Review Article

在恰加斯病中进行硅药物重定位

卷 27, 期 5, 2020

页: [662 - 675] 页: 14

弟呕挨: 10.2174/0929867326666191016114839

价格: $65

摘要

恰加斯病是一种传染性热带病,属于一种被忽视的热带病。尽管从历史上讲是拉丁美洲的地方病,但由于人类的迁徙,它最近已传播到高收入国家。目前,只有两种可用药物尼古丁酮和苯硝唑被批准用于这种治疗,它们都具有相当大的副作用(通常会导致治疗中断),并且在成人慢性疾病中疗效有限。药物重新定位涉及发现已知药物的新治疗适应症,包括已批准,撤销,放弃和研究用药物。由于适应症的转移是建立在现有安全性,ADME和制造信息的基础上的,因此今天它已成为开发创新药物的一种广泛应用的方法,从而大大缩短了开发时间。药物重新定位已成为一种特别有趣的策略,用于寻找被忽视和罕见疾病的新治疗方案,传统上,这种解决方案的商业兴趣有限,并且大多由公共部门以及非营利性计划和组织提供。在这里,我们回顾了计算机辅助技术在查加斯病领域中作为药物重新定位的系统方法的应用。计算机筛选是最受探索的方法,而其他合理方法(例如基于网络和基于签名的近似方法)尚未应用。

关键词: 药物再利用,药物重新定位,计算机筛查,虚拟筛查,恰加斯病,克鲁斯锥虫。

[1]
World Health Organization Neglected tropical diseases, Available at:. http://www.who.int/neglected_diseases/ diseases/en/ (Accessed: July 31, 2017)
[2]
Marinho Falcão, A.; Giorgi, M.C.; Campos Vieira, M.L.; Chalela, W.A.; Borges-Neto, S. Chagas’ disease: update on current diagnosis. Curr. Cardiovasc. Imaging Rep., 2016, 9, 33.
[http://dx.doi.org/10.1007/s12410-016-9394-9]
[3]
Antinori, S.; Galimberti, L.; Bianco, R.; Grande, R.; Galli, M.; Corbellino, M. Chagas disease in Europe: a review for the internist in the globalized world. Eur. J. Intern. Med., 2017, 43, 6-15.
[http://dx.doi.org/10.1016/j.ejim.2017.05.001] [PMID: 28502864]
[4]
Bello Corassa, R.; Aceijas, C.; Alves, P.A.B.; Garelick, H. Evolution of Chagas’ disease in Brazil. Epidemiological perspective and challenges for the future: a critical review. Perspect. Public Health, 2017, 137(5), 289-295.
[http://dx.doi.org/10.1177/1757913916671160] [PMID: 27758973]
[5]
Moran, M.; Guzman, J.; Ropars, A.L.; McDonald, A.; Jameson, N.; Omune, B.; Ryan, S.; Wu, L. Neglected disease research and development: how much are we really spending? PLoS Med., 2009, 6(2) e30
[http://dx.doi.org/10.1371/journal.pmed.1000030] [PMID: 19192946]
[6]
Rodriques Coura, J.; de Castro, S.L. A critical review on Chagas disease chemotherapy. Mem. Inst. Oswaldo Cruz, 2002, 97(1), 3-24.
[http://dx.doi.org/10.1590/S0074-02762002000100001] [PMID: 11992141]
[7]
Sbaraglini, M.L.; Vanrell, M.C.; Bellera, C.L.; Benaim, G.; Carrillo, C.; Talevi, A.; Romano, P.S. Neglected tropical protozoan diseases: drug repositioning as a rational option. Curr. Top. Med. Chem., 2016, 16(19), 2201-2222.
[http://dx.doi.org/10.2174/1568026616666160216154309] [PMID: 26881713]
[8]
Nalor, S.; Schonfeld, J.M. Therapeutic drug repurposing, repositioning and rescue - part I: overview. Drug Discov. World, 2014, 16, 49-62.
[9]
Anighoro, A.; Bajorath, J.; Rastelli, G. Polypharmacology: challenges and opportunities in drug discovery. J. Med. Chem., 2014, 57(19), 7874-7887.
[http://dx.doi.org/10.1021/jm5006463] [PMID: 24946140]
[10]
Aubé, J. Drug repurposing and the medicinal chemist. ACS Med. Chem. Lett., 2012, 3(6), 442-444.
[http://dx.doi.org/10.1021/ml300114c] [PMID: 24900492]
[11]
Jin, G.; Wong, S.T.C. Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug Discov. Today, 2014, 19(5), 637-644.
[http://dx.doi.org/10.1016/j.drudis.2013.11.005] [PMID: 24239728]
[12]
Bolgár, B.; Arany, Á.; Temesi, G.; Balogh, B.; Antal, P.; Mátyus, P. Drug repositioning for treatment of movement disorders: from serendipity to rational discovery strategies. Curr. Top. Med. Chem., 2013, 13(18), 2337-2363.
[http://dx.doi.org/10.2174/15680266113136660164] [PMID: 24059461]
[13]
Bellera, C.L.; Sbaraglini, M.L.; Balcazar, D.E.; Fraccaroli, L.; Vanrell, M.C.; Casassa, A.F.; Labriola, C.A.; Romano, P.S.; Carrillo, C.; Talevi, A. High-throughput drug repositioning for the discovery of new treatments for Chagas disease. Mini Rev. Med. Chem., 2015, 15(3), 182-193.
[http://dx.doi.org/10.2174/138955751503150312120208] [PMID: 25769967]
[14]
Allison, M. NCATS launches drug repurposing program. Nat. Biotechnol., 2012, 30(7), 571-572.
[http://dx.doi.org/10.1038/nbt0712-571a] [PMID: 22781662]
[15]
Dolgin, E. Nonprofit disease groups earmark grants for drug repositioning. Nat. Med., 2011, 17(9), 1027.
[http://dx.doi.org/10.1038/nm0911-1027] [PMID: 21900904]
[16]
Wishart, D.S.; Knox, C.; Guo, A.C.; Cheng, D.; Shrivastava, S.; Tzur, D.; Gautam, B.; Hassanali, M. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res., 2008, 36(Database issue), D901-D906.
[http://dx.doi.org/10.1093/nar/gkm958] [PMID: 18048412]
[17]
Novick, P.A.; Ortiz, O.F.; Poelman, J.; Abdulhay, A.Y.; Pande, V.S. SWEETLEAD: an in silico database of approved drugs, regulated chemicals, and herbal isolates for computer-aided drug discovery. PLoS One, 2013, 8(11) e79568
[http://dx.doi.org/10.1371/journal.pone.0079568] [PMID: 24223973]
[18]
Brown, A.S.; Patel, C.J. A standard database for drug repositioning. Sci. Data, 2017, 4 170029
[http://dx.doi.org/10.1038/sdata.2017.29] [PMID: 28291243]
[19]
Corsello, S.M.; Bittker, J.A.; Liu, Z.; Gould, J.; McCarren, P.; Hirschman, J.E.; Johnston, S.E.; Vrcic, A.; Wong, B.; Khan, M.; Aiedu, J.; Narayan, R.; Mader, C.C.; Subramanian, A.; Golub, T.R. The drug repurposing hub: a next generation drug library and information resource. Nat. Med., 2017, 23, 105-408.
[http://dx.doi.org/10.1038%2Fnm.4306] [PMID: 28388612]
[20]
Klug, D.M.; Gelb, M.H.; Pollastri, M.P. Repurposing strategies for tropical disease drug discovery. Bioorg. Med. Chem. Lett., 2016, 26(11), 2569-2576.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.103] [PMID: 27080183]
[21]
Ferreira, L.G.; Andricopulo, A.D. Drug repositioning approaches to parasitic diseases: a medicinal chemistry perspective. Drug Discov. Today, 2016, 21(10), 1699-1710.
[http://dx.doi.org/10.1016/j.drudis.2016.06.021] [PMID: 27365271]
[22]
Bellera, C.L.; Sbaraglini, M.L.; Talevi, A. Modern approaches for the discovery of anti-infectious drugs for the treatment of neglected diseases. Curr. Top. Med. Chem., 2018, 18(5), 369-381.
[http://dx.doi.org/10.2174/1568026618666180509151146] [PMID: 29741140]
[23]
Ekins, S.; Williams, A.J.; Krasowski, M.D.; Freundlich, J.S. In silico repositioning of approved drugs for rare and neglected diseases. Drug Discov. Today, 2011, 16(7-8), 298-310.
[http://dx.doi.org/10.1016/j.drudis.2011.02.016] [PMID: 21376136]
[24]
Sardana, D.; Zhu, C.; Zhang, M.; Gudivada, R.C.; Yang, L.; Jegga, A.G. Drug repositioning for orphan diseases. Brief. Bioinform., 2011, 12(4), 346-356.
[http://dx.doi.org/10.1093/bib/bbr021] [PMID: 21504985]
[25]
Delavan, B.; Roberts, R.; Huang, R.; Bao, W.; Tong, W.; Liu, Z. Computational drug repositioning for rare diseases in the era of precision medicine. Drug Discov. Today, 2018, 23(2), 382-394.
[http://dx.doi.org/10.1016/j.drudis.2017.10.009] [PMID: 29055182]
[26]
Li, Y.Y.; Jones, S.J.I. Drug repositioning for personalized medicine. Genome Med., 2012, 4(3), 27.
[http://dx.doi.org/10.1186/gm326] [PMID: 22494857]
[27]
Siles, S.A.; Srinivasan, A.; Pierce, C.G.; López-Ribot, J.L.; Ramasubramanian, A.K. High-throughput screening of a collection of known pharmacologically active small compounds for identification of Candida albicans biofilm inhibitors. Antimicrob. Agents Chemother., 2013, 57(8), 3681-3687.
[http://dx.doi.org/10.1128/AAC.00680-13] [PMID: 23689719]
[28]
Ciallella, J.R.; Reaume, A.G. In vivo phenotypic screening: clinical proof of concept for a drug repositioning approach. Drug Discov. Today. Technol., 2017, 23, 45-52.
[http://dx.doi.org/10.1016/j.ddtec.2017.04.001] [PMID: 28647085]
[29]
Kaiser, M.; Mäser, P.; Tadoori, L.P.; Ioset, J.R.; Brun, R. Antiprotozoal activity profiling of approved drugs: a starting point toward drug repositioning. PLoS One, 2015, 10(8) e0135556
[http://dx.doi.org/10.1371/journal.pone.0135556] [PMID: 26270335]
[30]
Dandapani, S.; Rosse, G.; Southall, N.; Salvino, J.M.; Thomas, C.J.; Salvino, J.M.; Thomas, C.J. Selecting, acquiring, and using small molecule libraries for high-throughput screening. Curr. Protoc. Chem. Biol., 2012, 4, 177-191.
[http://dx.doi.org/10.1002/9780470559277.ch110252] [PMID: 26705509]
[31]
Harris, C.J.; Hill, R.D.; Sheppard, D.W.; Slater, M.J.; Stouten, P.F.W. The design and application of target-focused compound libraries. Comb. Chem. High Throughput Screen., 2011, 14(6), 521-531.
[http://dx.doi.org/10.2174/138620711795767802] [PMID: 21521154]
[32]
Bellera, C.L.; Di Ianni, M.E.; Sbaraglini, M.L.; Castro, E.A.; Bruno-Blanch, L.E.; Talevi, A. Frontiers in computational chemistry, 1st ed; , 2014.
[33]
Wu, L.; Ai, N.; Liu, Y.; Wang, Y.; Fan, X. Relating anatomical therapeutic indications by the ensemble similarity of drug sets. J. Chem. Inf. Model., 2013, 53(8), 2154-2160.
[http://dx.doi.org/10.1021/ci400155x] [PMID: 23889502]
[34]
Keiser, M.J.; Roth, B.L.; Armbruster, B.N.; Ernsberger, P.; Irwin, J.J.; Shoichet, B.K. Relating protein pharmacology by ligand chemistry. Nat. Biotechnol., 2007, 25(2), 197-206.
[http://dx.doi.org/10.1038/nbt1284] [PMID: 17287757]
[35]
Keiser, M.J.; Setola, V.; Irwin, J.J.; Laggner, C.; Abbas, A.I.; Hufeisen, S.J.; Jensen, N.H.; Kuijer, M.B.; Matos, R.C.; Tran, T.B.; Whaley, R.; Glennon, R.A.; Hert, J.; Thomas, K.L.; Edwards, D.D.; Shoichet, B.K.; Roth, B.L. Predicting new molecular targets for known drugs. Nature, 2009, 462(7270), 175-181.
[http://dx.doi.org/10.1038/nature08506] [PMID: 19881490]
[36]
Haupt, V.J.; Daminelli, S.; Schroeder, M. Drug promiscuity in PDB: protein binding site similarity is key. PLoS One, 2016, 8(6) e65894
[http://dx.doi.org/10.1371/journal.pone.0065894] [PMID: 23805191]
[37]
Ehrt, C.; Brinkjost, T.; Koch, O. Impact of binding site comparisons on medicinal chemistry and rational molecular design. J. Med. Chem., 2016, 59(9), 4121-4151.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00078] [PMID: 27046190]
[38]
Haupt, V.J.; Schroeder, M. Old friends in new guise: repositioning of known drugs with structural bioinformatics. Brief. Bioinform., 2011, 12(4), 312-326.
[http://dx.doi.org/10.1093/bib/bbr011] [PMID: 21441562]
[39]
Salentin, S.; Haupt, V.J.; Daminelli, S.; Schroeder, M. Polypharmacology rescored: protein-ligand interaction profiles for remote binding site similarity assessment. Prog. Biophys. Mol. Biol., 2014, 116(2-3), 174-186.
[http://dx.doi.org/10.1016/j.pbiomolbio.2014.05.006] [PMID: 24923864]
[40]
Barelier, S.; Sterling, T.; O’Meara, M.J.; Shoichet, B.K. The recognition of identical ligands by unrelated proteins. ACS Chem. Biol., 2015, 10(12), 2772-2784.
[http://dx.doi.org/10.1021/acschembio.5b00683] [PMID: 26421501]
[41]
Cohen, T.; Widdows, D.; Schvaneveldt, R.W.; Davies, P.; Rindflesch, T.C. Discovering discovery patterns with predication-based semantic indexing. J. Biomed. Inform., 2012, 45(6), 1049-1065.
[http://dx.doi.org/10.1016/j.jbi.2012.07.003] [PMID: 22841748]
[42]
Jensen, L.J.; Saric, J.; Bork, P. Literature mining for the biologist: from information retrieval to biological discovery. Nat. Rev. Genet., 2006, 7(2), 119-129.
[http://dx.doi.org/10.1038/nrg1768] [PMID: 16418747]
[43]
Su, E.W.; Sanger, T.M. Systematic drug repositioning through mining adverse event data in ClinicalTrials.gov. PeerJ, 2017, 5 e3154
[http://dx.doi.org/10.7717/peerj.3154] [PMID: 28348935]
[44]
Vidal, M.; Cusick, M.E.; Barabási, A.L. Interactome networks and human disease. Cell, 2011, 144(6), 986-998.
[http://dx.doi.org/10.1016/j.cell.2011.02.016] [PMID: 21414488]
[45]
Chen, B.; Ding, Y.; Wild, D.J. Assessing drug target association using semantic linked data. PLOS Comput. Biol., 2012, 8(7) e1002574
[http://dx.doi.org/10.1371/journal.pcbi.1002574] [PMID: 22859915]
[46]
Chen, B.; Ding, Y.; Wild, D.J. Improving integrative searching of systems chemical biology data using semantic annotation. J. Cheminform., 2012, 4(1), 6.
[http://dx.doi.org/10.1186/1758-2946-4-6] [PMID: 22401035]
[47]
Talevi, A. Multi-target pharmacology: possibilities and limitations of the “skeleton key approach” from a medicinal chemist perspective. Front. Pharmacol., 2015, 6, 205.
[http://dx.doi.org/10.3389/fphar.2015.00205] [PMID: 26441661]
[48]
Piñero, J.; Bravo, À.; Queralt-Rosinach, N.; Gutiérrez-Sacristán, A.; Deu-Pons, J.; Centeno, E.; García-García, J.; Sanz, F.; Furlong, L.I. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res., 2017, 45(D1), D833-D839.
[http://dx.doi.org/10.1093/nar/gkw943] [PMID: 27924018]
[49]
Yang, H.; Qin, C.; Li, Y.H.; Tao, L.; Zhou, J.; Yu, C.Y.; Xu, F.; Chen, Z.; Zhu, F.; Chen, Y.Z. Therapeutic target database update 2016: enriched resource for bench to clinical drug target and targeted pathway information. Nucleic Acids Res., 2016, 44(D1), D1069-D1074.
[http://dx.doi.org/10.1093/nar/gkv1230] [PMID: 26578601]
[50]
Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; Kuhn, M.; Bork, P.; Jensen, L.J.; von Mering, C. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res., 2015, 43(Database issue), D447-D452.
[http://dx.doi.org/10.1093/nar/gku1003] [PMID: 25352553]
[51]
Gilson, M.K.; Liu, T.; Baitaluk, M.; Nicola, G.; Hwang, L.; Chong, J. BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res., 2016, 44(D1) D1045D1053
[52]
Iorio, F.; Rittman, T.; Ge, H.; Menden, M.; Saez-Rodríguez, J. Transcriptional data: a new gateway to drug repositioning? Drug Discov. Today, 2013, 18(7-8), 350-357.
[http://dx.doi.org/10.1016/j.drudis.2012.07.014] [PMID: 22897878]
[53]
Hu, G.; Agarwal, P. Human disease-drug network based on genomic expression profiles. PLoS One, 2009, 4(8) e6536
[http://dx.doi.org/10.1371/journal.pone.0006536] [PMID: 19657382]
[54]
Shigemizu, D.; Hu, Z.; Hung, J.H.; Huang, C.L.; Wang, Y.; DeLisi, C. Using functional signatures to identify repositioned drugs for breast, myelogenous leukemia and prostate cancer. PLOS Comput. Biol., 2012, 8(2) e1002347
[http://dx.doi.org/10.1371/journal.pcbi.1002347] [PMID: 22346740]
[55]
Wu, H.; Huang, J.; Zhong, Y.; Huang, Q. DrugSig: a resource for computational drug repositioning utilizing gene expression signatures. PLoS One, 2017, 12(5) e0177743
[http://dx.doi.org/10.1371/journal.pone.0177743] [PMID: 28562632]
[56]
Lamb, J.; Crawford, E.D.; Peck, D.; Modell, J.W.; Blat, I.C.; Wrobel, M.J.; Lerner, J.; Brunet, J.P.; Subramanian, A.; Ross, K.N.; Reich, M.; Hieronymus, H.; Wei, G.; Armstrong, S.A.; Haggarty, S.J.; Clemons, P.A.; Wei, R.; Carr, S.A.; Lander, E.S.; Golub, T.R. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science, 2006, 313(5795), 1929-1935.
[http://dx.doi.org/10.1126/science.1132939] [PMID: 17008526]
[57]
Sbaraglini, M.L.; Talevi, A. Hybrid compounds as antiinfective agents. Curr. Top. Med. Chem., 2017, 17(9), 1080-1095.
[http://dx.doi.org/10.2174/1568026616666160927160912] [PMID: 27697047]
[58]
García-Huertas, P.; Mejía-Jaramillo, A.M.; González, L.; Triana-Chávez, O. Transcriptome and functional genomics reveal the participation of adenine phosphoribosyltransferase in Trypanosoma cruzi resistance to benznidazole. J. Cell. Biochem., 2017, 118(7), 1936-1945.
[http://dx.doi.org/10.1002/jcb.25978] [PMID: 28276600]
[59]
Soares, M.B.P.; Silva, C.V.; Bastos, T.M.; Guimarães, E.T.; Figueira, C.P.; Smirlis, D.; Azevedo, W.F., Jr Anti-Trypanosoma cruzi activity of nicotinamide. Acta Trop., 2012, 122(2), 224-229.
[http://dx.doi.org/10.1016/j.actatropica.2012.01.001] [PMID: 22281243]
[60]
Bellera, C.L.; Balcazar, D.E.; Alberca, L.; Labriola, C.A.; Talevi, A.; Carrillo, C. Application of computer-aided drug repurposing in the search of new cruzipain inhibitors: discovery of amiodarone and bromocriptine inhibitory effects. J. Chem. Inf. Model., 2013, 53(9), 2402-2408.
[http://dx.doi.org/10.1021/ci400284v] [PMID: 23906322]
[61]
Bellera, C.L.; Balcazar, D.E.; Alberca, L.; Labriola, C.A.; Talevi, A.; Carrillo, C. Identification of levothyroxine antichagasic activity through computer-aided drug repurposing. ScientificWorldJournal, 2014, 2014 279618
[http://dx.doi.org/10.1155/2014/279618] [PMID: 24592161]
[62]
Bellera, C.L.; Balcazar, D.E.; Vanrell, M.C.; Casassa, A.F.; Palestro, P.H.; Gavernet, L.; Labriola, C.A.; Gálvez, J.; Bruno-Blanch, L.E.; Romano, P.S.; Carrillo, C.; Talevi, A. Computer-guided drug repurposing: identification of trypanocidal activity of clofazimine, benidipine and saquinavir. Eur. J. Med. Chem., 2015, 93, 338-348.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.065] [PMID: 25707014]
[63]
Friis, M.L.; Grøn, U.; Larsen, N.E.; Pakkenberg, H.; Hvidberg, E.F. Pharmacokinetics of bromocriptine during continuous oral treatment of Parkinson’s disease. Eur. J. Clin. Pharmacol., 1979, 15(4), 275-280.
[http://dx.doi.org/10.1007/BF00618517] [PMID: 477712]
[64]
del Pozo, E.; Schlüter, K.; Nüesch, E.; Rosenthaler, J.; Kerp, L. Pharmacokinetics of a long-acting bromocriptine preparation (Parlodel LA) and its effect on release of prolactin and growth hormone. Eur. J. Clin. Pharmacol., 1986, 29(5), 615-618.
[http://dx.doi.org/10.1007/BF00635902] [PMID: 3956565]
[65]
Oprea, T.I.; Overington, J.P. Computational and practical aspects of drug repositioning. Assay Drug Dev. Technol., 2015, 13(6), 299-306.
[http://dx.doi.org/10.1089/adt.2015.29011.tiodrrr] [PMID: 26241209]
[66]
Field, M.C.; Horn, D.; Fairlamb, A.H.; Ferguson, M.A.J.; Gray, D.W.; Read, K.D.; De Rycker, M.; Torrie, L.S.; Wyatt, P.G.; Wyllie, S.; Gilbert, I.H. Anti-trypanosomatid drug discovery: an ongoing challenge and a continuing need. Nat. Rev. Microbiol., 2017, 15(4), 217-231.
[http://dx.doi.org/10.1038/nrmicro.2016.193] [PMID: 28239154]
[67]
Sbaraglini, M.L.; Bellera, C.L.; Fraccaroli, L.; Larocca, L.; Carrillo, C.; Talevi, A.; Alba Soto, C.D. Novel cruzipain inhibitors for the chemotherapy of chronic Chagas disease. Int. J. Antimicrob. Agents, 2016, 48(1), 91-95.
[http://dx.doi.org/10.1016/j.ijantimicag.2016.02.018] [PMID: 27216381]
[68]
Palos, I.; Lara-Ramirez, E.E.; Lopez-Cedillo, J.C.; Garcia-Perez, C.; Kashif, M.; Bocanegra-Garcia, V.; Nogueda-Torres, B.; Rivera, G. GarciaPerez, C.; Kashif, M.; Bocanegra-Garcia, V.; NoguedaTorres, B.; Rivera, G. Repositioning FDA drugs as potential cruzain inhibitors from Trypanosoma cruzi: virtual screening, in vitro and in vivo studies. Molecules, 2017, 22(6), 1015.
[http://dx.doi.org/10.3390/molecules22061015] [PMID: 28629155]
[69]
Alberca, L.N.; Sbaraglini, M.L.; Balcazar, D.; Fraccaroli, L.; Carrillo, C.; Medeiros, A.; Benítez, D.; Comini, M.; Talevi, A. Discovery of novel polyamine analogs with anti-protozoal activity by computer guided drug repositioning. J. Comput. Aided Mol. Des., 2016, 30(4), 305-321.
[http://dx.doi.org/10.1007/s10822-016-9903-6] [PMID: 26891837]
[70]
van Harten, J. Clinical pharmacokinetics of selective serotonin reuptake inhibitors. Clin. Pharmacokinet., 1993, 24(3), 203-220.
[http://dx.doi.org/10.2165/00003088-199324030-00003] [PMID: 8384945]
[71]
Kaiser, M.; Maes, L.; Tadoori, L.P.; Spangenberg, T.; Ioset, J.R.P.; Spangenber, T.; Joset, J.R. Repurposing of the open access malaria box for kinetoplastid diseases identifies novel active scaffolds against trypanosomatids. J. Biomol. Screen., 2015, 20(5), 634-645.
[http://dx.doi.org/10.1177/1087057115569155] [PMID: 25690568]
[72]
Reigada, C.; Valera-Vera, E.A.; Sayé, M.; Errasti, A.E.; Avila, C.C.; Miranda, M.R.; Pereira, C.A. Trypanocidal effect of isotretinoin through the inhibition of polyamine and amino acid transporters in Trypanosoma cruzi. PLoS Negl. Trop. Dis., 2017, 11(3) e0005472
[http://dx.doi.org/10.1371/journal.pntd.0005472] [PMID: 28306713]
[73]
Colburn, W.A.; Vane, F.M.; Shorter, H.J. Pharmacokinetics of isotretinoin and its major blood metabolite following a single oral dose to man. Eur. J. Clin. Pharmacol., 1983, 24(5), 689-694.
[http://dx.doi.org/10.1007/BF00542224] [PMID: 6575916]
[74]
Lara-Ramirez, E.E.; López-Cedillo, J.C.; Nogueda-Torres, B.; Kashif, M.; Garcia-Perez, C.; Bocanegra-Garcia, V.; Agusti, R.; Uhrig, M.L.; Rivera, G. An in vitro and in vivo evaluation of new potential trans-sialidase inhibitors of Trypanosoma cruzi predicted by a computational drug repositioning method. Eur. J. Med. Chem., 2017, 132, 249-261.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.063] [PMID: 28364659]
[75]
Rodrigues, J.; Alves, N.R.; Da Silva, F.G.; Cravo, P.V.L. Identification of new drugs against chagas disease through genomics and bioinformatics strategies. Fronteiras, 2015, 4, 77-84.
[76]
Fløgstad, A.K.; Halse, J.; Grass, P.; Abisch, E.; Djøseland, O.; Kutz, K.; Bodd, E.; Jervell, J. A comparison of octreotide, bromocriptine, or a combination of both drugs in acromegaly. J. Clin. Endocrinol. Metab., 1994, 79(2), 461-465.
[http://dx.doi.org/10.1210/jcem.79.2.8045964] [PMID: 8045964]
[77]
Noble, S.; Faulds, D. Saquinavir. A review of its pharmacology and clinical potential in the management of HIV infection. Drugs, 1996, 52(1), 93-112.
[http://dx.doi.org/10.2165/00003495-199652010-00007] [PMID: 8799687]
[78]
Cholo, M.C.; Steel, H.C.; Fourie, P.B.; Germishuizen, W.A.; Anderson, R. Clofazimine: current status and future prospects. J. Antimicrob. Chemother., 2012, 67(2), 290-298.
[http://dx.doi.org/10.1093/jac/dkr444] [PMID: 22020137]
[79]
Kaye, C.M.; Haddock, R.E.; Langley, P.F.; Mellows, G.; Tasker, T.C.G.; Zussman, B.D.; Greb, W.H. A review of the metabolism and pharmacokinetics of paroxetine in man. Acta Psychiatr. Scand. Suppl., 1989, 350, 60-75.
[http://dx.doi.org/10.1111/j.1600-0447.1989.tb07176.x] [PMID: 2530793]
[80]
Nulman, I.; Berkovitch, M.; Klein, J.; Pastuszak, A.; Lester, R.S.; Shear, N.; Koren, G. Steady-state pharmacokinetics of isotretinoin and its 4-oxo metabolite: implications for fetal safety. J. Clin. Pharmacol., 1998, 38(10), 926-930.
[http://dx.doi.org/10.1002/j.1552-4604.1998.tb04388.x] [PMID: 9807973]
[81]
Klotz, U. Clinical pharmacokinetics of sulphasalazine, its metabolites and other prodrugs of 5-aminosalicylic acid. Clin. Pharmacokinet., 1985, 10(4), 285-302.
[http://dx.doi.org/10.2165/00003088-198510040-00001] [PMID: 2864155]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy