/science.170.3963.1212] [PMID: 5478194]
[75]
Devos, D.; Lejeune, S.; Cormier-Dequaire, F.; Tahiri, K.; Charbonnier-Beaupel, F.; Rouaix, N.; Duhamel, A.; Sablonnière, B.; Bonnet, A.M.; Bonnet, C.; Zahr, N.; Costentin, J.; Vidailhet, M.; Corvol, J.C. Dopa-decarboxylase gene polymorphisms affect the motor response to L-dopa in Parkinson’s disease. Parkinsonism Relat. Disord., 2014, 20(2), 170-175.
[http://dx.doi.org/10.1016/j.parkreldis.2013.10.017] [PMID: 24216088]
[76]
Kalantzis, E.D.; Scorilas, A.; Vassilacopoulou, D. Evidence for L-Dopa decarboxylase activity in cancer cell cytotoxicity induced by Docetaxel and Mitoxantrone. Curr. Pharm. Biotechnol., 2018, 19(13), 1087-1096.
[http://dx.doi.org/10.2174/1389201019666181112103637] [PMID: 30417785]
[77]
Burkhard, P.; Dominici, P.; Borri-Voltattorni, C.; Jansonius, J.N.; Malashkevich, V.N. Structural insight into Parkinson’s disease treatment from drug-inhibited DOPA decarboxylase. Nat. Struct. Biol., 2001, 8(11), 963-967.
[http://dx.doi.org/10.1038/nsb1101-963] [PMID: 11685243]
[78]
Giardina, G.; Montioli, R.; Gianni, S.; Cellini, B.; Paiardini, A.; Voltattorni, C.B.; Cutruzzolà, F. Open conformation of human DOPA decarboxylase reveals the mechanism of PLP addition to Group II decarboxylases. Proc. Natl. Acad. Sci. USA, 2011, 108(51), 20514-20519.
[http://dx.doi.org/10.1073/pnas.1111456108] [PMID: 22143761]
[79]
Marsden, C.D.; Barry, P.E.; Parkes, J.D.; Zilkha, K.J. Treatment of Parkinson’s disease with levodopa combined with L-alpha-methyldopahydrazine, an inhibitor of extracerebral DOPA decarboxylase. J. Neurol. Neurosurg. Psychiatry, 1973, 36(1), 10-14.
[http://dx.doi.org/10.1136/jnnp.36.1.10] [PMID: 4691682]
[80]
Montioli, R.; Voltattorni, C.B.; Bertoldi, M. Parkinson’s disease: Recent updates in the identification of human dopa decarboxylase inhibitors. Curr. Drug Metab., 2016, 17(5), 513-518.
[http://dx.doi.org/10.2174/138920021705160324170558] [PMID: 27025882]
[81]
Bertoldi, M. Mammalian Dopa decarboxylase: structure, catalytic activity and inhibition. Arch. Biochem. Biophys., 2014, 546, 1-7.
[http://dx.doi.org/10.1016/j.abb.2013.12.020] [PMID: 24407024]
[82]
Ferdig, M.T.; Li, J.; Severson, D.W.; Christensen, B.M. Mosquito dopa decarboxylase cDNA characterization and blood-meal-induced ovarian expression. Insect Mol. Biol., 1996, 5(2), 119-126.
[http://dx.doi.org/10.1111/j.1365-2583.1996.tb00046.x] [PMID: 8673262]
[83]
Schlaeger, D.A.; Fuchs, M.S. Effect of dopa-decarboxylase inhibition on Aedes aegypti eggs: evidence for sclerotization. J. Insect Physiol., 1974, 20(2), 349-357.
[http://dx.doi.org/10.1016/0022-1910(74)90066-3] [PMID: 4815641]
[84]
Schlaeger, D.A.; Fuchs, M.S. Dopa decarboxylase activity in Aedes aegypti: a preadult profile and its subsequent correlation with ovarian development. Dev. Biol., 1974, 38(2), 209-219.
[http://dx.doi.org/10.1016/0012-1606(74)90001-3] [PMID: 4151553]
[85]
Capitani, G.; De Biase, D.; Aurizi, C.; Gut, H.; Bossa, F.; Grütter, M.G. Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase. EMBO J., 2003, 22(16), 4027-4037.
[http://dx.doi.org/10.1093/emboj/cdg403] [PMID: 12912902]
[86]
Momany, C.; Ghosh, R.; Hackert, M.L. Structural motifs for pyridoxal-5′-phosphate binding in decarboxylases: an analysis based on the crystal structure of the Lactobacillus 30a ornithine decarboxylase. Protein Sci., 1995, 4(5), 849-854.
[http://dx.doi.org/10.1002/pro.5560040504] [PMID: 7663340]
[87]
Zhou, G.P. The disposition of the LZCC protein residues in wenxiang diagram provides new insights into the protein-protein interaction mechanism. J. Theor. Biol., 2011, 284(1), 142-148.
[http://dx.doi.org/10.1016/j.jtbi.2011.06.006] [PMID: 21718705]
[88]
Chou, K-C.; Lin, W-Z.; Xiao, X. Wenxiang: a web-server for drawing wenxiang diagrams. Nat. Sci., 2011, 3(10), 862.
[http://dx.doi.org/10.4236/ns.2011.310111]
[89]
Chou, K-C. Graphic rule for drug metabolism systems. Curr. Drug Metab., 2010, 11(4), 369-378.
[http://dx.doi.org/10.2174/138920010791514261] [PMID: 20446902]
[90]
Chou, K-C.; Forsén, S. Graphical rules for enzyme-catalysed rate laws. Biochem. J., 1980, 187(3), 829-835.
[http://dx.doi.org/10.1042/bj1870829] [PMID: 7188428]
[91]
Kuo-Chen, C.; Forsen, S. Graphical rules of steady-state reaction systems. Can. J. Chem., 1981, 59(4), 737-755.
[http://dx.doi.org/10.1139/v81-107]
[92]
Chou, K-C. Applications of graph theory to enzyme kinetics and protein folding kinetics. Steady and non-steady-state systems. Biophys. Chem., 1990, 35(1), 1-24.
[http://dx.doi.org/10.1016/0301-4622(90)80056-D] [PMID: 2183882]
[93]
Chou, K.C.; Zhou, G.P. Role of the protein outside active site on the diffusion-controlled reaction of enzymes. J. Am. Chem. Soc., 1982, 104(5), 1409-1413.
[http://dx.doi.org/10.1021/ja00369a043]
[94]
Chou, K-C. Low-frequency collective motion in biomacromolecules and its biological functions. Biophys. Chem., 1988, 30(1), 3-48.
[http://dx.doi.org/10.1016/0301-4622(88)85002-6] [PMID: 3046672]
[95]
Chou, K.; Chen, N.; Forsen, S. The biological functions of low-frequency phonons. Cooperative effects. Chem. Scr., 1981, 18(3), 126-132.
[96]
Jansonius, J.N. Structure, evolution and action of vitamin B6-dependent enzymes. Curr. Opin. Struct. Biol., 1998, 8(6), 759-769.
[http://dx.doi.org/10.1016/S0959-440X(98)80096-1] [PMID: 9914259]
[97]
Käck, H.; Sandmark, J.; Gibson, K.; Schneider, G.; Lindqvist, Y. Crystal structure of diaminopelargonic acid synthase: evolutionary relationships between pyridoxal-5′-phosphate-dependent enzymes. J. Mol. Biol., 1999, 291(4), 857-876.
[http://dx.doi.org/10.1006/jmbi.1999.2997] [PMID: 10452893]
[98]
Sandmeier, E.; Hale, T.I.; Christen, P. Multiple evolutionary origin of pyridoxal-5′-phosphate-dependent amino acid decarboxylases. Eur. J. Biochem., 1994, 221(3), 997-1002.
[http://dx.doi.org/10.1111/j.1432-1033.1994.tb18816.x] [PMID: 8181483]
[99]
Ishii, S.; Mizuguchi, H.; Nishino, J.; Hayashi, H.; Kagamiyama, H. Functionally important residues of aromatic L-amino acid decarboxylase probed by sequence alignment and site-directed mutagenesis. J. Biochem., 1996, 120(2), 369-376.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a021422] [PMID: 8889823]
[100]
Dominici, P.; Moore, P.S.; Castellani, S.; Bertoldi, M.; Voltattorni, C.B. Mutation of cysteine 111 in Dopa decarboxylase leads to active site perturbation. Protein Sci., 1997, 6(9), 2007-2015.
[http://dx.doi.org/10.1002/pro.5560060921] [PMID: 9300500]
[101]
Bertoldi, M.; Castellani, S.; Bori Voltattorni, C. Mutation of residues in the coenzyme binding pocket of Dopa decarboxylase. Effects on catalytic properties. Eur. J. Biochem., 2001, 268(10), 2975-2981.
[http://dx.doi.org/10.1046/j.1432-1327.2001.02187.x] [PMID: 11358515]
[102]
Poupon, A.; Jebai, F.; Labesse, G.; Gros, F.; Thibault, J.; Mornon, J.P.; Krieger, M. Structure modelling and site-directed mutagenesis of the rat aromatic L-amino acid pyridoxal 5′-phosphate-dependent decarboxylase: a functional study. Proteins, 1999, 37(2), 191-203.
[http://dx.doi.org/10.1002/(SICI)1097-0134(19991101)37:2<191:AID-PROT5>3.0.CO;2-4] [PMID: 10584065]
[103]
Bertoldi, M.; Voltattorni, C.B. Multiple roles of the active site lysine of Dopa decarboxylase. Arch. Biochem. Biophys., 2009, 488(2), 130-139.
[http://dx.doi.org/10.1016/j.abb.2009.06.019] [PMID: 19580779]
[104]
Liang, J.; Han, Q.; Tan, Y.; Ding, H.; Li, J. Current advances on structure-function relationships of pyridoxal 5′-phosphate-dependent enzymes. Front. Mol. Biosci., 2019, 6, 4.
[http://dx.doi.org/10.3389/fmolb.2019.00004] [PMID: 30891451]
[105]
Dunathan, H.C. Conformation and reaction specificity in pyridoxal phosphate enzymes. Proc. Natl. Acad. Sci. USA, 1966, 55(4), 712-716.
[http://dx.doi.org/10.1073/pnas.55.4.712] [PMID: 5219675]
[106]
Voltattorni, C.B.; Minelli, A.; Dominici, P. Interaction of aromatic amino acids in D and L forms with 3,4-dihydroxyphenylalanine decarboxylase from pig kidney. Biochemistry, 1983, 22(9), 2249-2254.
[http://dx.doi.org/10.1021/bi00278a030] [PMID: 6860662]
[107]
Hayashi, H.; Mizuguchi, H.; Kagamiyama, H. Rat liver aromatic L-amino acid decarboxylase: spectroscopic and kinetic analysis of the coenzyme and reaction intermediates. Biochemistry, 1993, 32(3), 812-818.
[http://dx.doi.org/10.1021/bi00054a011] [PMID: 8422386]
[108]
Hayashi, H.; Tsukiyama, F.; Ishii, S.; Mizuguchi, H.; Kagamiyama, H. Acid-base chemistry of the reaction of aromatic L-amino acid decarboxylase and dopa analyzed by transient and steady-state kinetics: preferential binding of the substrate with its amino group unprotonated. Biochemistry, 1999, 38(47), 15615-15622.
[http://dx.doi.org/10.1021/bi9909795] [PMID: 10569946]
[109]
Montioli, R.; Cellini, B.; Dindo, M.; Oppici, E.; Voltattorni, C.B. Interaction of human Dopa decarboxylase with L-Dopa: spectroscopic and kinetic studies as a function of pH. BioMed Res. Int., 2013, 2013161456
[http://dx.doi.org/10.1155/2013/161456] [PMID: 23781496]
[110]
Bertoldi, M.; Dominici, P.; Moore, P.S.; Maras, B.; Voltattorni, C.B. Reaction of dopa decarboxylase with alpha-methyldopa leads to an oxidative deamination producing 3,4-dihydroxyphenylacetone, an active site directed affinity label. Biochemistry, 1998, 37(18), 6552-6561.
[http://dx.doi.org/10.1021/bi9718898] [PMID: 9572873]
[111]
Bertoldi, M.; Moore, P.S.; Maras, B.; Dominici, P.; Voltattorni, C.B. Mechanism-based inactivation of dopa decarboxylase by serotonin. J. Biol. Chem., 1996, 271(39), 23954-23959.
[http://dx.doi.org/10.1074/jbc.271.39.23954] [PMID: 8798628]
[112]
McGeer, E.G.; McGeer, P.L.; Wada, J.A. Distribution of tyrosine hydroxylase in human and animal brain. J. Neurochem., 1971, 18(9), 1647-1658.
[http://dx.doi.org/10.1111/j.1471-4159.1971.tb03738.x] [PMID: 4998978]
[113]
Ichinose, H.; Ohye, T.; Fujita, K.; Pantucek, F.; Lange, K.; Riederer, P.; Nagatsu, T. Quantification of mRNA of tyrosine hydroxylase and aromatic L-amino acid decarboxylase in the substantia nigra in Parkinson’s disease and schizophrenia. J. Neural Transm. Park. Dis. Dement. Sect., 1994, 8(1-2), 149-158.
[http://dx.doi.org/10.1007/BF02250926] [PMID: 7893377]
[114]
Martin, W.E. Tyrosine hydroxylase deficiency. A unifying concept of Parkinsonism. Lancet, 1971, 1(7708), 1050-1051.
[http://dx.doi.org/10.1016/S0140-6736(71)91608-4] [PMID: 4102972]
[115]
Martin, W.E.; Young, W.I.; Anderson, V.E. Parkinson’s disease. A genetic study. Brain, 1973, 96(3), 495-506.
[http://dx.doi.org/10.1093/brain/96.3.495] [PMID: 4147573]
[116]
Zhu, Y.; Zhang, J.; Zeng, Y. Overview of tyrosine hydroxylase in Parkinson’s disease. CNS Neurol. Disord. Drug Targets, 2012, 11(4), 350-358.
[http://dx.doi.org/10.2174/187152712800792901] [PMID: 22483316]
[117]
Schultz, E. Catechol-O-methyltransferase and aromatic L-amino acid decarboxylase activities in human gastrointestinal tissues. Life Sci., 1991, 49(10), 721-725.
[http://dx.doi.org/10.1016/0024-3205(91)90104-J] [PMID: 1875781]
[118]
Gershanik, O.S. Improving L-dopa therapy: the development of enzyme inhibitors. Mov. Disord., 2015, 30(1), 103-113.
[http://dx.doi.org/10.1002/mds.26050] [PMID: 25335824]
[119]
Cellini, B.; Montioli, R.; Oppici, E.; Voltattorni, C.B. Biochemical and computational approaches to improve the clinical treatment of dopa decarboxylase-related diseases: an overview. Open Biochem. J., 2012, 6, 131-138.
[http://dx.doi.org/10.2174/1874091X01206010131] [PMID: 23264832]
[120]
Schultz, E. L-dopa as substrate for human duodenal catechol-O-methyltransferase and aromatic L-amino acid decarboxylase. Biomed. Chromatogr., 1990, 4(6), 242-244.
[http://dx.doi.org/10.1002/bmc.1130040607] [PMID: 2289048]
[121]
Rinne, U.K.; Mölsä, P. Levodopa with benserazide or carbidopa in Parkinson disease. Neurology, 1979, 29(12), 1584-1589.
[http://dx.doi.org/10.1212/WNL.29.12.1584] [PMID: 574221]
[122]
Maycock, A.L.; Aster, S.D.; Patchett, A.A. Inactivation of 3-(3,4-dihydroxyphenyl)alanine decarboxylase by 2-(fluoromethyl)-3-(3,4-dihydroxyphenyl)alanine. Biochemistry, 1980, 19(4), 709-718.
[http://dx.doi.org/10.1021/bi00545a016] [PMID: 7356954]
[123]
Ribéreau-Gayon, G.; Palfreyman, M.G.; Zraïka, M.; Wagner, J.; Jung, M.J. Irreversible inhibition of aromatic-L-amino acid decarboxylase by alpha-difluoromethyl-DOPA and metabolism of the inhibitor. Biochem. Pharmacol., 1980, 29(18), 2465-2469.
[http://dx.doi.org/10.1016/0006-2952(80)90350-0] [PMID: 7426053]
[124]
Palfreyman, M.G.; Danzin, C.; Bey, P.; Jung, M.J.; Ribereau-Gayon, G.; Aubry, M.; Vevert, J.P.; Sjoerdsma, A. alpha-difluoromethyl DOPA, a new enzyme-activated irreversible inhibitor of aromatic L-amino acid decarboxylase. J. Neurochem., 1978, 31(4), 927-932.
[http://dx.doi.org/10.1111/j.1471-4159.1978.tb00129.x] [PMID: 308998]
[125]
Bertoldi, M.; Gonsalvi, M.; Voltattorni, C.B. Green tea polyphenols: novel irreversible inhibitors of dopa decarboxylase. Biochem. Biophys. Res. Commun., 2001, 284(1), 90-93.
[http://dx.doi.org/10.1006/bbrc.2001.4945] [PMID: 11374875]
[126]
Ruiz-Pérez, M.V.; Pino-Ángeles, A.; Medina, M.A.; Sánchez-Jiménez, F.; Moya-García, A.A. Structural perspective on the direct inhibition mechanism of EGCG on mammalian histidine decarboxylase and DOPA decarboxylase. J. Chem. Inf. Model., 2012, 52(1), 113-119.
[http://dx.doi.org/10.1021/ci200221z] [PMID: 22107329]
[127]
Ren, J.; Zhang, Y.; Jin, H.; Yu, J.; Zhou, Y.; Wu, F.; Zhang, W. Novel inhibitors of human DOPA decarboxylase extracted from Euonymus glabra Roxb. ACS Chem. Biol., 2014, 9(4), 897-903.
[http://dx.doi.org/10.1021/cb500009r] [PMID: 24471650]
[128]
Daidone, F.; Montioli, R.; Paiardini, A.; Cellini, B.; Macchiarulo, A.; Giardina, G.; Bossa, F.; Borri Voltattorni, C. Identification by virtual screening and in vitro testing of human DOPA decarboxylase inhibitors. PLoS One, 2012, 7(2)e31610
[http://dx.doi.org/10.1371/journal.pone.0031610] [PMID: 22384042]
[129]
Cheng, P.; Zhou, J.; Qing, Z.; Kang, W.; Liu, S.; Liu, W.; Xie, H.; Zeng, J. Synthesis of 5-methyl phenanthridium derivatives: a new class of human DOPA decarboxylase inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(12), 2712-2716.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.047] [PMID: 24794108]
[130]
Vassiliou, A.G.; Vassilacopoulou, D.; Fragoulis, E.G. Purification of an endogenous inhibitor of L-Dopa decarboxylase activity from human serum. Neurochem. Res., 2005, 30(5), 641-649.
[http://dx.doi.org/10.1007/s11064-005-2752-7] [PMID: 16176068]
[131]
Vassiliou, A.G.; Fragoulis, E.G.; Vassilacopoulou, D. Detection, purification and identification of an endogenous inhibitor of L-Dopa decarboxylase activity from human placenta. Neurochem. Res., 2009, 34(6), 1089-1100.
[http://dx.doi.org/10.1007/s11064-008-9879-2] [PMID: 19005753]
[132]
Oxenoid, K.; Dong, Y.; Cao, C.; Cui, T.; Sancak, Y.; Markhard, A.L.; Grabarek, Z.; Kong, L.; Liu, Z.; Ouyang, B.; Cong, Y.; Mootha, V.K.; Chou, J.J. Architecture of the mitochondrial calcium uniporter. Nature, 2016, 533(7602), 269-273.
[http://dx.doi.org/10.1038/nature17656] [PMID: 27135929]
[133]
Dev, J.; Park, D.; Fu, Q.; Chen, J.; Ha, H.J.; Ghantous, F.; Herrmann, T.; Chang, W.; Liu, Z.; Frey, G.; Seaman, M.S.; Chen, B.; Chou, J.J. Structural basis for membrane anchoring of HIV-1 envelope spike. Science, 2016, 353(6295), 172-175.
[http://dx.doi.org/10.1126/science.aaf7066] [PMID: 27338706]
[134]
Sharma, A.K.; Zhou, G.P.; Kupferman, J.; Surks, H.K.; Christensen, E.N.; Chou, J.J.; Mendelsohn, M.E.; Rigby, A.C. Probing the interaction between the coiled coil leucine zipper of cGMP-dependent protein kinase Ialpha and the C terminus of the myosin binding subunit of the myosin light chain phosphatase. J. Biol. Chem., 2008, 283(47), 32860-32869.
[http://dx.doi.org/10.1074/jbc.M804916200] [PMID: 18782776]
[135]
Zhou, G.P. The structural determinations of the leucine zipper coiled-coil domains of the cGMP-dependent protein kinase Iα and its interaction with the myosin binding subunit of the myosin light chains phosphase. Protein Pept. Lett., 2011, 18(10), 966-978.
[http://dx.doi.org/10.2174/0929866511107010966] [PMID: 21592084]
[136]
Schnell, J.R.; Zhou, G.P.; Zweckstetter, M.; Rigby, A.C.; Chou, J.J. Rapid and accurate structure determination of coiled-coil domains using NMR dipolar couplings: application to cGMP-dependent protein kinase Ialpha. Protein Sci., 2005, 14(9), 2421-2428.
[http://dx.doi.org/10.1110/ps.051528905] [PMID: 16131665]
[137]
Zhou, G.P.; Troy, F.A. 2-D NMR analyses reveals a specific interaction between polyisoprenols (PIs) and the polyisoprenol recognition sequences (PIRS) in model membranes. Glycoconj. J., 1995, 12, 434.
[138]
OuYang, B.; Xie, S.; Berardi, M.J.; Zhao, X.; Dev, J.; Yu, W.; Sun, B.; Chou, J.J. Unusual architecture of the p7 channel from hepatitis C virus. Nature, 2013, 498(7455), 521-525.
[http://dx.doi.org/10.1038/nature12283] [PMID: 23739335]
[139]
Rossi, F.; Han, Q.; Li, J.; Li, J.; Rizzi, M. Crystal structure of human kynurenine aminotransferase I. J. Biol. Chem., 2004, 279(48), 50214-50220.
[http://dx.doi.org/10.1074/jbc.M409291200] [PMID: 15364907]
[140]
Han, Q.; Robinson, H.; Ding, H.; Christensen, B.M.; Li, J. Evolution of insect arylalkylamine N-acetyltransferases: structural evidence from the yellow fever mosquito, Aedes aegypti. Proc. Natl. Acad. Sci. USA, 2012, 109(29), 11669-11674.
[http://dx.doi.org/10.1073/pnas.1206828109] [PMID: 22753468]
[141]
Park, J-G.; Oie, H.K.; Sugarbaker, P.H.; Henslee, J.G.; Chen, T-R.; Johnson, B.E.; Gazdar, A. Characteristics of cell lines established from human colorectal carcinoma. Cancer Res., 1987, 47(24 Pt 1), 6710-6718.
[PMID: 3479249]
[142]
Sakakura, C.; Takemura, M.; Hagiwara, A.; Shimomura, K.; Miyagawa, K.; Nakashima, S.; Yoshikawa, T.; Takagi, T.; Kin, S.; Nakase, Y.; Fujiyama, J.; Hayasizaki, Y.; Okazaki, Y.; Yamagishi, H. Overexpression of dopa decarboxylase in peritoneal dissemination of gastric cancer and its potential as a novel marker for the detection of peritoneal micrometastases with real-time RT-PCR. Br. J. Cancer, 2004, 90(3), 665-671.
[http://dx.doi.org/10.1038/sj.bjc.6601544] [PMID: 14760382]
[143]
Isobe, K.; Nakai, T.; Yukimasa, N.; Nanmoku, T.; Takekoshi, K.; Nomura, F. Expression of mRNA coding for four catecholamine-synthesizing enzymes in human adrenal pheochromocytomas. Eur. J. Endocrinol., 1998, 138(4), 383-387.
[http://dx.doi.org/10.1530/eje.0.1380383] [PMID: 9578504]
[144]
Boomsma, F.; Ausema, L.; Hakvoort-Cammel, F.G.; Oosterom, R. Man in’t Veld, A.J.; Krenning, E.P.; Hahlen, K.; Schalekamp, M.A. Combined measurements of plasma aromatic L-amino acid decarboxylase and DOPA as tumour markers in diagnosis and follow-up of neuroblastoma. Eur. J. Cancer Clin. Oncol., 1989, 25(7), 1045-1052.
[http://dx.doi.org/10.1016/0277-5379(89)90386-6] [PMID: 2503383]
[145]
Baylin, S.B.; Abeloff, M.D.; Goodwin, G.; Carney, D.N.; Gazdar, A.F. Activities of L-dopa decarboxylase and diamine oxidase (histaminase) in human lung cancers and decarboxylase as a marker for small (oat) cell cancer in cell culture. Cancer Res., 1980, 40(6), 1990-1994.
[PMID: 6245807]
[146]
Berger, C.L.; de Bustros, A.; Roos, B.A.; Leong, S.S.; Mendelsohn, G.; Gesell, M.S.; Baylin, S.B. Human medullary thyroid carcinoma in culture provides a model relating growth dynamics, endocrine cell differentiation, and tumor progression. J. Clin. Endocrinol. Metab., 1984, 59(2), 338-343.
[http://dx.doi.org/10.1210/jcem-59-2-338] [PMID: 6736207]
[147]
Gilbert, J.A.; Bates, L.A.; Ames, M.M. Elevated aromatic-L-amino acid decarboxylase in human carcinoid tumors. Biochem. Pharmacol., 1995, 50(6), 845-850.
[http://dx.doi.org/10.1016/0006-2952(95)02006-X] [PMID: 7575647]
[148]
Cheng, X.; Zhao, S.G.; Lin, W.Z.; Xiao, X.; Chou, K.C. pLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites. Bioinformatics, 2017, 33(22), 3524-3531.
[http://dx.doi.org/10.1093/bioinformatics/btx476] [PMID: 29036535]
[149]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mEuk: Predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC. Genomics, 2018, 110(1), 50-58.
[http://dx.doi.org/10.1016/j.ygeno.2017.08.005] [PMID: 28818512]
[150]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mGneg: Predict subcellular localization of Gram-negative bacterial proteins by deep gene ontology learning via general PseAAC. Genomics, 2017, S0888-7543(17), 30102-30107.
[PMID: 28989035]
[151]
Xiao, X.; Cheng, X.; Chen, G.; Mao, Q.; Chou, K.C. pLoc-mGpos: Predict subcellular localization of Gram-positive bacterial proteins by quasi-balancing training dataset and PseAAC. Genomics, 2019, 111(4), 886-892.
[152]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mHum: predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information. Bioinformatics, 2018, 34(9), 1448-1456.
[http://dx.doi.org/10.1093/bioinformatics/btx711] [PMID: 29106451]
[153]
Xiao, X.; Wang, P.; Chou, K-C. Recent progresses in identifying nuclear receptors and their families. Curr. Top. Med. Chem., 2013, 13(10), 1192-1200.
[http://dx.doi.org/10.2174/15680266113139990006] [PMID: 23647541]
[154]
Liu, B.; Yang, F.; Chou, K.C. 2L-piRNA: A Two-Layer Ensemble Classifier for Identifying Piwi-Interacting RNAs and Their Function. Mol. Ther. Nucleic Acids, 2017, 7(C), 267-277.
[http://dx.doi.org/10.1016/j.omtn.2017.04.008] [PMID: 28624202]
[155]
Cheng, X.; Zhao, S.G.; Xiao, X.; Chou, K.C. iATC-mISF: a multi-label classifier for predicting the classes of anatomical therapeutic chemicals. Bioinformatics, 2017, 33(3), 341-346.
[http://dx.doi.org/10.1093/bioinformatics/btx387] [PMID: 28172617]
[156]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, D.; Chou, K.C. iPhos-PseEvo: Identifying human phosphorylated proteins by incorporating evolutionary information into general PseAAC via grey system theory. Mol. Inform., 2017, 36(5-6)
[http://dx.doi.org/10.1002/minf.201600010] [PMID: 28488814]
[157]
Liu, B.; Wang, S.; Long, R.; Chou, K.C. iRSpot-EL: identify recombination spots with an ensemble learning approach. Bioinformatics, 2017, 33(1), 35-41.
[http://dx.doi.org/10.1093/bioinformatics/btw539] [PMID: 27531102]
[158]
Cheng, X.; Lin, W.Z.; Xiao, X.; Chou, K.C. pLoc_bal-mAnimal: predict subcellular localization of animal proteins by balancing training dataset and PseAAC. Bioinformatics, 2018, 35(3), 398-406.
[PMID: 30010789]
[159]
Chou, K-C.; Cheng, X.; Xiao, X. pLoc_bal-mHum: Predict subcellular localization of human proteins by PseAAC and quasibalancing training dataset. Genomics, 2018, S0888-7543(18), 30276-3.
[http://dx.doi.org/10.1016/j.ygeno.2018.08.007] [PMID: 30179658]
[160]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, Z.C.; Jia, J.H.; Chou, K.C. iKcr-PseEns: Identify lysine crotonylation sites in histone proteins with pseudo components and ensemble classifier. Genomics, 2017, 110(5), 239-246.
[http://dx.doi.org/10.1016/j.ygeno.2017.10.008 ] [PMID: 29107015]
[161]
Xu, Y.; Ding, J.; Wu, L.Y.; Chou, K.C. iSNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition. PLoS One, 2013, 8(2)e55844
[http://dx.doi.org/10.1371/journal.pone.0055844] [PMID: 23409062]
[162]
Xiao, X.; Min, J.L.; Lin, W.Z.; Liu, Z.; Cheng, X.; Chou, K.C. iDrug-Target: predicting the interactions between drug compounds and target proteins in cellular networking via benchmark dataset optimization approach. J. Biomol. Struct. Dyn., 2015, 33(10), 2221-2233.
[http://dx.doi.org/10.1080/07391102.2014.998710] [PMID: 25513722]
[163]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. iPPI-Esml: An ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC. J. Theor. Biol., 2015, 377, 47-56.
[http://dx.doi.org/10.1016/j.jtbi.2015.04.011] [PMID: 25908206]
[164]
Liu, Z.; Xiao, X.; Qiu, W-R.; Chou, K-C. iDNA-Methyl: identifying DNA methylation sites via pseudo trinucleotide composition. Anal. Biochem., 2015, 474, 69-77.
[http://dx.doi.org/10.1016/j.ab.2014.12.009] [PMID: 25596338]
[165]
Lin, H.; Deng, E.Z.; Ding, H.; Chen, W.; Chou, K.C. iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition. Nucleic Acids Res., 2014, 42(21), 12961-12972.
[http://dx.doi.org/10.1093/nar/gku1019] [PMID: 25361964]
[166]
Chou, K.C. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins, 2001, 43(3), 246-255.
[http://dx.doi.org/10.1002/prot.1035] [PMID: 11288174]
[167]
Chen, W.; Lei, T-Y.; Jin, D-C.; Lin, H.; Chou, K-C. PseKNC: a flexible web server for generating pseudo K-tuple nucleotide composition. Anal. Biochem., 2014, 456, 53-60.
[http://dx.doi.org/10.1016/j.ab.2014.04.001] [PMID: 24732113]
[168]
Chou, K.C.; Tomasselli, A.G.; Heinrikson, R.L. Prediction of the tertiary structure of a caspase-9/inhibitor complex. FEBS Lett., 2000, 470(3), 249-256.
[http://dx.doi.org/10.1016/S0014-5793(00)01333-8] [PMID: 10745077]
[169]
Zhou, G.P.; Huang, R.B. The pH-triggered conversion of the PrP(c) to PrP(sc.). Curr. Top. Med. Chem., 2013, 13(10), 1152-1163.
[http://dx.doi.org/10.2174/15680266113139990003] [PMID: 23647538]
[170]
Donaldson, D.S.; Else, K.J.; Mabbott, N.A. The gut-associated lymphoid tissues in the small intestine, not the large intestine, play a major role in oral prion disease pathogenesis. J. Virol., 2015, 89(18), 9532-9547.
[http://dx.doi.org/10.1128/JVI.01544-15] [PMID: 26157121]
[171]
Chou, K.C.; Zhang, C.T.; Maggiora, G.M. Disposition of amphiphilic helices in heteropolar environments. Proteins, 1997, 28(1), 99-108.
[http://dx.doi.org/10.1002/(SICI)1097-0134(199705)28:1<99:AID-PROT10>3.0.CO;2-C] [PMID: 9144795]
[172]
Xiao, X.; Lin, W-Z.; Chou, K-C. Recent advances in predicting protein classification and their applications to drug development. Curr. Top. Med. Chem., 2013, 13(14), 1622-1635.
[http://dx.doi.org/10.2174/15680266113139990113] [PMID: 23889055]
[173]
Xiao, X.; Min, J-L.; Wang, P.; Chou, K-C. Predict drug-protein interaction in cellular networking. Curr. Top. Med. Chem., 2013, 13(14), 1707-1712.
[http://dx.doi.org/10.2174/15680266113139990121] [PMID: 23889048]
[174]
Zhou, G.P.; Deng, M.H. An extension of Chou’s graphic rules for deriving enzyme kinetic equations to systems involving parallel reaction pathways. Biochem. J., 1984, 222(1), 169-176.
[http://dx.doi.org/10.1042/bj2220169] [PMID: 6477507]
[175]
Xiao, X.; Min, J.L.; Wang, P.; Chou, K.C. iGPCR-drug: a web server for predicting interaction between GPCRs and drugs in cellular networking. PLoS One, 2013, 8(8)e72234
[http://dx.doi.org/10.1371/journal.pone.0072234] [PMID: 24015221]
[176]
Xiao, X.; Min, J.L.; Wang, P.; Chou, K.C. iCDI-PseFpt: identify the channel-drug interaction in cellular networking with PseAAC and molecular fingerprints. J. Theor. Biol., 2013, 337(47), 71-79.
[http://dx.doi.org/10.1016/j.jtbi.2013.08.013] [PMID: 23988798]
[177]
Chou, K-C. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics, 2005, 21(1), 10-19.
[http://dx.doi.org/10.1093/bioinformatics/bth466] [PMID: 15308540]
[178]
Liu, B.; Zhang, D.; Xu, R.; Xu, J.; Wang, X.; Chen, Q.; Dong, Q.; Chou, K-C. Combining evolutionary information extracted from frequency profiles with sequence-based kernels for protein remote homology detection. Bioinformatics, 2014, 30(4), 472-479.
[http://dx.doi.org/10.1093/bioinformatics/btt709] [PMID: 24318998]
[179]
Liu, B.; Wang, X.; Zou, Q.; Dong, Q.; Chen, Q. Protein remote homology detection by combining Chou’s pseudo amino acid composition and profile‐based protein representation. Mol. Inform., 2013, 32(9-10), 775-782.
[http://dx.doi.org/10.1002/minf.201300084] [PMID: 27480230]
[180]
Chen, W.; Feng, P.M.; Lin, H.; Chou, K.C. iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition. Nucleic Acids Res., 2013, 41(6)e68
[http://dx.doi.org/10.1093/nar/gks1450] [PMID: 23303794]
[181]
Chen, W.; Lin, H.; Feng, P-M.; Ding, C.; Zuo, Y-C.; Chou, K-C. iNuc-PhysChem: a sequence-based predictor for identifying nucleosomes via physicochemical properties. PLoS One, 2012, 7(10)e47843
[http://dx.doi.org/10.1371/journal.pone.0047843] [PMID: 23144709]
[182]
Chou, K-C.; Wu, Z-C.; Xiao, X. iLoc-Euk: a multi-label classifier for predicting the subcellular localization of singleplex and multiplex eukaryotic proteins. PLoS One, 2011, 6(3)e18258
[http://dx.doi.org/10.1371/journal.pone.0018258] [PMID: 21483473]
[183]
Lin, W-Z.; Fang, J-A.; Xiao, X.; Chou, K-C. iLoc-Animal: a multi-label learning classifier for predicting subcellular localization of animal proteins. Mol. Biosyst., 2013, 9(4), 634-644.
[http://dx.doi.org/10.1039/c3mb25466f] [PMID: 23370050]
[184]
Wang, P.; Xiao, X.; Chou, K-C. NR-2L: a two-level predictor for identifying nuclear receptor subfamilies based on sequence-derived features. PLoS One, 2011, 6(8)e23505
[http://dx.doi.org/10.1371/journal.pone.0023505] [PMID: 21858146]
[185]
Zhou, G-P.; Doctor, K. Subcellular location prediction of apoptosis proteins. Proteins, 2003, 50(1), 44-48.
[http://dx.doi.org/10.1002/prot.10251] [PMID: 12471598]
[186]
Xiao, X.; Wang, P.; Lin, W-Z.; Jia, J-H.; Chou, K-C. iAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types. Anal. Biochem., 2013, 436(2), 168-177.
[http://dx.doi.org/10.1016/j.ab.2013.01.019] [PMID: 23395824]
[187]
Chou, K-C. Some remarks on predicting multi-label attributes in molecular biosystems. Mol. Biosyst., 2013, 9(6), 1092-1100.
[http://dx.doi.org/10.1039/c3mb25555g] [PMID: 23536215]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy