Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

A Review on Solvent-free Methods in Organic Synthesis

Author(s): Sainath Zangade* and Pravinkumar Patil

Volume 23, Issue 21, 2019

Page: [2295 - 2318] Pages: 24

DOI: 10.2174/1385272823666191016165532

Price: $65

Abstract

Most of the synthetic chemical transformation reactions involve the use of different organic solvents. Unfortunately, some of these toxic solvents are used in chemical laboratory, industry and have been considered a very serious problem for the health, safety of workers and environmental damage through pollution. The purpose of green chemistry is to provide a path that reduces or eliminates the use of such hazardous toxic solvents. Therefore, the key factor of the green synthetic approach is to utilize renewable materials, nontoxic chemical and to perform the reactions under solvent-free conditions. In this review, we have discussed most recent literature survey on applications of solvent-free techniques in organic synthesis which would offer a new opportunity to a researcher to overcome the problem of using environmental harmful solvents.

Keywords: Organic synthesis, solvent-free technique, solid-state reactions, green chemistry, mechanochemistry, microwave irradiation, ultrasound irradiation.

Graphical Abstract

[1]
Radwan, M.A.A.; Abbas, E.M.H. Synthesis of some pyridine, thiopyrimidine, and isoxazoline derivatives based on the pyrrole moiety. Monatsh. Chem., 2009, 140, 229-233.
[http://dx.doi.org/10.1007/s00706-008-0061-y]
[2]
Safaei-Ghomi, J.; Ghasemzadeh, M.A. Synthesis of some 3,5-diaryl-2-isoxazoline derivatives in ionic liquids media. J. Serb. Chem. Soc., 2012, 77, 733-739.
[http://dx.doi.org/10.2298/JSC110831001S]
[3]
Gautam, N.; Chourasia, O.P. Synthesis, characterization, antimicrobial, insecticidal and anthelmintic screening of some new s-triazine derivatives of pyrazoline, pyrimidine, isoxazoline and isothiazoline moiety. Indian J. Chem., 2012, 51b, 1400-1410.
[4]
Nazari, S.; Shabanian, M. Novel heterocyclic semi-aromatic polyamides: synthesis and characterization. Des. Monomers Polym., 2014, 17, 33-39.
[http://dx.doi.org/10.1080/15685551.2013.771316]
[5]
Sekhar, K.V.G.C.; Sasank, T.V.N.V.T.; Nagesh, H.N.; Suresh, N.; Naidu, K.M.; Suresh, A. Synthesis of 3,5-diarylisoxazoles under solvent-free conditions using iodobenzene diacetate. Chin. Chem. Lett., 2013, 24, 1045-1048.
[http://dx.doi.org/10.1016/j.cclet.2013.07.022]
[6]
Karthikeyan, P.; Kumar, S.S.; Jagadeesh, R.V.; Bhagat, P.R. Solvent-free synthesis of substituted-2-pyrazolines using imidazolium based ionic liquid as a solvent and catalyst: A green route approach. Asian J. Chem., 2012, 24, 1351-1353.
[7]
Siddiqui, Z.N.; Musthafa, T.N.M.; Ahmad, A.; Khan, A.U. Thermal solvent-free synthesis of novel pyrazolyl chalcones and pyrazolines as potential antimicrobial agents. Bioorg. Med. Chem. Lett., 2011, 21(10), 2860-2865.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.080] [PMID: 21507638]
[8]
Sharma, S.; Sharma, A. Solvent-free synthesis of new-1-acetyl-3-(4-fluoronaphthyl)-5-substituted aryl pyrazolines as spermicides. J. Indian Chem. Soc., 2008, 85, 750-753.
[9]
Calvino, V.; Picallo, M.; López-Peinado, A.J.; Martín-Aranda, R.M.; Durán-Valle, C. J. Ultrasound accelerated Claisen-Schmidt condensation: A green route to chalcones. Appl. Surf. Sci., 2006, 252, 6071-6074.
[http://dx.doi.org/10.1016/j.apsusc.2005.11.006]
[10]
Adib, M.; Mahdavi, M.; Noghani, M.A.; Bijanzadeh, H.R. Reaction between isocyanides and chalcones: An efficient solvent-free synthesis of 5-hydroxy-3, 5-diaryl-1, 5dihydro-2H-pyrrol-2-ones. Tetrahedron Lett., 2007, 48, 8056-8059.
[http://dx.doi.org/10.1016/j.tetlet.2007.09.030]
[11]
Rao, J.N.; Sujith, K.V.; Kalluraya, B. An efficient microwave assisted synthesis of some pyrazolines and their biological activity. Indian J. Heterocycl. Chem., 2009, 18, 365-368.
[12]
Ali, N.A.S.; Dar, B.A.; Pradhan, V.; Farooqui, M. Chemistry and biology of indoles and indazoles: A mini-review. Mini Rev. Med. Chem., 2013, 13(12), 1792-1800.
[http://dx.doi.org/10.2174/1389557511313120009] [PMID: 22625410]
[13]
Cerecetto, H.; Gerpe, A.; González, M.; Arán, V.J.; de Ocáriz, C.O. Pharmacological properties of indazole derivatives: Recent developments. Mini Rev. Med. Chem., 2005, 5(10), 869-878.
[http://dx.doi.org/10.2174/138955705774329564] [PMID: 16250831]
[14]
Gothwal, P.; Malhotra, G.; Srivastava, Y.K. Microwave assisted synthesisand antimicrobial activities of some 2-amino-4-aryl-3-cyano-6-(4′-hydroxyphenyl)-pyridines. E-J. Chem., 2011, 8, 119-122.
[http://dx.doi.org/10.1155/2011/984297]
[15]
Kidwai, M.; Thakur, R.; Rastogi, S. Ecofriendly synthesis of substituted pyridine and pyrido[2,3-d] pyrimidine derivatives. Russ. Chem. Bull., 2005, 54, 1523-1526.
[http://dx.doi.org/10.1007/s11172-005-0440-z]
[16]
Wani, R.R.; Chaudhari, H.K.; Takale, B.S. Solvent free synthesis of n-substituted pyrroles catalyzed by calcium nitrate. J. Heterocycl. Chem., 2019, 56(4), 1337-1340.
[http://dx.doi.org/10.1002/jhet.3507]
[17]
Anastas, P.; Heine, L.G.; Williamson, T.C. Green Chemical Synthesis and Process; Oxford University Press, 2000.
[http://dx.doi.org/10.1021/bk-2000-0767]
[18]
Lancaster, M. Green Chemistry: An Introductory Text, 3rd ed; Royal Society of Chemistry: Cambridge, 2016.
[19]
Matlack, A.S. Introduction to Green Chemistry, 2nd ed; CRC Press: New York, 2001.
[20]
Anastas, P.T.; Kirchhoff, M.M. Origins, current status, and future challenges of green chemistry. Acc. Chem. Res., 2002, 35(9), 686-694.
[http://dx.doi.org/10.1021/ar010065m] [PMID: 12234198]
[21]
Lancaster, M. Handbook of Green Chemistry and Technology, 2nd ed; John Wiley and Sons: New York, 2002.
[22]
(a) Toda, F. Solid state organic reactions. Synlett, 1993, 5, 303-312. http://10.1055/s-1993-22441
(b) Obst, M.; Konig, B. Organic synthesis without conventional solvents. Eur. J. Org. Chem., 2018, 31, 4213-4232. http://10.1002/ejoc.201800556
(c) Tavakolian, M.; Vahdati-khajeh, S.; Asgari, S. Recent advances in solvent-free asymmetric catalysis. ChemCatChem, 2019, 11, 2943-2977.
[http://dx.doi.org/10.1002/cctc.201900354]
[23]
Varma, R.S. Solvent-free organic syntheses using supported reagents and microwave irradiation. Green Chem., 1999, 1, 43-55.
[http://dx.doi.org/10.1039/a808223e]
[24]
Tanaka, K.; Toda, F. Solvent-free organic synthesis. Chem. Rev., 2000, 100(3), 1025-1074.
[http://dx.doi.org/10.1021/cr940089p] [PMID: 11749257]
[25]
Clark, J.H.; Macquarrie, D. Handbook of Green Chemistry and Technology, Ist ed; Wiley and Blackwell: Oxford, 2002.
[http://dx.doi.org/10.1002/9780470988305]
[26]
Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice, Ist ed; Oxford: New York, 1998.
[27]
Rothenberg, G.; Downie, A.P.; Raston, C.L.; Scott, J.L. Understanding solid/solid organic reactions. J. Am. Chem. Soc., 2001, 123(36), 8701-8708.
[http://dx.doi.org/10.1021/ja0034388] [PMID: 11535074]
[28]
Noroozi-Pesyan, N.; Khalafy, J.; Malekpoor, Z. Can be Azo dyes obtained by grinding under solvent-free conditions? J. Chin. Chem. Soc. (Taipei), 2009, 56, 1018-1027.
[http://dx.doi.org/10.1002/jccs.200900148]
[29]
Toda, F.; Takumi, H.; Yamaguchi, H. Grignard reactions in the solid state. Chem. Expr., 1989, 4, 507-510.
[30]
Desiraju, G.R. Organic Solid State Chemistry, Ist ed; Elsevier Science Publishers: New York, 1987.
[31]
Tanaka, K.; Kishigami, S.; Toda, F. Reformatsky and Luche reaction in the absence of solvent. J. Org. Chem., 1991, 56, 4333-4334.
[http://dx.doi.org/10.1021/jo00013a055]
[32]
Wanging, W.; Zhiming, L.; Huanfeng, J. Recent advances in the synthesis of cyclopropanes. Org. Biomol. Chem., 2018, 16, 7315-7329.
[http://dx.doi.org/10.1039/c8ob01187g rsc.li/obc]
[33]
Toda, F.; Tanaka, K.; Hamai, K. Aldo condensations in the absence of solvent: Acceleration of the reaction and enhancement of the stereoselectivity. J. Chem. Soc. Perkin Trans., 1990, 1, 3207-3209.
[http://dx.doi.org/10.1039/p19900003207]
[34]
Toda, F.; Suzuki, T.; Higa, S. Solvent-free Dieckmann condensation reaction of diethyl adipate and pimelate. J. Chem. Soc. Perkin Trans., 1998, 1, 3521-3522.
[http://dx.doi.org/10.1039/a805884i]
[35]
Ren, Z-J.; Cao, W-G.; Tong, W-Q. The Knoevenagel condensation reaction of aromatic aldehydes with malononitrile by grinding in the absence of solvents and catalysts. Synth. Commun., 2002, 32, 3475-3479.
[http://dx.doi.org/10.1081/SCC-120014780]
[36]
Toda, F.; Kiyoshige, K.; Yagi, M. Solid-state reduction of ketone with sodium borohydride. Angew. Chem., 1989, 101, 329-330.
[http://dx.doi.org/10.1002/ange.19891010317]
[37]
Cave, G.W.V.; Raston, C.L. Toward benign synthesis of pyridines involving sequential solvent free aldol and Michael addition reactions. Chem. Commun. (Camb.), 2000, 2000(22), 2199-2200.
[http://dx.doi.org/10.1039/b007431o]
[38]
Toda, F.; Tanaka, K.; Iwata, S. Oxidative coupling reactions of phenols with iron(III) chloride in the solid state. J. Org. Chem., 1989, 54, 3007-3009.
[http://dx.doi.org/10.1021/jo00274a007]
[39]
Kappe, C.O. Biologically active dihydropyrimidones of the Biginelli-type--a literature survey. Eur. J. Med. Chem., 2000, 35(12), 1043-1052.
[http://dx.doi.org/10.1016/S0223-5234(00)01189-2] [PMID: 11248403]
[40]
Rovnyak, G.C.; Kimball, S.D.; Beyer, B.; Cucinotta, G.; DiMarco, J.D.; Gougoutas, J.; Hedberg, A.; Malley, M.; McCarthy, J.P.; Zhang, R.; Morreland, S. Calcium entry blockers and activators: Conformational and structural determinants of dihydropyrimidine calcium channel modulators. J. Med. Chem., 1995, 38(1), 119-129.
[http://dx.doi.org/10.1021/jm00001a017] [PMID: 7837222]
[41]
Phukan, M.; Kalita, M.K.; Borah, R. A new protocol for Biginelli (or like) reaction under solvent-free grinding method using Fe(NO3)3.9H2O as catalyst. Green Chem. Lett. Rev., 2010, 3, 329-334.
[http://dx.doi.org/10.1080/17518253.2010.487841]
[42]
Rateb, N.M.; Zohdi, H.F. Atom-efficient, solvent-free, green synthesis of chalcones by grinding. Synth. Commun., 2009, 39, 2789-2794.
[http://dx.doi.org/10.1080/00397910802664244]
[43]
Zangade, S.; Mokle, S.; Vibhute, A.; Vibhute, Y. An efficient and operationally simple synthesis of some new chalcones by using grinding technique. Chem. Sci. J., 2011, 1, 1-6.
[http://dx.doi.org/10.4172/2150-3494.1000011]
[44]
Murray, R.D.H. The Natural occurring Coumarins: Progress in the Chemistry of Organic Natural Products, Ist ed; Springer: New York, 2002.
[45]
Kennedy, R.O.; Tharnes, R.D. Coumarins: Biology, Application and Mode of Action, 2nd ed; John Wiley and sons: New york, 1997.
[46]
Zahradink, M. The Production and Application of Fluorescent Brightening Agents; Wiley, 1992.
[47]
Bakhtiari, G.; Moradi, S.; Soltanali, S.; Bakhtiari, G.; Moradi, S.; Soltanali, S. A novel method for the synthesis of coumarin laser dyes derived from 3-(1H-benzoimidazol-2-yl) coumarin-2-one under microwave irradiation. Arab. J. Chem., 2014, 7(6), 972-975.
[http://dx.doi.org/10.1016/j.arabjc.2010.12.012.]
[48]
Knochel, P.; Molander, G.A. Comprehensive Organic Synthesis.Elsevier, (2nd ed); , 2014.
[49]
Lake, B.G. Coumarin metabolism, toxicity and carcinogenicity: relevance for human risk assessment. Food Chem. Toxicol., 1999, 37(4), 423-453.
[http://dx.doi.org/10.1016/S0278-6915(99)00010-1] [PMID: 10418958]
[50]
Venkata, S.K.; Gurupadayya, B.M.; Iyer, V.B.; Chandan, R.S.; Dattatri, K.N. Cytotoxicity studies of coumarin analogs: Design, Synthesis and biological activity. Roy. Chem. Soc., 2016, 6, 98816-98828.
[http://dx.doi.org/10.1039/C6RA22466K]
[51]
Maleki, A.; Ravaghi, P.; Movahed, H.; Aghaie, M. New multicomponent approach for the synthesis of coumarin derivatives by using environmentalfriendly core/shell nanocatalyst. The 20th International Electronic Conference on Synthetic Organic Chemistry, 2016, 51B
[52]
Rosen, T. The perkin reaction: In comprehensive organic synthesis. Elsevier Science B.V. Amsterdum, 1991, vol. 2, 395-408.
[53]
Karami, B.; Kiani, M. Synthesis of the coumarins via pechmann method in the presence of environmentally friendly Y(NO3)3.6H2O. J. Chil. Chem. Soc., 2014, 61, 213-216.
[http://dx.doi.org/10.1002/jccs.201200610]
[54]
Bigi, F.; Chesini, L.; Maggi, R.; Sartori, G. Montmorillonite KSF as an inorganic, water stable, and reusable catalyst for the knoevenagel synthesis of coumarin-3-carboxylic acids. J. Org. Chem., 1999, 64(3), 1033-1035.
[http://dx.doi.org/10.1021/jo981794r] [PMID: 11674183]
[55]
Guan, Z.; Ding, M.; Sun, Y.; Sisi, Y.; Zhang, A.; Xia, S.; Hu, X.; Lin, Y. The synthesis of two long-chain N-hydroxy amino coumarin compounds and their applications in the analysis of aldehydes. Roy. Soc. Chem., 2017, 7, 19707-19716.
[http://dx.doi.org/10.1039/C7RA02177A]
[56]
Yavari, I.; Hekmat-Shoar, R.; Zonuzi, A. A new and efficient route to 4-carboxymethylcoumarins mediated by vinyltriphenylphosphonium salt. Tetrahedron Lett., 1998, 39, 2391-2392.
[http://dx.doi.org/10.1016/S0040-4039(98)00206-8]
[57]
Liangce, R.; Xiaoyue, L.; Haiying, W.; Daqing, S.; Shujiang, T.; Qiya, Z. Efficient green procedure for the synthesis of coumarin derivatives by a one-pot, three-component reaction under solvent-free conditions. Synth. Commun., 2007, 37, 183-189.
[http://dx.doi.org/10.1080/00397910601031553]
[58]
Kuthan, J.; Sebek, P.; Bohm, S. Developments in the chemistry of thiopyrans, selenopyrans, and teluropyrans. Adv. Heterocycl. Chem., 1994, 59, 179-244.
[http://dx.doi.org/10.1016/S0065-2725(08)60008-2]
[59]
Hatakeyama, S.; Ochi, N.; Numata, H.; Takano, S. A new route to substituted 3-methoxycarbonyldihydropyrans enantioselective synthesis of (-)-methyl enolate. J. Chem. Soc. Chem. Commun., 1988, 1202-1204.
[http://dx.doi.org/10.1039/C39880001202]
[60]
Witte, E.C.; Neubert, P.; Roesch, A. Ger. Offen. Patent DE3427985, 1986.
[61]
Wang, J.L.; Liu, D.; Zhang, Z.J.; Shan, S.; Han, X.; Srinivasula, S.M.; Croce, C.M.; Alnemri, E.S.; Huang, Z. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc. Natl. Acad. Sci. USA, 2000, 97(13), 7124-7129.
[http://dx.doi.org/10.1073/pnas.97.13.7124] [PMID: 10860979]
[62]
El-Saghier, A.M.M.; Naili, M.B.; Rammash, B.K.; Saleh, N.A.; Kreddan, K.M. Synthesis and antibacterial activity of some new fused chromenes. ARKIVOC, 2007, 16, 83-91.
[63]
Kumar, R.R.; Perumal, S.; Senthilkumar, P.; Yogeeswari, P.; Sriram, D. An atom efficient, solvent-free, green synthesis and antimycobacterial evaluation of 2-amino-6-methyl-4-aryl-8-[(E)-arylmethylidene]-5,6,7,8-tetrahydro-4H-pyrano[3,2-c]pyridine-3-carbonitriles. Bioorg. Med. Chem. Lett., 2007, 17(23), 6459-6462.
[http://dx.doi.org/10.1016/j.bmcl.2007.09.095] [PMID: 17933535]
[64]
Kumar, D.; Reddy, V.B.; Sharad, S.; Dube, U.; Kapur, S. A facile one-pot green synthesis and antibacterial activity of 2-amino-4H-pyrans and 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-chromenes. Eur. J. Med. Chem., 2009, 44(9), 3805-3809.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.017] [PMID: 19419801]
[65]
Suarez, M.; Slafran, E.; Verdecia, Y.; Ochoa, E.; Alba, L.; Martin, N.; Martinez, R.; Quinteiro, M.; Seoane, C.; Novoa, H.; Blaton, N.; Peeters, O.M.; De Ranter, C. X-ray and theoretical structural study of novel 5,6,7,8-tetrahydrobenzo-4H-pyrans. Tetrahedron, 2002, 58, 953-960.
[http://dx.doi.org/10.1016/S0040-4020(01)01189-9]
[66]
Mirza-Aghayan, M.; Nazmdeh, S.; Boukherroub, R.; Rahimifard, M.; Tarlani, A.A.; Abolghasemi-Malakshah, M. Convenient and efficient one-pot method for the synthesis of 2-amino-tetrahydro-4H-chromenes and 2-amino-4H-benzo[h]-chromenes using catalytic amount of aminofunctionalized MCM-41 in aqueous media. Synth. Commun., 2013, 43, 1499-1507.
[http://dx.doi.org/10.1080/00397911.2011.643438]
[67]
Banerjee, S.; Horn, A.; Khatri, H.; Sereda, G. A green one-pot multicomponent synthesis of 4H-pyrans and polysubstituted aniline derivatives of biological, pharmacological, and optical applications using silica nanoparticles as reusable catalyst. Tetrahedron Lett., 2011, 52, 1878-1881.
[http://dx.doi.org/10.1016/j.tetlet.2011.02.031]
[68]
Heravi, M.M.; Beheshtiha, Y.S.; Piernia, Z.; Sadjadi, S.; Adibi, M. One-pot, three-component synthesis of 4H-pyrans using Cu(II) oxymetasilicate. Synth. Commun., 2009, 39, 3663-3667.
[http://dx.doi.org/10.1080/00397910902796102]
[69]
Smits, R.; Belyakov, S.; Plotniece, A.; Duburs, G. Synthesis of 4H-pyran derivatives under solvent-free and grinding conditions. Synth. Commun., 2013, 43, 465-475.
[http://dx.doi.org/10.1080/00397911.2012.716484]
[70]
Silvia, G.R.; Andrea, O.; Pedro, J.P. Gold-catalyzed ethylene cyclopropanation. Beilstein J. Org. Chem., 2019, 15, 67-71.
[http://dx.doi.org/10.3762/bjoc.15.7]
[71]
Krysiak, J.; Kato, T.; Gornitzka, H.; Baceiredo, A.; Mikolajczyk, M.; Bertrand, G. The first asymmetric cyclopropanation reactions involving a stable carbene. J. Org. Chem., 2001, 66(24), 8240-8242.
[http://dx.doi.org/10.1021/jo010586n] [PMID: 11722233]
[72]
Davies, H.M.L.; Panaro, S.A. Novel dirhodium tetraprolinate catalysts containing bridging prolinate ligands for asymmetric carbenoid reactions. Tetrahedron Lett., 1999, 40, 5287-5290.
[http://dx.doi.org/10.1016/S0040-4039(99)01000-X]
[73]
Ren, Z-J.; Ding, W-Y.; Cao, W-G.; Wang, S-H. Stereoselective synthesis of cis-1-carbomethoxy-2-aryl-3,3-dicyanocyclopropanes. Synth. Commun., 2002, 32, 3143-3148.
[http://dx.doi.org/10.1081/SCC-120013725]
[74]
Ren, Z-J.; Ding, W-Y.; Cao, W-G.; Wang, S-H. Solvent-free stereoselective synthesis of cis-1-carbomethoxy-2-aryl-3,3- dicyanocyclopropanes by grinding. Synth. Commun., 2004, 34, 4395-4400.
[http://dx.doi.org/10.1081/SCC-200039461]
[75]
Ghosh, P.; Bharadwaj, P.K.; Roy, J.; Ghosh, S. Transition Metal (II)/(III), Eu(III), and Tb(III) ions induced molecular photonic or gates using trianthryl cryptands of varying cavity dimension. J. Am. Chem. Soc., 1997, 119, 11903-11909.
[http://dx.doi.org/10.1021/ja9713441]
[76]
Hennrich, G.; Sonnenschein, H.; Resch-Genger, U. Redox switchable fluorescent probe selective for either Hg(II) or Cd(II) and Zn(II). J. Am. Chem. Soc., 1999, 121, 5073-5074.
[http://dx.doi.org/10.1021/ja983802r]
[77]
Gunnlaugsson, T.; Nieuwenhuyzen, M.; Richard, L.; Thoss, V. Novel sodium-selective fluorescent PET and optically based chemosensors: towards Na+ determination in serum. J. Chem. Soc. Perkin Trans., 2002, 2, 141-150.
[78]
Arimori, S.; James, T.D. A competition assay for diols using 9-(N,N-diethanolaminomethyl)anthracene and phenylboronic acid. Tetrahedron Lett., 2002, 43, 507-509.
[http://dx.doi.org/10.1016/S0040-4039(01)02180-3]
[79]
James, T.D.; Sandanayake, K.R.A.S.; Shinkai, S. A Glucose-selective molecular fluorescence sensor. Angew. Chem. Int. Ed. Engl., 1994, 33, 2207-2209.
[http://dx.doi.org/10.1002/anie.199422071]
[80]
Fabbrizzi, L.; Licchelli, M.; Mancin, F.; Pizzeghello, M.; Rabaioli, G.; Taglietti, A.; Tecilla, P.; Tonellato, U. Fluorescence sensing of ionic analytes in water: From transition metal ions to vitamin B13. Chemistry, 2002, 8(1), 94-101.
[http://dx.doi.org/10.1002/1521-3765(20020104)8:1<94:AID-CHEM94>3.0.CO;2-L] [PMID: 11822467]
[81]
Beyeler, A.; Belser, P.; De Cola, L. Rhenium complexes with a photochemically variable anthracene subunit: A molecular switch. Angew. Chem. Int. Ed. Engl., 1997, 36, 2779-2781.
[http://dx.doi.org/10.1002/anie.199727791]
[82]
Zheng, S.; Shi, J. Novel blue-light-emitting polymers containing dinaphthylanthracene moiety. Chem. Mater., 2001, 13, 4405-4407.
[http://dx.doi.org/10.1021/cm0103702]
[83]
Miao, Q.; Nguyen, T-Q.; Someya, T.; Blanchet, G.B.; Nuckolls, C. Synthesis, assembly, and thin film transistors of dihydrodiazapentacene: an isostructural motif for pentacene. J. Am. Chem. Soc., 2003, 125(34), 10284-10287.
[http://dx.doi.org/10.1021/ja036466+] [PMID: 12926952]
[84]
Bartz, T.; Klapper, M.; Mullen, K. Anthracene derivatives as novel initiators for anionic and cationic polymerizations. Macromol. Chem. Phys., 1994, 195, 1097-1109.
[http://dx.doi.org/10.1002/macp.1994.021950323]
[85]
Alshahateet, S.F.; Kooli, F. Solvent-free synthesis and crystal structure of 9,10-dihydro-9,10-diphenylanthracene-2,3,6,7-tetraol inclusion compounds. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2007, 473, 59-66.
[http://dx.doi.org/10.1080/15421400701432412]
[86]
Amir, M.; Kumar, H.; Khan, S.A. Synthesis and pharmacological evaluation of pyrazoline derivatives as new anti-inflammatory and analgesic agents. Bioorg. Med. Chem. Lett., 2008, 18(3), 918-922.
[http://dx.doi.org/10.1016/j.bmcl.2007.12.043] [PMID: 18182288]
[87]
Zhang, X.H.; Wu, S.K.; Gao, Z.Q.; Lee, S.T.; Kwong, H.L. Pyrazoline derivatives for blue coloremitter in organic electroluminescent devices. Thin Solid Films, 2000, 371, 40-46.
[http://dx.doi.org/10.1016/S0040-6090(00)00976-7]
[88]
Bhargava, S.; Rajwanshi, L.K. Synthesis of some novel pyrido [2, 3-d]pyrimidine derivatives and their antimicrobial investigation. Indian J. Chem., 2013, 52B, 448-452.
[89]
Krainets, I.V.; Amer, M.; Bezuglyi, P.A.; Gorokhova, O.V.; Sidorenko, L.V.; Turov, A.V. 4-Hydroxy-2-quinolones. 56*. 4-(Adamant-1-yl) thiazolyl-2-amides of 1-R-4-hydroxy-2-oxoquinoline-3-carboxylic acids as potential antitubercular agents. Chem. Heterocycl. Compd., 2002, 38, 571-575.
[http://dx.doi.org/10.1023/A:1019513313773]
[90]
Hayat, F.; Salahuddin, A.; Umar, S.; Azam, A. Synthesis, characterization, antiamoebic activity and cytotoxicity of novel series of pyrazoline derivatives bearing quinoline tail. Eur. J. Med. Chem., 2010, 45(10), 4669-4675.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.028] [PMID: 20696501]
[91]
Barsoum, F.F.; Hosni, H.M.; Girgis, A.S. Novel bis(1-acyl-2-pyrazolines) of potential anti-inflammatory and molluscicidal properties. Bioorg. Med. Chem., 2006, 14(11), 3929-3937.
[http://dx.doi.org/10.1016/j.bmc.2006.01.042] [PMID: 16460945]
[92]
Rostom, S.A.F.; Badr, M.H.; Abd El Razik, H.A.; Ashour, H.M.; Abdel Wahab, A.E.; Abdel Wahab, A.E. Synthesis of some pyrazolines and pyrimidines derived from polymethoxy chalcones as anticancer and antimicrobial agents. Arch. Pharm. (Weinheim), 2011, 344(9), 572-587.
[http://dx.doi.org/10.1002/ardp.201100077] [PMID: 21755528]
[93]
Insuasty, B. Chamizo, L.; Munoz, J.; Tigreros, A.; Quiroga, J.; Abonia, R.; Nogueras, M.; Cobo, J. Synthesis of 1-substituted 3-aryl-5-aryl (hetaryl)-2-pyrazolines and study of their antitumor activity. Archi. Pharm. Chem. Life Sci., 2012, 345, 275-286.
[http://dx.doi.org/10.1002/ardp.201100170]
[94]
Bhat, A.R.; Athar, F.; Azam, A. Bis-pyrazolines: Synthesis, characterization and antiamoebic activity as inhibitors of growth of Entamoeba histolytica. Eur. J. Med. Chem., 2009, 44(1), 426-431.
[http://dx.doi.org/10.1016/j.ejmech.2007.11.005] [PMID: 18187238]
[95]
Archana; Srivastava, V.K.; Chandra, R.; Kumar, A. Synthesis of potential quinazolinonyl pyrazolinesand quinazolinyl isoxazolines as anticonvulsant agents. Indian J. Chem., 2002, 41B, 2371-2375.
[96]
Sivakumar, P.M.; Prabhu Seenivasan, S.; Kumar, V.; Doble, M. Novel 1,3,5-triphenyl-2-pyrazolines as anti-infective agents. Bioorg. Med. Chem. Lett., 2010, 20(10), 3169-3172.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.083] [PMID: 20385494]
[97]
Ahn, J.H.; Kim, H.M.; Jung, S.H.; Kang, S.K.; Kim, K.R.; Rhee, S.D.; Yang, S.D.; Cheon, H.G.; Kim, S.S. Synthesis and DP-IV inhibition of cyano-pyrazoline derivatives as potent anti-diabetic agents. Bioorg. Med. Chem. Lett., 2004, 14(17), 4461-4465.
[http://dx.doi.org/10.1016/j.bmcl.2004.06.046] [PMID: 15357972]
[98]
Bhat, B.A.; Dhar, K.L.; Puri, S.C.; Saxena, A.K.; Shanmugavel, M.; Qazi, G.N. Synthesis and biological evaluation of chalcones and their derived pyrazoles as potential cytotoxic agents. Bioorg. Med. Chem. Lett., 2005, 15(12), 3177-3180.
[http://dx.doi.org/10.1016/j.bmcl.2005.03.121] [PMID: 15893928]
[99]
Desai, V.G.; Satardekar, P.C.; Polo, S.; Dhumaskar, K. Regioselective synthesis of 1,3,5-trisubstituted pyrazoles. Synth. Commun., 2012, 42, 836-842.
[http://dx.doi.org/10.1080/00397911.2010.531492]
[100]
Wei, X.; Jiu-Xi, C.; Miao-Chang, L.; Jin-Chang, D.; Hua-Yue, W.; Wei-Ke, S. A general and efficient synthesis of pyrazoles catalyzed by Sc(OTf)3 under solvent-free conditions. J. Braz. Chem. Soc., 2009, 20, 367-374.
[http://dx.doi.org/10.1590/S0103-50532009000200023]
[101]
Aggarwal, R.; Kumar, V.; Singh, S.P. Synthesis of some new 1-(6-fluorobenzothiazol-2-yl)-3-(4-fluorophenyl)-5-arylpyrazolines and their iodine(III) mediated oxidation to corresponding pyrazoles. Indian J. Chem., 2007, 46B, 1332-1336.
[http://dx.doi.org/10.1002/chin.200750139]
[102]
Zangade, S.B.; Mokle, S.S.; Shinde, A.T.; Vibhute, Y.B. An atom efficient, green synthesis of 2-pyrazoline derivatives under solvent-freeconditions using grinding technique. Green Chem. Lett. Rev., 2013, 6, 123-127.
[http://dx.doi.org/10.1080/17518253.2012.713123]
[103]
Choudhary, G.; Peddinti, R.K. An expeditious, highly efficient, catalyst-free and solvent-free synthesis of nitroamines and nitrosulfides by Michael addition. Green Chem., 2011, 13, 276-282.
[http://dx.doi.org/10.1039/C0GC00830C]
[104]
Katoh, M.; Nakajima, M.; Shimada, N.; Yamazaki, H.; Yokoi, T. Inhibition of human cytochrome P450 enzymes by 1,4-dihydropyridine calcium antagonists: prediction of in vivo drug-drug interactions. Eur. J. Clin. Pharmacol., 2000, 55(11-12), 843-852.
[http://dx.doi.org/10.1007/s002280050706] [PMID: 10805063]
[105]
Ruggenenti, P.; Perna, A.; Benini, R.; Remuzzi, G. Effects of dihydropyridine calcium channel blockers, angiotensin-converting enzyme inhibition, and blood pressure control on chronic, nondiabetic nephropathies. Gruppo Italiano di Studi Epidemiologici in Nefrologia (GISEN). J. Am. Soc. Nephrol., 1998, 9(11), 2096-2101.
[PMID: 9808096]
[106]
Hantzsch, A. Ueber die synthese pyridinartiger verbindungen aus acetessigäther und aldehydammoniak. Liebigs Ann. Chem., 1882, 215, 1-82.
[http://dx.doi.org/10.1002/jlac.18822150102]
[107]
Gordeev, M.F.; Patel, D.V.; Gordan, E.M. Approaches to combinatorial synthesis of heterocycles: A solid-phase synthesis of 1,4-dihydropyridines. J. Org. Chem., 1996, 61, 924-928.
[http://dx.doi.org/10.1021/jo951706s]
[108]
Wang, L.M.; Sheng, J.; Zhang, J.W.; Han, J.W.; Fan, Z.Y.; Yian, H.; Qian, C.T. Facile Yb(OTf)3 promoted one-pot synthesis of polyhydroquinoline derivatives through Hantzsch reaction. Tetrahedron, 2005, 61, 1539-1543.
[http://dx.doi.org/10.1016/j.tet.2004.11.079]
[109]
Sabitha, G. Kiran kumar Reddy, G. S.; Reddy, C. S.; Yadav, J.S. A novel TMSI-mediated synthesis of Hantzsch 1,4-dihydropyridines at ambient temperature. Tetrahedron Lett., 2003, 44, 4129-4131.
[http://dx.doi.org/10.1016/S0040-4039(03)00813-X]
[110]
Cherkupally, S.R.; Mekala, R. P-TSA catalyzed facile and efficient synthesis of polyhydroquinoline derivatives through hantzsch multi-component condensation. Chem. Pharm. Bull. (Tokyo), 2008, 56(7), 1002-1004.
[http://dx.doi.org/10.1248/cpb.56.1002] [PMID: 18591819]
[111]
Tewari, N.; Namrata, D.; Tripathi, R.P. Tetrabutylammonium hydrogen sulfate catalyzed eco-friendly and efficient synthesis of glycosyl 1,4-dihydropyridines. Tetrahedron Lett., 2004, 45, 9011-9014.
[http://dx.doi.org/10.1016/j.tetlet.2004.10.057]
[112]
Sridhar, R.; Perumal, P.T. A new protocol to synthesize 1,4-dihydropyridines by using 3,4,5-trifluorobenzeneboronic acid as a catalyst in ionic liquid: synthesis of novel 4-(3-carboxyl-1H-pyrazol-4-yl)-1,4-dihydropyridines. Tetrahedron, 2005, 61, 2465-2470.
[http://dx.doi.org/10.1016/j.tet.2005.01.008]
[113]
Legeay, J.C.; Goujon, J.Y.; Vanden Eynde, J.J.; Toupet, L.; Bazureau, J.P. Liquid-phase synthesis of polyhydroquinoline using task-specific ionic liquid technology. J. Comb. Chem., 2006, 8(6), 829-833.
[http://dx.doi.org/10.1021/cc0600425] [PMID: 17096571]
[114]
Satish, K.; Sharma, P.; Kapoor, K.K.; Hundal, M. An efficient, catalyst- and solvent-free, four-component, and one-pot synthesis of polyhydroquinolines on grinding. Tetrahedron, 2008, 64, 536-542.
[http://dx.doi.org/10.1016/j.tet.2007.11.008]
[115]
Freeman, H.S.; Peters, A.T. Colorants for Non-Textile Applications, 1st ed.; Elsevier Science B.V: Amsterdum, 2000.
[116]
Gregory, P. High Technology Applications of Organic Colorants, 1st ed; Springer: New York, 1991.
[http://dx.doi.org/10.1007/978-1-4615-3822-6]
[117]
Kubo, Y.; Maeda, S.; Tokita, S.; Kubo, M. Colorimetric chiral recognition by a molecular sensor. Nature, 1996, 382, 522-524.
[http://dx.doi.org/10.1038/382522a0]
[118]
Chigrinov, V.; Prudnikova, E.; Kozenkov, V.; Kwok, H. Synthesis and properties of azo dye aligning layers for liquid crystal cells. Liq. Cryst., 2002, 29, 1321-1327.
[http://dx.doi.org/10.1080/713935610]
[119]
He, Y.; Gu, X.; Guo, M.; Wang, X. Dendritic azo compounds as a new type amorphous molecular material with quick photo induced surface-relief-grating formation ability. Opt. Mater., 2008, 31, 18-27.
[http://dx.doi.org/10.1016/j.optmat.2008.01.003]
[120]
Pieraccini, S.; Masiero, S.; Spada, G.P.; Gottarelli, G. A new axially-chiral photochemical switch. Chem. Commun. (Camb.), 2003, 9(5), 598-599.
[http://dx.doi.org/10.1039/b211421f] [PMID: 12669843]
[121]
Tatsuta, M.; Kitao, T. Reagent for detecting and diagnosing cancer. Publication No. JP01–207247 A, 1989.
[122]
Aszalos, A.; Weaver, J.L.; Pine, P.S. Methods of usingazo dyes and their derivatives. US Patent 5 5,468,469. 1995.
[123]
Bahulayan, D.; John, L.; Lalithambika, M. Modified clays as efficient acid–base catalyst systems for diazotization and diazo coupling reactions. Synth. Commun., 2003, 33, 863-869.
[http://dx.doi.org/10.1081/SCC-120016343]
[124]
Dabbagh, A.H.; Teimouri, A.; Najafi Chermahini, A. Green and efficient diazotization and diazo coupling reactions on clays. Dyes Pigm., 2007, 73, 239-244.
[http://dx.doi.org/10.1016/j.dyepig.2005.12.002]
[125]
Zarei, A.; Hajipour, A.R.; Khazdooz, L.; Mirjalili, B.F.; Najafi Chermahini, A. Rapid and efficient diazotizationand diazo coupling reactions on silica sulfuric acid under solvent-free conditions. Dyes Pigm., 2009, 81, 240-244.
[http://dx.doi.org/10.1016/j.dyepig.2008.10.011]
[126]
Bamoniri, A.; Mirjalili, F. Bi Bi.; Moshtael-Arani, N. Environmentally green approach to synthesize azo dyes based on 1-naphthol using nano BF3.SiO2 under solvent-free conditions. Green Chem. Lett. Rev., 2014, 7, 393-403.
[http://dx.doi.org/10.1080/17518253.2014.969786]
[127]
Wilson, K.J.; Illig, C.R.; Subasinghe, N.; Hoffman, J.B.; Rudolph, M.J.; Soll, R.; Molloy, C.J.; Bone, R.; Green, D.; Randall, T.; Zhang, M.; Lewandowski, F.A.; Zhou, Z.; Sharp, C.; Maguire, D.; Grasberger, B.; DesJarlais, R.L.; Spurlino, J. Synthesis of thiophene-2-carboxamidines containing 2-aminothiazoles and their biological evaluation as urokinase inhibitors. Bioorg. Med. Chem. Lett., 2001, 11(7), 915-918.
[http://dx.doi.org/10.1016/S0960-894X(01)00102-0] [PMID: 11294390]
[128]
Berlin, K.D.; Herd, M.D. Novel 2-amino-4-aryl-substituted and 2-amino-4,5-disubstituted-thiazoles. Proc. Okla. Acad. Sci., 1991, 71, 29-33.
[129]
Sharma, P.K.; Swonhney, S.N.; Gupta, A.; Singh, G.B.; Bani, S. Synthesis of some novel 2,4-disubstituted thiazoles. Indian J. Chem., 1998, 37B, 371-375.
[130]
Bai, R.; Covell, D.G.; Taylor, G.F.; Kepler, J.A.; Copeland, T.D.; Nguyen, N.Y.; Pettit, G.R.; Hamel, E. Direct photoaffinity labeling by dolastatin 10 of the amino-terminal peptide of beta-tubulin containing cysteine 12. J. Biol. Chem., 2004, 279(29), 30731-30740.
[http://dx.doi.org/10.1074/jbc.M402110200] [PMID: 15123603]
[131]
Schulze, K.; Richter, F.; Seisheit, R.; Krause, R.; Muhlstadt, M. Zur darstellung und charakterisierung von vinylsenfolen. J. Prakt. Chem., 1980, 322, 629-637.
[http://dx.doi.org/10.1002/prac.19803220414]
[132]
Tsuji, K.; Ishikawa, H. Synthesis and anti-pseudomonal activity of new 2-isocephems with a dihydroxypyridone moiety at C-7. Bioorg. Med. Chem. Lett., 1994, 4, 1601-1606.
[http://dx.doi.org/10.1016/S0960-894X(01)80574-6]
[133]
Haviv, F.; Ratajczyk, J.D.; DeNet, R.W.; Kerdesky, F.A.; Walters, R.L.; Schmidt, S.P.; Holms, J.H.; Young, P.R.; Carter, G.W. 3-[1-(2-Benzoxazolyl)hydrazino]propanenitrile derivatives: Inhibitors of immune complex induced inflammation. J. Med. Chem., 1988, 31(9), 1719-1728.
[http://dx.doi.org/10.1021/jm00117a010] [PMID: 2970549]
[134]
Bell, F.W.; Cantrell, A.S.; Högberg, M.; Jaskunas, S.R.; Johansson, N.G.; Jordan, C.L.; Kinnick, M.D.; Lind, P.; Morin, J.M., Jr; Noréen, R.; Oberg, B.; Palkowitz, J.A.; Parrish, C.A.; Pranc, J.; Zhang, H.; Zhou, X-X. Phenethylthiazolethiourea (PETT) compounds, a new class of HIV-1 reverse transcriptase inhibitors. 1. Synthesis and basic structure-activity relationship studies of PETT analogs. J. Med. Chem., 1995, 38(25), 4929-4936.
[http://dx.doi.org/10.1021/jm00025a010] [PMID: 8523406]
[135]
Patt, W.C.; Hamilton, H.W.; Taylor, M.D.; Ryan, M.J.; Taylor, D.G., Jr; Connolly, C.J.; Doherty, A.M.; Klutchko, S.R.; Sircar, I.; Steinbaugh, B.A.; Batly, B.L.; Painchaud, C.A.; Rapundalo, S.T.; Michniewicz, B.M.; Olson, S.C.J. Structure-activity relationships of a series of 2-amino-4-thiazole-containing renin inhibitors. J. Med. Chem., 1992, 35(14), 2562-2572.
[http://dx.doi.org/10.1021/jm00092a006] [PMID: 1635057]
[136]
Hargrave, K.D.; Hess, F.K.; Oliver, J.T.N. N-(4-substituted-thiazolyl)oxamic acid derivatives, a new series of potent, orally active antiallergy agents. J. Med. Chem., 1983, 26(8), 1158-1163.
[http://dx.doi.org/10.1021/jm00362a014] [PMID: 6876084]
[137]
Heravi, M.M.; Poormohammad, N.; Beheshtiha, Y.S.; Baghernejad, B. Efficient synthesis of 2,4-disubstitutedthiazoles under grinding. Synth. Commun., 2011, 41, 579-582.
[http://dx.doi.org/10.1080/00397911003629440]
[138]
Bringmann, G.; Menche, D. Stereoselective total synthesis of axially chiral natural products via biaryl lactones. Acc. Chem. Res., 2001, 34(8), 615-624.
[http://dx.doi.org/10.1021/ar000106z] [PMID: 11513568]
[139]
Yamamoto, T.; Maruyama, T.; Zhou, Z.; Ito, T.; Fukada, T.; Yoneda, Y.; Begum, F.; Ikeda, T.; Sasaki, S.; Takezoe, H.; Fukada, A.; Kubota, K. p-Conjugatedpoly (pyridine-2,5-diyl), poly (2,20-bipyridine-5,50-diyl), and their alkyl derivatives. Preparation, linear structure, function as a ligand to form their transitionmetal complexes, catalytic reactions, n-type electrically conducting properties, optical properties, and alignment on substrates. J. Am. Chem. Soc., 1994, 116, 4832-4845.
[http://dx.doi.org/10.1021/ja00090a031]
[140]
Papillon, J.; Schulz, E.; Gelinas, S.; Lessard, J.; Lemaire, M. Towards the preparation of modified chiral electrodes for heterogeneousasymmetric catalysis: Synthesis and electrochemical properties of (S,S)-5,50-bis-[3-(3-methyl-pentyl)-thiophen-2-yl]-[2,20]-bipyridine. Synth. Met., 1998, 96, 155-160.
[http://dx.doi.org/10.1016/S0379-6779(98)00091-5]
[141]
Zhu, S.S.; Swager, T.M. Design of conducting redox polymers: A polythiophene-Ru(bipy) 3; n Hybrid Material. Adv. Mater., 1996, 8, 497-500.
[http://dx.doi.org/10.1002/adma.19960080609]
[142]
Bringmann, G.; Walter, R.; Weirich, R. The directed synthesis of biarylcompounds: Modern concepts and strategies. Angew. Chem. Int. Ed. Engl., 1990, 29, 977-991.
[http://dx.doi.org/10.1002/anie.199009771]
[143]
Lehn, J.M. Supramolecular Chemistry.VCH, 1st ed; , 1995.
[http://dx.doi.org/10.1002/3527607439]
[144]
Cram, D.J.; Cram, J.M. Container molecules and their guests; Royal Society of Chemistry, 1997.
[http://dx.doi.org/10.1039/97818475506020]
[145]
Hajduk, P.J.; Bures, M.; Praestgaard, J.; Fesik, S.W. Privileged molecules for protein binding identified from NMR-based screening. J. Med. Chem., 2000, 43(18), 3443-3447.
[http://dx.doi.org/10.1021/jm000164q] [PMID: 10978192]
[146]
Sato, Y.; Chashi, K.; Mori, M. Synthesis of biaryls using nickel-catalyzed [2+2+2] cocyclization. Tetrahedron Lett., 1999, 40, 5231-5234.
[http://dx.doi.org/10.1016/S0040-4039(99)00945-4]
[147]
Rong, L.; Han, H.; Jiang, H.; Shi, D.; Tu, S. Solvent-free synthesis of 3-amino-2,4-dicarbonitrile-5-methylbiphenyl by a grinding method. Synth. Commun., 2008, 38, 1044-1050.
[http://dx.doi.org/10.1080/00397910701860596]
[148]
Wang, S-X.; Li, J-T.; Yang, W-Z.; Yin, Y-H.; Xie, Z-H. Solvent-Free Synthesis of ethylα-cyanocinnamates catalyzed by K2O-Al2O3 using grinding method. Synth. Commun., 2004, 34, 829-834.
[http://dx.doi.org/10.1081/SCC-120028355]
[149]
Bose, D.S.; Narsaiah, A.V. An efficient benzyltriethylammonium chloride catalyzed preparation of electrophilic alkenes: A practical synthesis of trimethoprim. J. Chem. Res., 2001, 2001(1), 36-38.
[150]
Rao, P.S.; Venkataratnam, R.V. Zinc chloride as a new catalyst for knoevenagel condensation. Tetrahedron Lett., 1991, 32, 5821-5822.
[http://dx.doi.org/10.1016/S0040-4039(00)93564-0]
[151]
Prajapati, D.; Sandhu, J.S. Cadmium iodide as a new catalyst for knoevenagel condensations. J. Chem. Soc., Perkin Trans. 1, 1993, 1993(6), 739-740.
[http://dx.doi.org/10.1039/p19930000739]
[152]
Moison, H.; Texier-Boullet, F.; Foucaud, A. Knoevenagel, Wittig and Wittig–Horner reactions in the presence of magnesium oxide or zinc oxide. Tetrahedron, 1987, 43, 537-542.
[http://dx.doi.org/10.1016/S0040-4020(01)89986-5]
[153]
Rodriguez, B.; Bruckmann, A.; Rantanen, T.; Bolm, C. Solvent-free carbon–carbon bond formations in ball mills. Adv. Synth. Catal., 2007, 349, 2213-2233.
[http://dx.doi.org/10.1002/adsc.200700252]
[154]
Mack, J.; Fulmer, D.; Stofel, S.; Santos, N. The first solvent-free method for the reduction of esters. Green Chem., 2007, 9, 1041-1043.
[http://dx.doi.org/10.1039/b706167f]
[155]
Dong, Y.W.; Wang, G.W.; Wang, L. Solvent-free synthesis of naphtha pyrans under ball-milling conditions. Tetrahedron, 2008, 64, 10148-10154.
[http://dx.doi.org/10.1016/j.tet.2008.08.047]
[156]
Fulmer, D.A.; Shearouse, W.C.; Medonza, S.T.; Mack, J. Solvent-free Sonogashira coupling reaction via high-speed ball milling. Green Chem., 2009, 11, 1821-1825.
[http://dx.doi.org/10.1039/b915669k]
[157]
Schneider, F.; Stolle, A.; Ondruschka, B.; Hopf, H. The Suzuki-Miyaura reaction under mechanochemical conditions. Org. Process Res. Dev., 2009, 13, 44-48.
[http://dx.doi.org/10.1021/op800148y]
[158]
Thorwirth, R.; Stolle, A.; Ondruschka, B. Fast copper-ligand and solvent-free Sonogashira couplingin a ball mill. Green Chem., 2010, 12, 985-991.
[http://dx.doi.org/10.1039/c000674b]
[159]
Szuppa, T.; Stolle, A.; Ondruschka, B.; Hopfe, W. An alternative solvent-free synthesis of nopinone under ball-milling conditions: Investigation of reaction parameters. ChemSusChem, 2010, 3(10), 1181-1191.
[http://dx.doi.org/10.1002/cssc.201000122] [PMID: 20737534]
[160]
Yu, J.; Li, Z.; Li, W. Synthesis of Quinolines by N-Deformylation and aromatization via solvent-free, high-speed ball milling. Synth. Commun., 2013, 43, 361-374.
[http://dx.doi.org/10.1080/00397911.2011.599103]
[161]
Zhu, X.; Li, Z.; Shu, Q.; Zhou, C.; Su, W. Mechanically activated solid-state synthesis of flavones by high-speed ball milling. Synth. Commun., 2009, 39, 4199-4211.
[http://dx.doi.org/10.1080/00397910902898551]
[162]
Hanessian, S.; McNaughton-Smith, G.; Lombart, H-G.; Lubell, W.D. Design and synthesis of conformationally constrained amino acids as versatile scaffolds and peptide mimetics. Tetrahedron, 1997, 53, 12789-12854.
[http://dx.doi.org/10.1016/S0040-4020(97)00476-6]
[163]
Kadish, K.M.; Smith, K.M.; Guilard, R. Handbook of Porphyrin Science, With Applications to Chemistry, Physics, Materials Science, Engineering, Biology and Medicine, Ed; World Scientific Publishing, Singapore, 2010.
[164]
O’Hagan, D. Pyrrole, pyrrolidine, pyridine, piperidine and tropane alkaloids. Nat. Prod. Rep., 2000, 17(5), 435-446.
[http://dx.doi.org/10.1039/a707613d] [PMID: 11072891]
[165]
de Laszlo, S.E.; Visco, D.; Agarwal, L.; Chang, L.; Chin, J.; Croft, G.; Forsyth, A.; Fletcher, D.; Frantz, B.; Hacker, C.; Hanlon, W.; Harper, C.; Kostura, M.; Li, B.; Luell, S.; MacCoss, M.; Mantlo, N.; O’Neill, E.A.; Orevillo, C.; Pang, M.; Parsons, J.; Rolando, A.; Sahly, Y.; Sidler, K.; O’Keefe, S.J.; O’Keefe, S.J. Pyrroles and other heterocycles as inhibitors of p38 kinase. Bioorg. Med. Chem. Lett., 1998, 8(19), 2689-2694.
[http://dx.doi.org/10.1016/S0960-894X(98)00495-8] [PMID: 9873604]
[166]
Johnson, G.V.W.; Bailey, C.D.C. The p38 MAP kinase signaling pathway in Alzheimer’s disease. Exp. Neurol., 2003, 183(2), 263-268.
[http://dx.doi.org/10.1016/S0014-4886(03)00268-1] [PMID: 14552867]
[167]
Olson, J.M.; Hallahan, A.R. p38 MAP kinase: A convergence point in cancer therapy. Trends Mol. Med., 2004, 10(3), 125-129.
[http://dx.doi.org/10.1016/j.molmed.2004.01.007] [PMID: 15102355]
[168]
Pelaia, G.; Cuda, G.; Vatrella, A.; Gallelli, L.; Caraglia, M.; Marra, M.; Abbruzzese, A.; Caputi, M.; Maselli, R.; Costanzo, F.S.; Marsico, S.A. Mitogen-activated protein kinases and asthma. J. Cell. Physiol., 2005, 202(3), 642-653.
[http://dx.doi.org/10.1002/jcp.20169] [PMID: 15316926]
[169]
Behr, T.M.; Berova, M.; Doe, C.P.; Ju, H.; Angermann, C.E.; Boehm, J.; Willette, R.N. p38 mitogen-activated protein kinase inhibitors for the treatment of chronic cardiovascular disease. Curr. Opin. Investig. Drugs, 2003, 4(9), 1059-1064.
[PMID: 14582449]
[170]
Biava, M.; Porretta, G.C.; Cappelli, A.; Vomero, S.; Manetti, F.; Botta, M.; Sautebin, L.; Rossi, A.; Makovec, F.; Anzini, M. 1,5-Diarylpyrrole-3-acetic acids and esters as novel classes of potent and highly selective cyclooxygenase-2 inhibitors. J. Med. Chem., 2005, 48(9), 3428-3432.
[http://dx.doi.org/10.1021/jm049121q] [PMID: 15857149]
[171]
Wilkerson, W.W.; Copeland, R.A.; Covington, M.; Trzaskos, J.M. Antiinflammatory 4,5-diarylpyrroles. 2. Activity as a function of cyclooxygenase-2 inhibition. J. Med. Chem., 1995, 38(20), 3895-3901.
[http://dx.doi.org/10.1021/jm00020a002] [PMID: 7562922]
[172]
Michaux, C.; Charlier, C. Structural approach for COX-2 inhibition. Mini Rev. Med. Chem., 2004, 4(6), 603-615.
[http://dx.doi.org/10.2174/1389557043403756] [PMID: 15279594]
[173]
Toja, E.G.C.; Barzaghi, F.; Galliani, G.U.S. Chem. Abstr. U.S. Patent 4, 885, 307. 1989.
[174]
Paal, C. Synthese von thiophen- und pyrrolderivaten. berichte der deutschen chemischen desellschaft. ber. dtsch. Chem. Ges., 1885, 18, 367-371. (b) Knorr, L. Einwirkung des diacetbernsteinsäureesters auf ammoniak und primäre aminbasen. berichte der deutschen chemischen gesellschaft. ber. dtsch. Chem. Ges., 1885, 18, 299-311.
[175]
Joshi, S.D.; More, U.A.; Kulkarni, V.H.; Aminabhavi, T.M. Pyrrole: Chemical synthesis, microwave assisted synthesis, reactions and applications: A review. Curr. Org. Chem., 2013, 17, 2279-2304.
[http://dx.doi.org/10.2174/13852728113179990040]
[176]
Zhang, X.; Xu, X.; Chen, G.; Yi, W. Regioselective synthesis of 2,3,4-trisubstituted pyrroles via Pd(II)-catalyzed three-component cascade reactions of amines, alkyne esters, and alkenes. Org. Lett., 2016, 18(19), 4864-4867.
[http://dx.doi.org/10.1021/acs.orglett.6b02325] [PMID: 27623160]
[177]
Demir, A.S.; Emrullahoglu, M. Manganese (III) acetate: A versatile reagent in organic chemistry. Curr. Org. Synth., 2007, 4, 321-350.
[http://dx.doi.org/10.2174/157017907781369289]
[178]
(a) Ceyhan, S.; Cetinkaya, Y.; Akdag, A.; Balci, M. Regioselectivity observed in manganese (III) acetate mediated addition of acetylacetone to various alkenes: Mechanistic and theoretical studies. Tetrahedron, 2016, 72, 6815-6824.
[http://dx.doi.org/10.1016/j.tet.2016.09.015]
(b) Lofstrand, V.A.; Matsuura, B.S.; Furst, L.; Narayanam, J.M.R.; Stephenson, C.R.J. Formation and trapping of azafulvene intermediates derived from manganese-mediated oxidative malonate coupling. Tetrahedron, 2016, 72(26), 3775-3780.
[http://dx.doi.org/10.1016/j.tet.2016.03.012] [PMID: 27551160]
(c) Li, L.; Wang, J-J.; Wang, G-W. Manganese (III) acetate-promoted cross-coupling reaction of benzothiazole/thiazole derivatives with organophosphorus compounds under ball-milling conditions. J. Org. Chem., 2016, 81(13), 5433-5439.
[http://dx.doi.org/10.1021/acs.joc.6b00786] [PMID: 27248000]
(d) Zhang, G-Y.; Li, C-K.; Li, D-P.; Zeng, R-S.; Shoberu, A.; Zou, J-P. Solvent-controlled direct radical oxyphosphorylation of styrenes mediated by Manganese (III). Tetrahedron, 2016, 72, 2972-2978.
[http://dx.doi.org/10.1016/j.tet.2016.04.013]
(e) Chuang, C-P.; Chen, Y-J. Manganese (III) acetate mediated oxidative radical cyclizations of α-substituted N-[2-(phenylethynyl)phenyl] acetamides. Tetrahedron, 2016, 72, 1911-1918.
[http://dx.doi.org/10.1016/j.tet.2016.02.041]
[179]
Wang, G-W. Mechanochemical organic synthesis. Chem. Soc. Rev., 2013, 42(18), 7668-7700.
[http://dx.doi.org/10.1039/c3cs35526h] [PMID: 23660585]
[180]
Nagamani, C.; Liu, H.; Moore, J.S. Mechanogeneration of acid from oxime sulfonates. J. Am. Chem. Soc., 2016, 138(8), 2540-2543.
[http://dx.doi.org/10.1021/jacs.6b00097] [PMID: 26895404]
[181]
Li, Y.; Qiu, G.; Ding, Q.; Wu, J. Synthesis of phenanthridin-6-yldiphenyl-phosphine oxides by oxidative cyclization of 2-isocyanobiphenyls with diarylphosphine oxides. Tetrahedron, 2014, 70(31), 4652-4656.
[http://dx.doi.org/10.1016/j.tet.2014.05.039]
[182]
Zeng, J-C.; Xu, H.; Yu, F.; Zhang, Z. Manganese (III) acetate mediated synthesis of polysubstituted pyrroles under solvent-free ball milling. Tetrahedron Lett., 2017, 58, 674-678.
[http://dx.doi.org/10.1016/j.tetlet.2017.01.016]
[183]
Maryanoff, B.E.; Reitz, A.B. The Wittig olefination reaction and modifications involving phosphoryl-stabilized carbanions. Stereochemistry, mechanism, and selected synthetic aspects. Chem. Rev., 1989, 89, 863-927.
[http://dx.doi.org/10.1021/cr00094a007]
[184]
Baron, A.; Martinez, J.; Lamaty, F. Solvent-free synthesis of unsaturated amino esters in a ball-mill. Tetrahedron Lett., 2010, 51, 6246-6249.
[http://dx.doi.org/10.1016/j.tetlet.2010.09.069]
[185]
Murata, Y.; Han, A.; Komatsu, K. Mechanochemical synthesis of a novel C60 dimer connected by a germanium bridge and a single bond. Tetrahedron Lett., 2003, 44, 8199-82019.
[http://dx.doi.org/10.1016/j.tetlet.2003.09.077]
[186]
Diederich, F.; Stang, P.J. Metal Catalysed Cross Coupling Reactions; Wiley-VCH: Weinheim, Germany, 1988.
[187]
(a) Larock, R.C.; Lee, N.H. Efficient free radical and palladium catalysed tandem alkeneinsertions: A new approach to benzoprostacyclins. J. Org. Chem., 1991, 56, 6253-6254.
[http://dx.doi.org/10.1021/jo00022a002]
(b) Larock, R.C.; Yum, E.K. Synthesis of indoles via palladium catalysed hetero annulations of internal alkynes. J. Am. Chem. Soc., 1991, 113, 6689-6690.
[http://dx.doi.org/10.1021/ja00017a059]
(c) Busacca, C.A.; Johnson, R.E. Synthesis of novel tetrahydrobenzazepinones. Tetrahedron Lett., 1992, 33, 165-168.
[http://dx.doi.org/10.1016/0040-4039(92)88040-C]
(d) Swenton, J.S.; Callinan, A.; Wang, S. Efficient synthesis of vinyl ethers of spiro quinol ketals and their high yield photochemical oxygen to carbon [1,3]-shift to spiro-fused 2,5-cycohexadienanes. J. Org. Chem., 1992, 57, 78-85.
[http://dx.doi.org/10.1021/jo00027a017]
[188]
Burkholder, C.R.; Dolbier, W.R., Jr; Medebielle, M. Synthesis and reactivity of halogeno-difluoromethyl aromatics and heterocycles: Application to the synthesis of gem-difluorinated bioactive compounds. J. Fluor. Chem., 2001, 109, 39-48.
[http://dx.doi.org/10.1016/S0022-1139(01)00378-5]
[189]
Sovak, M. Radiocontrast agents. In: Handbook of Experimental Pharmacology; Springer: Berlin, 1984.
[190]
Alonso, F.; Beletskaya, I.P.; Yus, M. Metal-mediated reductive hydrodehalogenation of organic halides. Chem. Rev., 2002, 102(11), 4009-4091.
[http://dx.doi.org/10.1021/cr0102967] [PMID: 12428984]
[191]
(a) Heindel, N.D.; Burnes, H.D.; Honds, T.; Brandy, L.W. Chemistry of Radiopharmaceuticals; Masson: New York, 1997.
(b) Nicolaou, K.C. The battle of calicheamic- in1. Angew. Chem. Int. Ed. Engl., 1993, 32, 1377.
[192]
Djerassi, C. Brominations with N-bromosuccinimide and related compounds; the Wohl-Ziegler reaction. Chem. Rev., 1948, 43(2), 271-317.
[http://dx.doi.org/10.1021/cr60135a004] [PMID: 18887958]
[193]
Carreno, M.C.; Garcia Ruano, J.L.; Sanz, G.; Toledo, M.A.; Urbano, A. N-bromosuccinimide in acetonitrile: A mild and regiospecific nuclear brominating reagent for methoxybenzenes and naphthalenes. J. Org. Chem., 1995, 60, 5328-5331.
[http://dx.doi.org/10.1021/jo00121a064]
[194]
Duan, J.; Zhang, L.H.; Dolbier, Jr W.R. A convenient new method for the bromination of deactivated aromatic compounds. Synlett, 1999, 1999(8), 1245-1246.
[http://dx.doi.org/10.1055/s-1999-2818]
[195]
Prakash, G.K.S.; Mathew, T.; Hoole, D.; Esteves, P.M.; Wang, Q.; Rasul, G.; Olah, G.A. N-halosuccinimide/BF3-H2O, efficient electrophilic halogenating systems for aromatics. J. Am. Chem. Soc., 2004, 126(48), 15770-15776.
[http://dx.doi.org/10.1021/ja0465247] [PMID: 15571400]
[196]
Imanzadeh, G.K.; Zamanloo, M.R.; Eskandari, H.; Shayesteh, K. A new ring bromination method for aromatic compounds under solvent free conditions with NBS/Al2O3. J. Chem. Res., 2006, 3, 151-153.
[http://dx.doi.org/10.3184/030823406776330657]
[197]
Chakradhar, A.; Roopa, R.; Rajanna, K.C.; Saiprakash, P.K. Vilsmeier–Haack bromination of aromatic compounds with KBr and N-bromosuccinimide under solvent-free conditions. Synth. Commun., 2009, 39, 1817-1824.
[http://dx.doi.org/10.1080/00397910802594268]
[198]
Carreño, M.C.; García Ruano, J.; Sanz, G.; Toledo, M.A.; Urbano, A. Mild and regiospecific nuclear iodination of methoxy benzenes and naphthalenes with N-iodosuccinimide in acetonitrile. Tetrahedron Lett., 1996, 37, 4081-4084.
[http://dx.doi.org/10.1016/0040-4039(96)00738-1]
[199]
Wu, H.; Hynes, Jr, J. Copper-catalyzed chlorination of functionalized arylboronic acids. Org. Lett., 2010, 12(6), 1192-1195.
[http://dx.doi.org/10.1021/ol9029337] [PMID: 20184339]
[200]
Olah, G.A.; Wang, Q.; Sandford, G.; Prakash, G.K.S. Synthetic methods and reactions. 181. Iodination of deactivated aromatics with N-iodosuccinimide in trifluoromethanesulfonic acid (NIS-CF3SO3H) via in situ generated superelectrophilic iodine(I) trifluoromethane sulfonate. J. Org. Chem., 1993, 58, 3194-3195.
[http://dx.doi.org/10.1021/jo00063a052]
[201]
Zhou, C-Y.; Li, J.; Peddibhotla, S.; Romo, D. Mild arming and derivatization of natural products via an In(OTf)3-catalyzed arene iodination. Org. Lett., 2010, 12(9), 2104-2107.
[http://dx.doi.org/10.1021/ol100587j] [PMID: 20387852]
[202]
Ren, Y-L.; Shang, H.; Wang, J.; Tian, X.; Zhao, S.; Wang, Q.; Li, F. Nitrogen dioxide-catalyzed electrophilic iodination of arenes. Adv. Synth. Catal., 2013, 355, 3437-3442.
[http://dx.doi.org/10.1002/adsc.201300581]
[203]
Bose, A.; Mal, P. Electrophilic aryl-halogenation using N-halosuccinimides under ball-milling. Tetrahedron Lett., 2014, 55, 2154-2156.
[http://dx.doi.org/10.1016/j.tetlet.2014.02.064]
[204]
Li, C-J.; Li, Z. Green chemistry: The development of cross-dehydrogenative coupling (CDC) forchemical synthesis. Pure Appl. Chem., 2006, 78, 935-945.
[http://dx.doi.org/10.1351/pac200678050935]
[205]
Li, Z.; Bohle, D.S.; Li, C-J. Cu-catalyzed cross-dehydrogenative coupling: A versatile strategy for C-C bond formations via the oxidative activation of sp(3) C-H bonds. Proc. Natl. Acad. Sci. USA, 2006, 103(24), 8928-8933.
[http://dx.doi.org/10.1073/pnas.0601687103] [PMID: 16754869]
[206]
Beccalli, E.M.; Broggini, G.; Martinelli, M.; Sottocornola, S.C-C. C-O, C-N bond formation on sp2 carbon by Pd(II)-catalyzed reactions involving oxidant agents. Chem. Rev., 2007, 107(11), 5318-5365.
[http://dx.doi.org/10.1021/cr068006f] [PMID: 17973536]
[207]
Li, C-J. Cross-dehydrogenative coupling (CDC): Exploring C-C bond formations beyond functional group transformations. Acc. Chem. Res., 2009, 42(2), 335-344.
[http://dx.doi.org/10.1021/ar800164n] [PMID: 19220064]
[208]
Scheuermann, C.J. Beyond traditional cross couplings: The scope of the cross dehydrogenative coupling reaction. Chem. Asian J., 2010, 5(3), 436-451.
[http://dx.doi.org/10.1002/asia.200900487] [PMID: 20041458]
[209]
Yoo, W-J.; Li, C.J. Cross-dehydrogenative coupling reactions of sp3-hybridized C-H bonds. Top. Curr. Chem., 2010, 292, 281-302.
[http://dx.doi.org/10.1007/128_2009_17] [PMID: 21500410]
[210]
Yeung, C.S.; Dong, V.M. Catalytic dehydrogenative cross-coupling: forming carbon-carbon bonds by oxidizing two carbon-hydrogen bonds. Chem. Rev., 2011, 111(3), 1215-1292.
[http://dx.doi.org/10.1021/cr100280d] [PMID: 21391561]
[211]
Cho, S.H.; Kim, J.Y.; Kwak, J.; Chang, S. Recent advances in the transition metal-catalyzed twofold oxidative C-H bond activation strategy for C-C and C-N bond formation. Chem. Soc. Rev., 2011, 40(10), 5068-5083.
[http://dx.doi.org/10.1039/c1cs15082k] [PMID: 21643614]
[212]
Sun, C-L.; Li, B-J.; Shi, Z-J. Direct C-H transformation via iron catalysis. Chem. Rev., 2011, 111(3), 1293-1314.
[http://dx.doi.org/10.1021/cr100198w] [PMID: 21049955]
[213]
Zhang, C.; Tang, C.; Jiao, N. Recent advances in copper-catalyzed dehydrogenative functionalization via a single electron transfer (SET) process. Chem. Soc. Rev., 2012, 41(9), 3464-3484.
[http://dx.doi.org/10.1039/c2cs15323h] [PMID: 22349590]
[214]
Su, W.; Yu, J.; Li, Z.; Jiang, Z. Solvent-free cross-dehydrogenative coupling reactions under high speed ball-milling conditions applied to the synthesis of functionalized tetrahydroisoquinolines. J. Org. Chem., 2011, 76(21), 9144-9150.
[http://dx.doi.org/10.1021/jo2015533] [PMID: 21961457]
[215]
Zhu, X.Y.; Li, Z.H.; Jin, C.; Xu, L.; Wu, Q.Q.; Su, W.K. Mechanically activated synthesis of 1,3,5-triaryl-2-pyrazolines by high speed ball milling. Green Chem., 2009, 11, 163-165.
[http://dx.doi.org/10.1039/b816788e]
[216]
Yu, J.; Li, Z.; Jia, K.; Jiang, Z.; Liu, M.; Su, W. Fast, solvent-free asymmetric alkynylation of prochiral sp3 C–H bonds in a ball mill for the preparation of optically active tetrahydroisoquinoline derivatives. Tetrahedron Lett., 2013, 54, 2006-2009.
[http://dx.doi.org/10.1016/j.tetlet.2013.02.007]
[217]
Adam, D. Microwave chemistry: Out of the kitchen. Nature, 2003, 421(6923), 571-572.
[http://dx.doi.org/10.1038/421571a] [PMID: 12571563]
[218]
Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, J. The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett., 1986, 27, 279-282.
[http://dx.doi.org/10.1016/S0040-4039(00)83996-9]
[219]
Giguere, R.J.; Bray, T.L.; Duncan, S.M.; Majetich, G. Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett., 1986, 27, 4945-4948.
[http://dx.doi.org/10.1016/S0040-4039(00)85103-5]
[220]
Moustafa, O.S.; Ahmad, R.A. Synthesis and antimicrobial activity of some new cyanopyridines, isoxazoles, pyrazoles, and pyrimidines bearing sulfonamidemoiety. Phosphorus Sulfur Silicon Relat. Elem., 2003, 178, 475-484.
[http://dx.doi.org/10.1080/10426500307933]
[221]
Kini, S.G.; Bhat, A.R.; Bhat, R.; Narayanaswamy, N. Synthesis and antimicrobial activity of new 3,5-disubstituted isoxazoles. Indian J. Heterocycl. Chem., 2008, 17, 319-322.
[222]
Moustafa, O.S. Synthesis of some new heterocycles of pharmaceutical interest:pyridinyl and isoxazolyl quinoxaline derivatives. J. Chin. Chem. Soc. (Taipei), 2003, 50, 1205-1208.
[http://dx.doi.org/10.1002/jccs.200300172]
[223]
Xia, Y.; Dong, Z-W.; Zhao, B-X.; Ge, X.; Meng, N.; Shin, D-S.; Miao, J-Y. Synthesis and structure-activity relationships of novel 1-arylmethyl-3-aryl-1H-pyrazole-5-carbohydrazide derivatives as potential agents against A549 lung cancer cells. Bioorg. Med. Chem., 2007, 15(22), 6893-6899.
[http://dx.doi.org/10.1016/j.bmc.2007.08.021] [PMID: 17804244]
[224]
Warshakoon, N.C.; Wu, S.; Boyer, A.; Kawamoto, R.; Renock, S.; Xu, K.; Pokross, M.; Evdokimov, A.G.; Zhou, S.; Winter, C.; Walter, R.; Mekel, M. Design and synthesis of a series of novel pyrazolopyridines as HIF-1α prolyl hydroxylase inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(21), 5687-5690.
[http://dx.doi.org/10.1016/j.bmcl.2006.08.017] [PMID: 16908145]
[225]
Li, Y-F.; Liu, Z-Q. Dendritic antioxidants with pyrazole as the core: Ability to scavenge radicals and to protect DNA. Free Radic. Biol. Med., 2012, 52(1), 103-108.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.09.032] [PMID: 22036835]
[226]
Hassan, S.Y. Synthesis and biological activity of some new pyrazoline and pyrimidine derivatives. J. Braz. Chem. Soc., 2011, 22, 1286-1298.
[http://dx.doi.org/10.1590/S0103-50532011000700014]
[227]
Solankee, A.; Patel, J. Synthesis of chalcones, pyrazolines, aminopyrimidines and pyrimidine thiones as anti-bacterial agents. Indian J. Chem., 2004, 1580-1584.
[228]
Bapna, A.; Ojha, S.; Talesara, G.L. Facile synthesis of alkoxy phthalimide derivatized benzimidazole assembled pyrazoles, pyrimidines and isoxazoles, via common intermediate chalcone. Indian J. Chem., 2008, 1096-1107.
[229]
Atia, A.J.K. Synthesis and antibacterial activities of new metronidazole and imidazole derivatives. Molecules, 2009, 14(7), 2431-2446.
[http://dx.doi.org/10.3390/molecules14072431] [PMID: 19633614]
[230]
Xiao, M.; Ahn, S.; Wang, J.; Chen, J.; Miller, D.D.; Dalton, J.T.; Li, W. Discovery of 4-Aryl-2-benzoyl-imidazoles as tubulin polymerization inhibitor with potent antiproliferative properties. J. Med. Chem., 2013, 56(8), 3318-3329.
[http://dx.doi.org/10.1021/jm4001117] [PMID: 23547728]
[231]
Rajaguru, K.; Suresh, R.; Mariappan, A.; Muthusubramanian, S.; Bhuvanesh, N. Erbium triflate promoted multicomponent synthesis of highly substituted imidazoles. Org. Lett., 2014, 16(3), 744-747.
[http://dx.doi.org/10.1021/ol403456b] [PMID: 24428260]
[232]
Wani, M.Y.; Bhat, A.R.; Azam, A.; Lee, D.H.; Choi, I.; Athar, F. Synthesis and in vitro evaluation of novel tetrazole embedded 1,3,5-trisubstituted pyrazoline derivatives as Entamoeba histolytica growth inhibitors. Eur. J. Med. Chem., 2012, 54, 845-854.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.049] [PMID: 22658085]
[233]
Kolos, N.N.; Paponov, B.V.; Orlov, V.D.; Lvovskaya, M.I.; Doroshenko, A.O.; Shishkin, O.V. Derivatives of ∆ 2-pyrazoline-products of 1,5-diaminotetrazole interaction with chalcone: Molecular structure and spectral properties. J. Mol. Struct., 2006, 785, 114-122.
[http://dx.doi.org/10.1016/j.molstruc.2005.10.004]
[234]
Kumara, T.H.S.; Mahadevan, K.M.; Harishkumar, H.N.; Padmashali, B.; Naganagowda, G. Synthesis of benzo[b] thiophene substituted carbamates, ureas, semicarbazides, and pyrazoles and their antimicrobial and analgesicactivity. Phosphorus Sulfur Silicon Relat. Elem., 2009, 184, 1866-1879.
[http://dx.doi.org/10.1080/10426500802388433]
[235]
Ostrovskii, V.A.; Trifonov, R.E.; Popova, E.A. Medicinal chemistry of tetrazoles. Russ. Chem. Bull., 2012, 61, 768-780.
[http://dx.doi.org/10.1007/s11172-012-0108-4]
[236]
Herbrecht, R. Posaconazole: A potent, extended-spectrum triazole anti-fungal for the treatment of serious fungal infections. Int. J. Clin. Pract., 2004, 58(6), 612-624.
[http://dx.doi.org/10.1111/j.1368-5031.2004.00167.x] [PMID: 15311563]
[237]
Chandrasekar, P.H.; Manavathu, E. Voriconazole: A second-generation triazole. Drugs Today (Barc), 2001, 37(2), 135-148.
[http://dx.doi.org/10.1358/dot.2001.37.2.614849] [PMID: 12783104]
[238]
da Silva, Fde.C.; de Souza,, M.C.B.V.; Frugulhetti, I.I.P.; Castro, H.C.; Souza, S.L.D.O.; de Souza, T.M.L.; Rodrigues, D.Q.; Souza, A.M.T.; Abreu, P.A.; Passamani, F.; Rodrigues, C.R.; Ferreira, V.F. Synthesis, HIV-RT inhibitory activity and SAR of 1-benzyl-1H-1,2,3-triazole derivatives of carbohydrates. Eur. J. Med. Chem., 2009, 44(1), 373-383.
[http://dx.doi.org/10.1016/j.ejmech.2008.02.047] [PMID: 18486994]
[239]
Alexacou, K-M.; Hayes, J.M.; Tiraidis, C.; Zographos, S.E.; Leonidas, D.D.; Chrysina, E.D.; Archontis, G.; Oikonomakos, N.G.; Paul, J.V.; Varghese, B.; Loganathan, D. Crystallographic and computational studies on 4-phenyl-N-(β-D-glucopyranosyl)-1H-1,2,3-triazole-1-acetamide, an inhibitor of glycogen phosphorylase: Comparison with alpha-D-glucose, N-acetyl-β-D-glucopyranosylamine and N-benzoyl-N'-β-D-glucopyranosyl urea binding. Proteins, 2008, 71(3), 1307-1323.
[http://dx.doi.org/10.1002/prot.21837] [PMID: 18041758]
[240]
Fan, W.Q.; Katritzky, A.R. Comprehensive Heterocyclic Chemistry II., 1996, vol. 4, 1-126.
[241]
Danks, T.N. Microwave assisted synthesis of pyrroles. Tetrahedron Lett., 1999, 40(20), 3957-3960.
[http://dx.doi.org/10.1016/S0040-4039(99)00620-6]
[242]
Sridar, V. Rate acceleration of fischer-indole cyclization by microwave irradiation. Indian J. Chem., 1997, 36B, 86-87.
[243]
Usyatinsky, A.Ya.; Khmelnitsky, Y.L. Microwave-assisted synthesis of substituted imidazoles on a solid support under solvent-free conditions. Tetrahedron Lett., 2000, 41(26), 5031-5034.
[http://dx.doi.org/10.1016/S0040-4039(00)00771-1]
[244]
Landge, S.M.; Schmidt, A.; Outerbridge, V.; Török, B. Synthesis of pyrazoles by a one-pot tandem cyclization-dehydrogenation approach on Pd/C/K-10 catalyst. Synlett, 2007, 10, 1600-1604.
[245]
Trilleras, J.; De La Torre, P.; Pacheco, D.J.; Quiroga, J.; Nogueras, M.; Cobo, J. Solvent-free microwave-assisted synthesis of substituted pyridines using NH4OAc as nitrogen source. Lett. Org. Chem., 2011, 8, 652-655.
[http://dx.doi.org/10.2174/157017811799304296]
[246]
Bogdal, D.; Pielichowski, J.; Boron, A. Remarkable fast microwave-assisted N-alkylation of phthalimde in dry media. Synlett, 1996, 873-874.
[http://dx.doi.org/10.1055/s-1996-5587]
[247]
Varma, R.S.; Chatterjee, A.K.; Varma, M. Alumina-mediated deacetylation of benzaldehyde diacetates: A simple deprotection method. Tetrahedron Lett., 1993, 34(20), 3207-3210.
[http://dx.doi.org/10.1016/S0040-4039(00)73662-8]
[248]
Varma, R.S.; Dahiya, R. Microwave-assisted oxidation of alcohols under solvent-free conditions using clayfen. Tetrahedron Lett., 1997, 38, 2043-2044.
[http://dx.doi.org/10.1016/S0040-4039(97)00262-1]
[249]
Varma, R.S.; Saini, R.K.; Dahiya, R. Active manganese dioxide on silica: oxidation of alcohols under solvent-free conditions using microwaves. Tetrahedron Lett., 1997, 38, 7823-7824.
[http://dx.doi.org/10.1016/S0040-4039(97)10093-4]
[250]
Oussaid, A.; Loupy, A. Selective oxidation of arenes in dry media under focused microwaves. J. Chem. Res. (S)., 1997, (9), 342-343.
[251]
Gutierrez, E.; Loupy, A.; Bram, G.; Ruiz-Hitzky, E. Inorganic solids in dry media an efficient way for developing microwave irradiation activated organic reactions. Tetrahedron Lett., 1989, 30, 945-948.
[http://dx.doi.org/10.1016/S0040-4039(00)95286-9]
[252]
Bosch, A.I.; de la Cruez, P.; Barra, E.D.; Loupy, A.; Langa, F. Microwave assisted Beckmann rearrangement of ketoximes in dry media. Synlett, 1995, 12, 1259-1260.
[http://dx.doi.org/10.1055/s-1995-5236]
[253]
Moghaddam, F.M.; Rastegar Rad, A.; Zali-Boinee, H. Solid supported microwave-assisted beckmann rearrangement of ketoximes in dry media. Synth. Commun., 2004, 34, 2071-2075.
[http://dx.doi.org/10.1081/SCC-120037921]
[254]
Meshram, H.M. Clay catalyzed facile Beckmann rearrangement of ketoximes. Synth. Commun., 1990, 20, 3253-3258.
[http://dx.doi.org/10.1080/00397919008051553]
[255]
Pai, S.G.; Bajpai, A.R.; Deshpande, A.B.; Samant, S.D. Beckmann rearrangement of substituted diaryle ketoximes using FeCl3 impregnated montmorillonite K-10. Synth. Commun., 1997, 27, 379-384.
[http://dx.doi.org/10.1080/00397919708006036]
[256]
Khadilkar, B.M.; Upadhyaya, D.J. Studies in Beckmann rearrangement of substituted benzophenone and acetophenone oximes. Synth. Commun., 2002, 32, 1867-1873.
[http://dx.doi.org/10.1081/SCC-120004081]
[257]
Khadikar, B.M.; Madyar, V.R. Fries rearrangement at atmospheric pressure using microwave irradiation. Synth. Commun., 1999, 29, 1195-1200.
[http://dx.doi.org/10.1080/00397919908086090]
[258]
Verma, R.S.; Saini, R.K.; Dalip, K. An expeditious synthesis of flavones on montmorillonite k-10 clay with microwaves. J.Chem.Res. (S)., 1998, 348-349.
[259]
Varma, R.S.; Varma, M.; Chatterjee, A.K. Microwave-assisted deacetylation on alumina: A simple deprotection method. J. Chem. Soc. Perkin Trans., 1993, 1, 999-1000.
[http://dx.doi.org/10.1039/p19930000999]
[260]
Verma, R.S.; Namboodiri, V.V. An expeditious solvent-free route to ionic liquids using microwaves. Chem. Commun, 2001, (7), 643-644.
[http://dx.doi.org/10.1039/B101375K]
[261]
Varma, R.S.; Lamture, J.B.; Varma, M. Alumina-mediated cleavage of t-butyldimethylsilyl ethers. Tetrahedron Lett., 1993, 34, 3029-3032.
[http://dx.doi.org/10.1016/S0040-4039(00)93370-7]
[262]
Varma, R.S.; Chatterjee, A.K.; Varma, M. Alumina-mediated microwave thermolysis: A new approach to deprotection of benzyl esters. Tetrahedron Lett., 1993, 34, 4603-4606.
[http://dx.doi.org/10.1016/S0040-4039(00)60635-4]
[263]
Varma, R.S.; Kumar, D. Solventless regeneration of ketones from thioketones using clay supported nitrate salts and microwave irradiation. Synth. Commun., 1999, 29, 1333-1340.
[http://dx.doi.org/10.1080/00397919908086108]
[264]
Polshettiwar, V.; Varma, R.S. Ring-fused aminals: Catalyst and solvent-free microwave-assisted α-amination of nitrogen heterocycles. Tetrahedron Lett., 2008, 49, 7165-7167.
[http://dx.doi.org/10.1016/j.tetlet.2008.09.166]
[265]
Varma, R.S.; Meshram, H.M. Solid state deoximation with ammonium persulfate-silica gel: Regeneration of carbonyl compounds using microwaves. Tetrahedron Lett., 1997, 38, 5427-5428.
[http://dx.doi.org/10.1016/S0040-4039(97)01213-6]
[266]
Varma, R.S.; Dahiya, R.; Kumar, S. Clay catalyzed synthesis of imines and enamines under solvent-free conditions using microwave irradiation. Tetrahedron Lett., 1997, 38, 2039-2042.
[http://dx.doi.org/10.1016/S0040-4039(97)00261-X]
[267]
Varma, R.S.; Saini, R.K. Microwave-assisted isomerization of 2′-aminochalcones on clay: An easy route to 2-aryl-1, 2, 3, 4-tetrahydro-4-quinolones. Synlett, 1997, 1997(7), 857-858.
[http://dx.doi.org/10.1055/s-1997-5771]
[268]
Varma, R.S.; Naicker, K.P. Hydroxylamine on clay: A direct synthesis of nitriles from aromatic aldehydes using microwaves under solvent-free conditions. Molecules, 1998, 2, 94-96.
[http://dx.doi.org/10.1007/s007830050061]
[269]
Varma, R.S.; Dahiya, R.; Saini, R.K. Solid state regeneration of ketones from oximes on wet silica supported sodium periodate using microwaves. Tetrahedron Lett., 1997, 38, 8819-8820.
[http://dx.doi.org/10.1016/S0040-4039(97)10521-4]
[270]
Varma, R.S.; Saini, R.K. Microwave-assisted reduction of carbonyl compounds in solid state using sodium borohydride supported on alumina. Tetrahedron Lett., 1997, 38, 4337-4338.
[http://dx.doi.org/10.1016/S0040-4039(97)00968-4]
[271]
Varma, R.S.; Dahiya, R. Copper (II) nitrate on clay (claycop)-hydrogen peroxide: Selective and solvent-free oxidations using microwaves. Tetrahedron Lett., 1998, 39, 1307-1308.
[http://dx.doi.org/10.1016/S0040-4039(97)10763-8]
[272]
Varma, R.S.; Saini, R.K. Wet alumina supported chromium (VI) oxide: Selective oxidation of alcohols in solventless system. Tetrahedron Lett., 1998, 39, 1481-1482.
[http://dx.doi.org/10.1016/S0040-4039(98)00010-0]
[273]
Varma, R.S.; Dahiya, R.; Kumar, D. Solvent-free oxidation of benzoins using oxone on wet alumina under microwave irradiation. Molecules, 1998, 2, 82-85.
[http://dx.doi.org/10.1007/s007830050059]
[274]
Varma, R.S. Dalip Kumar. Microwave-accelerated three-component condensation reaction on clay: solvent-free synthesis of imidazo [1,2-a] annulated pyridines, pyrazines and pyrimidines. Tetrahedron Lett., 1999, 40, 7665-7669.
[http://dx.doi.org/10.1016/S0040-4039(99)01585-3]
[275]
Varma, R.S.; Dahiya, R.; Saini, R.K. Iodobenzene diacetate on alumina: Rapid oxidation of alcohols to carbonyl compounds in solventless system using microwaves. Tetrahedron Lett., 1997, 38, 7029-7032.
[http://dx.doi.org/10.1016/S0040-4039(97)01660-2]
[276]
Varma, R.S.; Naicker, K.P.; Liesen, P.J. Microwave-accelerated crossed cannizzaro reaction using barium hydroxide under solvent-free conditions. Tetrahedron Lett., 1998, 39, 8437-8440.
[http://dx.doi.org/10.1016/S0040-4039(98)01922-4]
[277]
Varma, R.S. “Greener” chemical syntheses using mechanochemical mixing or microwave andultrasound irradiation. Green Chem. Lett. Rev., 2007, 1, 37-45.
[http://dx.doi.org/10.1080/17518250701756991]
[278]
Chu, N.Y.C. 4n+2 systems: Spirooxazines. In: Photochromism: molecules and systems; Elsevier: Amsterdam, 1990; pp. 493-508.
[279]
Lokshin, V.A.; Samat, A.; Metelitsa, A.V. Spirooxazines: Synthesis, structure, spectral and photochromic properties. Russ. Chem. Rev., 2002, 71, 893-916.
[http://dx.doi.org/10.1070/RC2002v071n11ABEH000763]
[280]
Maeda, S. Spirooxazines. In: organic photochromic and thermochromic compounds; Crano, J.C.; Guglielmetti, R., Eds.; Plenum Press: New York, 1999; Vol. 1, Ch. 2, pp. 86-109.
[281]
Lokshin, V.; Samat, A.; Guglielmetti, R.J. Synthesis of photochromic spirooxazines from 1-amino-2-naphthols. Tetrahedron, 1997, 53, 9669-9678.
[http://dx.doi.org/10.1016/S0040-4020(97)00640-6]
[282]
Rickwood, M.; Marsden, S.D.; Ormsby, M.E.; Staunton, A.L.; Wood, D.W.; Hepworth, J.D.; Gabbut, C.D. Red coloring photochromic 6′-substituted spiroindolinonaphth[2,1-b][1,4]oxazines. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 1994, 246, 17-24.
[http://dx.doi.org/10.1080/10587259408037780]
[283]
Koshkin, A.V.; Fedorova, O.A.; Lokshin, V.; Guglielmetti, R.; Hamelin, J.; Texier-Boullet, F.; Gromov, S.P. Microwave-assisted solvent-free synthesis of the substituted spiroindolinonaphth[2,1-b][1,4]oxazines. Synth. Commun., 2004, 34, 315-322.
[http://dx.doi.org/10.1081/SCC-120027269]
[284]
Maugard, T.; Gaunt, D.; Legoy, M.D.; Besson, T. Microwave-assisted synthesis of galacto-oligosaccharides from lactose with immobilized β-galactosidase from Kluyveromyces lactis. Biotechnol. Lett., 2003, 25(8), 623-629.
[http://dx.doi.org/10.1023/A:1023060030558] [PMID: 12882156]
[285]
Lin, S.S.; Wu, C.H.; Sun, M.C.; Sun, C.M.; Ho, Y.P. Microwave-assisted enzyme-catalyzed reactions in various solvent systems. J. Am. Soc. Mass Spectrom., 2005, 16(4), 581-588.
[http://dx.doi.org/10.1016/j.jasms.2005.01.012] [PMID: 15792728]
[286]
Carrillo-Munoz, J-R.; Bouvet, D.; Guibé-Jampel, E.; Loupy, A.; Petit, A. Microwave-promoted lipase catalyzed reactions resolution of (+ -)-1- phenylethanol. J. Org. Chem., 1996, 61(22), 7746-7749.
[http://dx.doi.org/10.1021/jo960309u] [PMID: 11667729]
[287]
Karmee, S.K. Application of microwave irradiation in biocatalysis. Res. J. Biotechnol., 2006, 1, 1.
[288]
Lin, G.; Lin, W-Y. Microwave-promoted lipasecatalyzed reactions. Tetrahedron Lett., 1998, 39, 4333-4336.
[http://dx.doi.org/10.1016/S0040-4039(98)00765-5]
[289]
Zhao, H.; Baker, G.A.; Song, Z.; Olubajo, O.; Zanders, L.; Campbell, S.M. Effect of ionic liquid properties on lipase stabilization under microwave irradiation. J. Mol. Catal., B Enzym., 2009, 57, 149-157.
[http://dx.doi.org/10.1016/j.molcatb.2008.08.006]
[290]
Leadbeater, N.E.; Stencel, L.M.; Wood, E.C. Probing the effects of microwave irradiation on enzyme-catalysed organic transformations: The case of lipase-catalysed transesterification reactions. Org. Biomol. Chem., 2007, 5(7), 1052-1055.
[http://dx.doi.org/10.1039/b617544a] [PMID: 17377658]
[291]
Réjasse, B.; Lamare, S.; Legoy, M.D.; Besson, T. Stability improvement of immobilized Candida antarctica lipase B in an organic medium under microwave radiation. Org. Biomol. Chem., 2004, 2(7), 1086-1089.
[http://dx.doi.org/10.1039/B401145G] [PMID: 15034633]
[292]
Atsushi, Y.; Yoshizawa-Fujita, M.; Yuko, T.; Masahiro, R. In Microwave-assisted enzymatic polymerization of PLG Acopolymers and hybridization with hydroxyapatite. 238th ACS National Meeting, Washington, DC2009.
[293]
Kobayashi, S. Recent developments in lipase-catalyzed synthesis of polyesters. Macromol. Rapid Commun., 2009, 30(4-5), 237-266.
[http://dx.doi.org/10.1002/marc.200800690] [PMID: 21706603]
[294]
Gross, R.A.; Kumar, A.; Kalra, B. Polymer synthesis by in vitro enzyme catalysis. Chem. Rev., 2001, 101(7), 2097-2124.
[http://dx.doi.org/10.1021/cr0002590] [PMID: 11710242]
[295]
Zhang, C.; Liao, L.; Gong, S. Recent developments in microwave-assisted polymerization with a focus on ring-opening polymerization. Green Chem., 2007, 9, 303-314.
[http://dx.doi.org/10.1039/b608891k]
[296]
Yu, Z.J.; Liu, L.J. Effect of microwave energy on chain propagation of poly (o-caprolactone) inbenzoic acid-initiated ring opening polymerization of ε-caprolactone. Eur. Polym. J., 2004, 40, 2213-2220.
[http://dx.doi.org/10.1016/j.eurpolymj.2004.05.007]
[297]
Matos, T.D.; King, N.; Simmons, L.; Walker, C.; McClain, A.R. Microwave assisted lipase catalyzed solvent-free poly-o-caprolactone synthesis. Green Chem. Lett. Rev., 2011, 4, 73-79.
[http://dx.doi.org/10.1080/17518253.2010.501429]
[298]
Kaur, N. Synthesis of six- and seven-membered heterocycles under ultrasound irradiation. Synth. Commun., 2018, 48, 1235-1258.
[http://dx.doi.org/10.1080/00397911.2018.1434894]
[299]
Puri, S.; Kaur, B.; Parmar, A.; Kumar, H. Applications of ultrasound in organic synthesis - a green approach. Curr. Org. Chem., 2013, 17, 1790-1828.
[http://dx.doi.org/10.2174/13852728113179990018]
[300]
Gupta, R.; Gupta, N.; Jain, A. Improved synthesis of chalcones and pyrazolines under ultrasonic irradiation. Indian J. Chem., 2010, 49B, 351-355.
[301]
Pizzuti, L.; Piovesan, L.A.; Flores, A.F.C.; Quina, F.H.; Pereira, C.M.P. Environmentally friendly sonocatalysis promoted preparation of 1-thiocarbamoyl-3,5-diaryl-4,5-dihydro-1H-pyrazoles. Ultrason. Sonochem., 2009, 16(6), 728-731.
[http://dx.doi.org/10.1016/j.ultsonch.2009.02.005] [PMID: 19324584]
[302]
Li, J-T.; Zhang, X-H.; Lin, Z-P. An improved synthesis of 1,3,5-triaryl-2-pyrazolines in acetic acid aqueous solution under ultrasound irradiation. Beilstein J. Org. Chem., 2007, 3, 13.
[http://dx.doi.org/10.1186/1860-5397-3-13] [PMID: 17374170]
[303]
Davood, A.; Davood, S. ZrOCl2.8H2O: An efficient, ecofriendly, and recyclable catalyst for ultrasound accelerated,one-pot, solvent-free synthesis of 8-aryl-7,8-dihydro-[1,3]dioxolo[4,5-g] quinolin-6-(5h)-one and 4-aryl-3,4-dihydroquinolin-2(1H)-one derivatives. Synth. Commun., 2013, 43(18), 2517-2526.
[http://dx.doi.org/10.1080/00397911.2012.718026]
[304]
Jafarpour, F.; Bardajee, G.R.; Pirelahi, H.; Oroojpour, V.; Dehnamaki, H.; Rahmdel, S. An efficient solvent-free synthetic technique of 4,4′-diaminotriarylmethane leuco materials. Chin. J. Chem., 2009, 27, 1415-1419.
[http://dx.doi.org/10.1002/cjoc.200990238]
[305]
Ranjbar-Karimi, R.; Hashemi-Uderji, S.; Mousavi, M. Selectfluor promoted environmental-friendly synthesis of 2H-chromen-2-ones derivatives under various reaction conditions. J. Iran. Chem. Soc., 2011, 8, 193-197.
[http://dx.doi.org/10.1007/BF03246215]
[306]
Kaur, B.; Parmar, A.; Kumar, H. Manganese perchlorate catalyzed efficient greener sonochemical synthesis of aryl-14-h-dibenzo [a, j] xanthenes and 4-substituted 2Hchromen-2-ones. Heterocycl. Lett., 2011, 1, 213-219.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy