Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

In Silico Drug Repositioning for Chagas Disease

Author(s): Carolina L. Bellera, Lucas N. Alberca, María L. Sbaraglini and Alan Talevi*

Volume 27, Issue 5, 2020

Page: [662 - 675] Pages: 14

DOI: 10.2174/0929867326666191016114839

Price: $65

Abstract

Chagas disease is an infectious tropical disease included within the group of neglected tropical diseases. Though historically endemic to Latin America, it has lately spread to high-income countries due to human migration. At present, there are only two available drugs, nifurtimox and benznidazole, approved for this treatment, both with considerable side-effects (which often result in treatment interruption) and limited efficacy in the chronic stage of the disease in adults.

Drug repositioning involves finding novel therapeutic indications for known drugs, including approved, withdrawn, abandoned and investigational drugs. It is today a broadly applied approach to develop innovative medications, since indication shifts are built on existing safety, ADME and manufacturing information, thus greatly shortening development timeframes. Drug repositioning has been signaled as a particularly interesting strategy to search for new therapeutic solutions for neglected and rare conditions, which traditionally present limited commercial interest and are mostly covered by the public sector and not-for-profit initiatives and organizations.

Here, we review the applications of computer-aided technologies as systematic approaches to drug repositioning in the field of Chagas disease. In silico screening represents the most explored approach, whereas other rational methods such as network-based and signature-based approximations have still not been applied.

Keywords: Drug repurposing, Drug repositioning, In silico screening, Virtual Screening, Chagas diseases, Trypanosoma cruzi.

[1]
World Health Organization Neglected tropical diseases, Available at:. http://www.who.int/neglected_diseases/ diseases/en/ (Accessed: July 31, 2017)
[2]
Marinho Falcão, A.; Giorgi, M.C.; Campos Vieira, M.L.; Chalela, W.A.; Borges-Neto, S. Chagas’ disease: update on current diagnosis. Curr. Cardiovasc. Imaging Rep., 2016, 9, 33.
[http://dx.doi.org/10.1007/s12410-016-9394-9]
[3]
Antinori, S.; Galimberti, L.; Bianco, R.; Grande, R.; Galli, M.; Corbellino, M. Chagas disease in Europe: a review for the internist in the globalized world. Eur. J. Intern. Med., 2017, 43, 6-15.
[http://dx.doi.org/10.1016/j.ejim.2017.05.001] [PMID: 28502864]
[4]
Bello Corassa, R.; Aceijas, C.; Alves, P.A.B.; Garelick, H. Evolution of Chagas’ disease in Brazil. Epidemiological perspective and challenges for the future: a critical review. Perspect. Public Health, 2017, 137(5), 289-295.
[http://dx.doi.org/10.1177/1757913916671160] [PMID: 27758973]
[5]
Moran, M.; Guzman, J.; Ropars, A.L.; McDonald, A.; Jameson, N.; Omune, B.; Ryan, S.; Wu, L. Neglected disease research and development: how much are we really spending? PLoS Med., 2009, 6(2) e30
[http://dx.doi.org/10.1371/journal.pmed.1000030] [PMID: 19192946]
[6]
Rodriques Coura, J.; de Castro, S.L. A critical review on Chagas disease chemotherapy. Mem. Inst. Oswaldo Cruz, 2002, 97(1), 3-24.
[http://dx.doi.org/10.1590/S0074-02762002000100001] [PMID: 11992141]
[7]
Sbaraglini, M.L.; Vanrell, M.C.; Bellera, C.L.; Benaim, G.; Carrillo, C.; Talevi, A.; Romano, P.S. Neglected tropical protozoan diseases: drug repositioning as a rational option. Curr. Top. Med. Chem., 2016, 16(19), 2201-2222.
[http://dx.doi.org/10.2174/1568026616666160216154309] [PMID: 26881713]
[8]
Nalor, S.; Schonfeld, J.M. Therapeutic drug repurposing, repositioning and rescue - part I: overview. Drug Discov. World, 2014, 16, 49-62.
[9]
Anighoro, A.; Bajorath, J.; Rastelli, G. Polypharmacology: challenges and opportunities in drug discovery. J. Med. Chem., 2014, 57(19), 7874-7887.
[http://dx.doi.org/10.1021/jm5006463] [PMID: 24946140]
[10]
Aubé, J. Drug repurposing and the medicinal chemist. ACS Med. Chem. Lett., 2012, 3(6), 442-444.
[http://dx.doi.org/10.1021/ml300114c] [PMID: 24900492]
[11]
Jin, G.; Wong, S.T.C. Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug Discov. Today, 2014, 19(5), 637-644.
[http://dx.doi.org/10.1016/j.drudis.2013.11.005] [PMID: 24239728]
[12]
Bolgár, B.; Arany, Á.; Temesi, G.; Balogh, B.; Antal, P.; Mátyus, P. Drug repositioning for treatment of movement disorders: from serendipity to rational discovery strategies. Curr. Top. Med. Chem., 2013, 13(18), 2337-2363.
[http://dx.doi.org/10.2174/15680266113136660164] [PMID: 24059461]
[13]
Bellera, C.L.; Sbaraglini, M.L.; Balcazar, D.E.; Fraccaroli, L.; Vanrell, M.C.; Casassa, A.F.; Labriola, C.A.; Romano, P.S.; Carrillo, C.; Talevi, A. High-throughput drug repositioning for the discovery of new treatments for Chagas disease. Mini Rev. Med. Chem., 2015, 15(3), 182-193.
[http://dx.doi.org/10.2174/138955751503150312120208] [PMID: 25769967]
[14]
Allison, M. NCATS launches drug repurposing program. Nat. Biotechnol., 2012, 30(7), 571-572.
[http://dx.doi.org/10.1038/nbt0712-571a] [PMID: 22781662]
[15]
Dolgin, E. Nonprofit disease groups earmark grants for drug repositioning. Nat. Med., 2011, 17(9), 1027.
[http://dx.doi.org/10.1038/nm0911-1027] [PMID: 21900904]
[16]
Wishart, D.S.; Knox, C.; Guo, A.C.; Cheng, D.; Shrivastava, S.; Tzur, D.; Gautam, B.; Hassanali, M. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res., 2008, 36(Database issue), D901-D906.
[http://dx.doi.org/10.1093/nar/gkm958] [PMID: 18048412]
[17]
Novick, P.A.; Ortiz, O.F.; Poelman, J.; Abdulhay, A.Y.; Pande, V.S. SWEETLEAD: an in silico database of approved drugs, regulated chemicals, and herbal isolates for computer-aided drug discovery. PLoS One, 2013, 8(11) e79568
[http://dx.doi.org/10.1371/journal.pone.0079568] [PMID: 24223973]
[18]
Brown, A.S.; Patel, C.J. A standard database for drug repositioning. Sci. Data, 2017, 4 170029
[http://dx.doi.org/10.1038/sdata.2017.29] [PMID: 28291243]
[19]
Corsello, S.M.; Bittker, J.A.; Liu, Z.; Gould, J.; McCarren, P.; Hirschman, J.E.; Johnston, S.E.; Vrcic, A.; Wong, B.; Khan, M.; Aiedu, J.; Narayan, R.; Mader, C.C.; Subramanian, A.; Golub, T.R. The drug repurposing hub: a next generation drug library and information resource. Nat. Med., 2017, 23, 105-408.
[http://dx.doi.org/10.1038%2Fnm.4306] [PMID: 28388612]
[20]
Klug, D.M.; Gelb, M.H.; Pollastri, M.P. Repurposing strategies for tropical disease drug discovery. Bioorg. Med. Chem. Lett., 2016, 26(11), 2569-2576.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.103] [PMID: 27080183]
[21]
Ferreira, L.G.; Andricopulo, A.D. Drug repositioning approaches to parasitic diseases: a medicinal chemistry perspective. Drug Discov. Today, 2016, 21(10), 1699-1710.
[http://dx.doi.org/10.1016/j.drudis.2016.06.021] [PMID: 27365271]
[22]
Bellera, C.L.; Sbaraglini, M.L.; Talevi, A. Modern approaches for the discovery of anti-infectious drugs for the treatment of neglected diseases. Curr. Top. Med. Chem., 2018, 18(5), 369-381.
[http://dx.doi.org/10.2174/1568026618666180509151146] [PMID: 29741140]
[23]
Ekins, S.; Williams, A.J.; Krasowski, M.D.; Freundlich, J.S. In silico repositioning of approved drugs for rare and neglected diseases. Drug Discov. Today, 2011, 16(7-8), 298-310.
[http://dx.doi.org/10.1016/j.drudis.2011.02.016] [PMID: 21376136]
[24]
Sardana, D.; Zhu, C.; Zhang, M.; Gudivada, R.C.; Yang, L.; Jegga, A.G. Drug repositioning for orphan diseases. Brief. Bioinform., 2011, 12(4), 346-356.
[http://dx.doi.org/10.1093/bib/bbr021] [PMID: 21504985]
[25]
Delavan, B.; Roberts, R.; Huang, R.; Bao, W.; Tong, W.; Liu, Z. Computational drug repositioning for rare diseases in the era of precision medicine. Drug Discov. Today, 2018, 23(2), 382-394.
[http://dx.doi.org/10.1016/j.drudis.2017.10.009] [PMID: 29055182]
[26]
Li, Y.Y.; Jones, S.J.I. Drug repositioning for personalized medicine. Genome Med., 2012, 4(3), 27.
[http://dx.doi.org/10.1186/gm326] [PMID: 22494857]
[27]
Siles, S.A.; Srinivasan, A.; Pierce, C.G.; López-Ribot, J.L.; Ramasubramanian, A.K. High-throughput screening of a collection of known pharmacologically active small compounds for identification of Candida albicans biofilm inhibitors. Antimicrob. Agents Chemother., 2013, 57(8), 3681-3687.
[http://dx.doi.org/10.1128/AAC.00680-13] [PMID: 23689719]
[28]
Ciallella, J.R.; Reaume, A.G. In vivo phenotypic screening: clinical proof of concept for a drug repositioning approach. Drug Discov. Today. Technol., 2017, 23, 45-52.
[http://dx.doi.org/10.1016/j.ddtec.2017.04.001] [PMID: 28647085]
[29]
Kaiser, M.; Mäser, P.; Tadoori, L.P.; Ioset, J.R.; Brun, R. Antiprotozoal activity profiling of approved drugs: a starting point toward drug repositioning. PLoS One, 2015, 10(8) e0135556
[http://dx.doi.org/10.1371/journal.pone.0135556] [PMID: 26270335]
[30]
Dandapani, S.; Rosse, G.; Southall, N.; Salvino, J.M.; Thomas, C.J.; Salvino, J.M.; Thomas, C.J. Selecting, acquiring, and using small molecule libraries for high-throughput screening. Curr. Protoc. Chem. Biol., 2012, 4, 177-191.
[http://dx.doi.org/10.1002/9780470559277.ch110252] [PMID: 26705509]
[31]
Harris, C.J.; Hill, R.D.; Sheppard, D.W.; Slater, M.J.; Stouten, P.F.W. The design and application of target-focused compound libraries. Comb. Chem. High Throughput Screen., 2011, 14(6), 521-531.
[http://dx.doi.org/10.2174/138620711795767802] [PMID: 21521154]
[32]
Bellera, C.L.; Di Ianni, M.E.; Sbaraglini, M.L.; Castro, E.A.; Bruno-Blanch, L.E.; Talevi, A. Frontiers in computational chemistry, 1st ed; , 2014.
[33]
Wu, L.; Ai, N.; Liu, Y.; Wang, Y.; Fan, X. Relating anatomical therapeutic indications by the ensemble similarity of drug sets. J. Chem. Inf. Model., 2013, 53(8), 2154-2160.
[http://dx.doi.org/10.1021/ci400155x] [PMID: 23889502]
[34]
Keiser, M.J.; Roth, B.L.; Armbruster, B.N.; Ernsberger, P.; Irwin, J.J.; Shoichet, B.K. Relating protein pharmacology by ligand chemistry. Nat. Biotechnol., 2007, 25(2), 197-206.
[http://dx.doi.org/10.1038/nbt1284] [PMID: 17287757]
[35]
Keiser, M.J.; Setola, V.; Irwin, J.J.; Laggner, C.; Abbas, A.I.; Hufeisen, S.J.; Jensen, N.H.; Kuijer, M.B.; Matos, R.C.; Tran, T.B.; Whaley, R.; Glennon, R.A.; Hert, J.; Thomas, K.L.; Edwards, D.D.; Shoichet, B.K.; Roth, B.L. Predicting new molecular targets for known drugs. Nature, 2009, 462(7270), 175-181.
[http://dx.doi.org/10.1038/nature08506] [PMID: 19881490]
[36]
Haupt, V.J.; Daminelli, S.; Schroeder, M. Drug promiscuity in PDB: protein binding site similarity is key. PLoS One, 2016, 8(6) e65894
[http://dx.doi.org/10.1371/journal.pone.0065894] [PMID: 23805191]
[37]
Ehrt, C.; Brinkjost, T.; Koch, O. Impact of binding site comparisons on medicinal chemistry and rational molecular design. J. Med. Chem., 2016, 59(9), 4121-4151.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00078] [PMID: 27046190]
[38]
Haupt, V.J.; Schroeder, M. Old friends in new guise: repositioning of known drugs with structural bioinformatics. Brief. Bioinform., 2011, 12(4), 312-326.
[http://dx.doi.org/10.1093/bib/bbr011] [PMID: 21441562]
[39]
Salentin, S.; Haupt, V.J.; Daminelli, S.; Schroeder, M. Polypharmacology rescored: protein-ligand interaction profiles for remote binding site similarity assessment. Prog. Biophys. Mol. Biol., 2014, 116(2-3), 174-186.
[http://dx.doi.org/10.1016/j.pbiomolbio.2014.05.006] [PMID: 24923864]
[40]
Barelier, S.; Sterling, T.; O’Meara, M.J.; Shoichet, B.K. The recognition of identical ligands by unrelated proteins. ACS Chem. Biol., 2015, 10(12), 2772-2784.
[http://dx.doi.org/10.1021/acschembio.5b00683] [PMID: 26421501]
[41]
Cohen, T.; Widdows, D.; Schvaneveldt, R.W.; Davies, P.; Rindflesch, T.C. Discovering discovery patterns with predication-based semantic indexing. J. Biomed. Inform., 2012, 45(6), 1049-1065.
[http://dx.doi.org/10.1016/j.jbi.2012.07.003] [PMID: 22841748]
[42]
Jensen, L.J.; Saric, J.; Bork, P. Literature mining for the biologist: from information retrieval to biological discovery. Nat. Rev. Genet., 2006, 7(2), 119-129.
[http://dx.doi.org/10.1038/nrg1768] [PMID: 16418747]
[43]
Su, E.W.; Sanger, T.M. Systematic drug repositioning through mining adverse event data in ClinicalTrials.gov. PeerJ, 2017, 5 e3154
[http://dx.doi.org/10.7717/peerj.3154] [PMID: 28348935]
[44]
Vidal, M.; Cusick, M.E.; Barabási, A.L. Interactome networks and human disease. Cell, 2011, 144(6), 986-998.
[http://dx.doi.org/10.1016/j.cell.2011.02.016] [PMID: 21414488]
[45]
Chen, B.; Ding, Y.; Wild, D.J. Assessing drug target association using semantic linked data. PLOS Comput. Biol., 2012, 8(7) e1002574
[http://dx.doi.org/10.1371/journal.pcbi.1002574] [PMID: 22859915]
[46]
Chen, B.; Ding, Y.; Wild, D.J. Improving integrative searching of systems chemical biology data using semantic annotation. J. Cheminform., 2012, 4(1), 6.
[http://dx.doi.org/10.1186/1758-2946-4-6] [PMID: 22401035]
[47]
Talevi, A. Multi-target pharmacology: possibilities and limitations of the “skeleton key approach” from a medicinal chemist perspective. Front. Pharmacol., 2015, 6, 205.
[http://dx.doi.org/10.3389/fphar.2015.00205] [PMID: 26441661]
[48]
Piñero, J.; Bravo, À.; Queralt-Rosinach, N.; Gutiérrez-Sacristán, A.; Deu-Pons, J.; Centeno, E.; García-García, J.; Sanz, F.; Furlong, L.I. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res., 2017, 45(D1), D833-D839.
[http://dx.doi.org/10.1093/nar/gkw943] [PMID: 27924018]
[49]
Yang, H.; Qin, C.; Li, Y.H.; Tao, L.; Zhou, J.; Yu, C.Y.; Xu, F.; Chen, Z.; Zhu, F.; Chen, Y.Z. Therapeutic target database update 2016: enriched resource for bench to clinical drug target and targeted pathway information. Nucleic Acids Res., 2016, 44(D1), D1069-D1074.
[http://dx.doi.org/10.1093/nar/gkv1230] [PMID: 26578601]
[50]
Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; Kuhn, M.; Bork, P.; Jensen, L.J.; von Mering, C. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res., 2015, 43(Database issue), D447-D452.
[http://dx.doi.org/10.1093/nar/gku1003] [PMID: 25352553]
[51]
Gilson, M.K.; Liu, T.; Baitaluk, M.; Nicola, G.; Hwang, L.; Chong, J. BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res., 2016, 44(D1) D1045D1053
[52]
Iorio, F.; Rittman, T.; Ge, H.; Menden, M.; Saez-Rodríguez, J. Transcriptional data: a new gateway to drug repositioning? Drug Discov. Today, 2013, 18(7-8), 350-357.
[http://dx.doi.org/10.1016/j.drudis.2012.07.014] [PMID: 22897878]
[53]
Hu, G.; Agarwal, P. Human disease-drug network based on genomic expression profiles. PLoS One, 2009, 4(8) e6536
[http://dx.doi.org/10.1371/journal.pone.0006536] [PMID: 19657382]
[54]
Shigemizu, D.; Hu, Z.; Hung, J.H.; Huang, C.L.; Wang, Y.; DeLisi, C. Using functional signatures to identify repositioned drugs for breast, myelogenous leukemia and prostate cancer. PLOS Comput. Biol., 2012, 8(2) e1002347
[http://dx.doi.org/10.1371/journal.pcbi.1002347] [PMID: 22346740]
[55]
Wu, H.; Huang, J.; Zhong, Y.; Huang, Q. DrugSig: a resource for computational drug repositioning utilizing gene expression signatures. PLoS One, 2017, 12(5) e0177743
[http://dx.doi.org/10.1371/journal.pone.0177743] [PMID: 28562632]
[56]
Lamb, J.; Crawford, E.D.; Peck, D.; Modell, J.W.; Blat, I.C.; Wrobel, M.J.; Lerner, J.; Brunet, J.P.; Subramanian, A.; Ross, K.N.; Reich, M.; Hieronymus, H.; Wei, G.; Armstrong, S.A.; Haggarty, S.J.; Clemons, P.A.; Wei, R.; Carr, S.A.; Lander, E.S.; Golub, T.R. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science, 2006, 313(5795), 1929-1935.
[http://dx.doi.org/10.1126/science.1132939] [PMID: 17008526]
[57]
Sbaraglini, M.L.; Talevi, A. Hybrid compounds as antiinfective agents. Curr. Top. Med. Chem., 2017, 17(9), 1080-1095.
[http://dx.doi.org/10.2174/1568026616666160927160912] [PMID: 27697047]
[58]
García-Huertas, P.; Mejía-Jaramillo, A.M.; González, L.; Triana-Chávez, O. Transcriptome and functional genomics reveal the participation of adenine phosphoribosyltransferase in Trypanosoma cruzi resistance to benznidazole. J. Cell. Biochem., 2017, 118(7), 1936-1945.
[http://dx.doi.org/10.1002/jcb.25978] [PMID: 28276600]
[59]
Soares, M.B.P.; Silva, C.V.; Bastos, T.M.; Guimarães, E.T.; Figueira, C.P.; Smirlis, D.; Azevedo, W.F., Jr Anti-Trypanosoma cruzi activity of nicotinamide. Acta Trop., 2012, 122(2), 224-229.
[http://dx.doi.org/10.1016/j.actatropica.2012.01.001] [PMID: 22281243]
[60]
Bellera, C.L.; Balcazar, D.E.; Alberca, L.; Labriola, C.A.; Talevi, A.; Carrillo, C. Application of computer-aided drug repurposing in the search of new cruzipain inhibitors: discovery of amiodarone and bromocriptine inhibitory effects. J. Chem. Inf. Model., 2013, 53(9), 2402-2408.
[http://dx.doi.org/10.1021/ci400284v] [PMID: 23906322]
[61]
Bellera, C.L.; Balcazar, D.E.; Alberca, L.; Labriola, C.A.; Talevi, A.; Carrillo, C. Identification of levothyroxine antichagasic activity through computer-aided drug repurposing. ScientificWorldJournal, 2014, 2014 279618
[http://dx.doi.org/10.1155/2014/279618] [PMID: 24592161]
[62]
Bellera, C.L.; Balcazar, D.E.; Vanrell, M.C.; Casassa, A.F.; Palestro, P.H.; Gavernet, L.; Labriola, C.A.; Gálvez, J.; Bruno-Blanch, L.E.; Romano, P.S.; Carrillo, C.; Talevi, A. Computer-guided drug repurposing: identification of trypanocidal activity of clofazimine, benidipine and saquinavir. Eur. J. Med. Chem., 2015, 93, 338-348.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.065] [PMID: 25707014]
[63]
Friis, M.L.; Grøn, U.; Larsen, N.E.; Pakkenberg, H.; Hvidberg, E.F. Pharmacokinetics of bromocriptine during continuous oral treatment of Parkinson’s disease. Eur. J. Clin. Pharmacol., 1979, 15(4), 275-280.
[http://dx.doi.org/10.1007/BF00618517] [PMID: 477712]
[64]
del Pozo, E.; Schlüter, K.; Nüesch, E.; Rosenthaler, J.; Kerp, L. Pharmacokinetics of a long-acting bromocriptine preparation (Parlodel LA) and its effect on release of prolactin and growth hormone. Eur. J. Clin. Pharmacol., 1986, 29(5), 615-618.
[http://dx.doi.org/10.1007/BF00635902] [PMID: 3956565]
[65]
Oprea, T.I.; Overington, J.P. Computational and practical aspects of drug repositioning. Assay Drug Dev. Technol., 2015, 13(6), 299-306.
[http://dx.doi.org/10.1089/adt.2015.29011.tiodrrr] [PMID: 26241209]
[66]
Field, M.C.; Horn, D.; Fairlamb, A.H.; Ferguson, M.A.J.; Gray, D.W.; Read, K.D.; De Rycker, M.; Torrie, L.S.; Wyatt, P.G.; Wyllie, S.; Gilbert, I.H. Anti-trypanosomatid drug discovery: an ongoing challenge and a continuing need. Nat. Rev. Microbiol., 2017, 15(4), 217-231.
[http://dx.doi.org/10.1038/nrmicro.2016.193] [PMID: 28239154]
[67]
Sbaraglini, M.L.; Bellera, C.L.; Fraccaroli, L.; Larocca, L.; Carrillo, C.; Talevi, A.; Alba Soto, C.D. Novel cruzipain inhibitors for the chemotherapy of chronic Chagas disease. Int. J. Antimicrob. Agents, 2016, 48(1), 91-95.
[http://dx.doi.org/10.1016/j.ijantimicag.2016.02.018] [PMID: 27216381]
[68]
Palos, I.; Lara-Ramirez, E.E.; Lopez-Cedillo, J.C.; Garcia-Perez, C.; Kashif, M.; Bocanegra-Garcia, V.; Nogueda-Torres, B.; Rivera, G. GarciaPerez, C.; Kashif, M.; Bocanegra-Garcia, V.; NoguedaTorres, B.; Rivera, G. Repositioning FDA drugs as potential cruzain inhibitors from Trypanosoma cruzi: virtual screening, in vitro and in vivo studies. Molecules, 2017, 22(6), 1015.
[http://dx.doi.org/10.3390/molecules22061015] [PMID: 28629155]
[69]
Alberca, L.N.; Sbaraglini, M.L.; Balcazar, D.; Fraccaroli, L.; Carrillo, C.; Medeiros, A.; Benítez, D.; Comini, M.; Talevi, A. Discovery of novel polyamine analogs with anti-protozoal activity by computer guided drug repositioning. J. Comput. Aided Mol. Des., 2016, 30(4), 305-321.
[http://dx.doi.org/10.1007/s10822-016-9903-6] [PMID: 26891837]
[70]
van Harten, J. Clinical pharmacokinetics of selective serotonin reuptake inhibitors. Clin. Pharmacokinet., 1993, 24(3), 203-220.
[http://dx.doi.org/10.2165/00003088-199324030-00003] [PMID: 8384945]
[71]
Kaiser, M.; Maes, L.; Tadoori, L.P.; Spangenberg, T.; Ioset, J.R.P.; Spangenber, T.; Joset, J.R. Repurposing of the open access malaria box for kinetoplastid diseases identifies novel active scaffolds against trypanosomatids. J. Biomol. Screen., 2015, 20(5), 634-645.
[http://dx.doi.org/10.1177/1087057115569155] [PMID: 25690568]
[72]
Reigada, C.; Valera-Vera, E.A.; Sayé, M.; Errasti, A.E.; Avila, C.C.; Miranda, M.R.; Pereira, C.A. Trypanocidal effect of isotretinoin through the inhibition of polyamine and amino acid transporters in Trypanosoma cruzi. PLoS Negl. Trop. Dis., 2017, 11(3) e0005472
[http://dx.doi.org/10.1371/journal.pntd.0005472] [PMID: 28306713]
[73]
Colburn, W.A.; Vane, F.M.; Shorter, H.J. Pharmacokinetics of isotretinoin and its major blood metabolite following a single oral dose to man. Eur. J. Clin. Pharmacol., 1983, 24(5), 689-694.
[http://dx.doi.org/10.1007/BF00542224] [PMID: 6575916]
[74]
Lara-Ramirez, E.E.; López-Cedillo, J.C.; Nogueda-Torres, B.; Kashif, M.; Garcia-Perez, C.; Bocanegra-Garcia, V.; Agusti, R.; Uhrig, M.L.; Rivera, G. An in vitro and in vivo evaluation of new potential trans-sialidase inhibitors of Trypanosoma cruzi predicted by a computational drug repositioning method. Eur. J. Med. Chem., 2017, 132, 249-261.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.063] [PMID: 28364659]
[75]
Rodrigues, J.; Alves, N.R.; Da Silva, F.G.; Cravo, P.V.L. Identification of new drugs against chagas disease through genomics and bioinformatics strategies. Fronteiras, 2015, 4, 77-84.
[76]
Fløgstad, A.K.; Halse, J.; Grass, P.; Abisch, E.; Djøseland, O.; Kutz, K.; Bodd, E.; Jervell, J. A comparison of octreotide, bromocriptine, or a combination of both drugs in acromegaly. J. Clin. Endocrinol. Metab., 1994, 79(2), 461-465.
[http://dx.doi.org/10.1210/jcem.79.2.8045964] [PMID: 8045964]
[77]
Noble, S.; Faulds, D. Saquinavir. A review of its pharmacology and clinical potential in the management of HIV infection. Drugs, 1996, 52(1), 93-112.
[http://dx.doi.org/10.2165/00003495-199652010-00007] [PMID: 8799687]
[78]
Cholo, M.C.; Steel, H.C.; Fourie, P.B.; Germishuizen, W.A.; Anderson, R. Clofazimine: current status and future prospects. J. Antimicrob. Chemother., 2012, 67(2), 290-298.
[http://dx.doi.org/10.1093/jac/dkr444] [PMID: 22020137]
[79]
Kaye, C.M.; Haddock, R.E.; Langley, P.F.; Mellows, G.; Tasker, T.C.G.; Zussman, B.D.; Greb, W.H. A review of the metabolism and pharmacokinetics of paroxetine in man. Acta Psychiatr. Scand. Suppl., 1989, 350, 60-75.
[http://dx.doi.org/10.1111/j.1600-0447.1989.tb07176.x] [PMID: 2530793]
[80]
Nulman, I.; Berkovitch, M.; Klein, J.; Pastuszak, A.; Lester, R.S.; Shear, N.; Koren, G. Steady-state pharmacokinetics of isotretinoin and its 4-oxo metabolite: implications for fetal safety. J. Clin. Pharmacol., 1998, 38(10), 926-930.
[http://dx.doi.org/10.1002/j.1552-4604.1998.tb04388.x] [PMID: 9807973]
[81]
Klotz, U. Clinical pharmacokinetics of sulphasalazine, its metabolites and other prodrugs of 5-aminosalicylic acid. Clin. Pharmacokinet., 1985, 10(4), 285-302.
[http://dx.doi.org/10.2165/00003088-198510040-00001] [PMID: 2864155]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy