Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Pyroglutamic Acid and its Derivatives: The Privileged Precursors for the Asymmetric Synthesis of Bioactive Natural Products

Author(s): Sharad Kumar Panday*

Volume 17, Issue 6, 2020

Page: [626 - 646] Pages: 21

DOI: 10.2174/1570193X16666190917142814

Price: $65

Abstract

Pyroglutamic acid is one of the privileged asymmetric precursors for the synthesis of a variety of molecules such as Angiotensin-Converting Enzyme (ACE) inhibitors, angiotensin II receptor subtypes (AT-1 receptor antagonists), as well as bioactive natural products. Starting with primary reports in 1980’s, last almost four decades has witnessed a rapid overgrowth of publications using pyroglutamic acid as a preferred asymmetric precursor and these have been well documented. Pyroglutamic acid has two differential carbonyl groups a lactam carbonyl and a carboxylic functionality along with an NH group, and all of these functionalities can be further derivatized/ transformed and in turn opened avenues for the synthesis of variety of molecules. Derived easily from glutamic acid by internal cyclization, pyroglutamic acid offers a cheap and very good source of chirality and has provided an important tool for the synthesis of natural products/intermediates to natural products. Herein, we wish to describe the exploitation of the chemistry of pyroglutamic acid and its derivatives in the asymmetric synthesis of natural products establishing its versatility as a privileged asymmetric precursor.

Keywords: Asymmetric synthesis, bioactive molecules, natural products, privileged asymmetric precursor, pyroglutamic acid derivatives, pyroglutamic acid.

Graphical Abstract

[1]
Song, Y.; Chen, W.; Kang, D.; Zhang, Q.; Zhan, P.; Liu, X. Old friends in new guise: Exploiting privileged structures for scaffold re-evolution/refining. Comb. Chem. High Throughput Screen., 2014, 17(6), 536-553.
[http://dx.doi.org/10.2174/1386207317666140122101631] [PMID: 24446784]
[2]
Song, Y.; Zhan, P.; Liu, X. Heterocycle-thioacetic acid motif: A privileged molecular scaffold with potent, broad-ranging pharmacological activities. Curr. Pharm. Des., 2013, 19(40), 7141-7154.
[http://dx.doi.org/10.2174/13816128113199990505] [PMID: 23859548]
[3]
Song, Y.; Zhan, P.; Zhang, Q.; Liu, X. Privileged scaffolds or promiscuous binders: A glance of pyrrolo[2,1-f][1,2,4]triazines and related bridgehead nitrogen heterocycles in medicinal chemistry. Curr. Pharm. Des., 2013, 19(8), 1528-1548.
[PMID: 23131184]
[4]
Ohfune, Y.; Tomita, M. Total synthesis of (-)-domoic acid. A revision of the original structure. J. Am. Chem. Soc., 1982, 104, 3511-3513.
[http://dx.doi.org/10.1021/ja00376a048]
[5]
Thottahil, J.K.; Moniot, J.L.; Mueller, R.H.; Wong, M.K.Y.; Kissick, T.P. Conversion of L-pyroglutamic acid to 4-alkylsubstituted L-prolines, The synthesis of trans-4-cyclohexyl-Lproline. J. Org. Chem., 1986, 51, 3140-3143.
[http://dx.doi.org/10.1021/jo00366a011]
[6]
Thottahil, J.K.; Moniot, J.L. Lithium diphenylcuprate reac-tions with 4-tosyloxy-L-prolines; an interesting stereochemical outcome: A synthesis of Trans-4-phenyl-L-proline. Tetrahedron Lett., 1986, 27, 151-154.
[http://dx.doi.org/10.1016/S0040-4039(00)83964-7]
[7]
Imaki, K.; Sakuyama, S.; Okada, T.; Toda, M.; Hayashi, M.; Miyamoto, T.; Kawasaki, A.; Okegawa, T. Potent orally active inhibitors of Angiotensin-Converting Enzyme (ACE). Chem. Pharm. Bull. (Tokyo), 1981, 29(8), 2210-2214.
[http://dx.doi.org/10.1248/cpb.29.2210] [PMID: 6274523]
[8]
Panday, S.K.; Dikshit, D.K.; Dikshit, M. Synthesis of N-[3′-(acetylthio)alkanoyl] and N-[3′-mercaptoalkanoyl]-4-a(s)-(phenylmethyl) pyroglutamic acids and prolines as potent ACE inhibitors. Med. Chem. Res., 2009, 18, 566-578.
[http://dx.doi.org/10.1007/s00044-008-9150-z]
[9]
Mavromoustakos, T.; Moutevelis-Minakakis, P.; Kokotos, C.G.; Kontogianni, P.; Politi, A.; Zoumpoulakis, P.; Findlay, J.; Cox, A.; Balmforth, A.; Zoga, A.; Iliodromitis, E. Synthesis, binding studies and in vivo biological evaluation of novel non-peptide antihypertensive analogues. Bioorg. Med. Chem., 2006, 14(13), 4353-4360.
[http://dx.doi.org/10.1016/j.bmc.2006.02.044] [PMID: 16546395]
[10]
Prasad, J.; Pathak, M.B.; Panday, S.K. An efficient and straight forward synthesis of (5S)-1-benzyl-5-(1H-imidazol-1-ylmethyl)-2-pyrrolidinone (MM1): A novel antihypertensive agent. Med. Chem. Res., 2012, 21, 321-324.
[http://dx.doi.org/10.1007/s00044-010-9536-6]
[11]
Najera, C.; Yus, M. Pyroglutamic acid: A versatile building block in asymmetric synthesis. Tetrahedron Asymmetry, 1999, 10, 2245-2303.
[http://dx.doi.org/10.1016/S0957-4166(99)00213-X]
[12]
Panday, S.K.; Prasad, J.; Dikshit, D.K. Pyroglutamic acid: A unique chiral synthon. Tetrahedron Asymmetry, 2009, 20, 1581-1632.
[http://dx.doi.org/10.1016/j.tetasy.2009.06.011]
[13]
Stefanucci, A.; Novellino, E.; Costante, R.; Mollica, A. Pyroglutamic acid derivatives: Building blocks for drug discovery. Heterocycles, 2014, 89, 1801-1825.
[http://dx.doi.org/10.3987/REV-14-800]
[14]
Carlson, N.R. Psychology: The Science of Behavior; Allyn and Bacon: Boston, 1984.
[15]
Carlson, N.R. Behavioral Physiology; Continental: New York, 1982.
[16]
Moloney, M.G. Excitatory amino acids. Nat. Prod. Rep., 1998, 15(2), 205-219.
[http://dx.doi.org/10.1039/a815205y] [PMID: 9586226]
[17]
Fritsch, B.; Reis, J.; Gasior, M.; Kaminski, R.M.; Rogawski, M.A. Role of GluK1 kainate receptors in seizures, epileptic discharges, and epileptogenesis. J. Neurosci., 2014, 34(17), 5765-5775.
[http://dx.doi.org/10.1523/JNEUROSCI.5307-13.2014] [PMID: 24760837]
[18]
(a) Cossy, J.; Cases, M.; Pardo, D. G. Approaches to a synthesis of α-kainic acid. Tetrahedron, 1999, 55, 6153-6166.
(b) Hanessian, S.; Ninkovic, S. Stereoselective synthesis of (−)-α-Kainic acid and (+)-α-allokainic acid via trimethylstannyl-mediated radical carbocyclization and oxidative destannylation. J. Org. Chem., 1996, 61, 5418-5424.
(c) Baldwin, J.E.; Moloney, M. G.; Parsous, A. F. Enantioselective kainoid synthesis by cobalt-mediated cyclisation of an amino acid derivative. Tetrahedron, 1990, 46, 7263-7282.
[19]
Aráoz, R.; Molgó, J.; Tandeau de Marsac, N. Neurotoxic cyanobacterial toxins. Toxicon, 2010, 56(5), 813-828.
[http://dx.doi.org/10.1016/j.toxicon.2009.07.036] [PMID: 19660486]
[20]
Botana, L.M.; James, K.; Crowley, J.; Duphard, J.; Lehane, M.; Furey, A. Phycotoxins. ChemBioChem, 2007, 12, 858-862.
[21]
Peterson, J.S.; Fels, G.; Rapoport, H. Chirospecific synthesis of (+) and (−)-anatoxin a. J. Am. Chem. Soc., 1984, 106, 4539-4547.
[http://dx.doi.org/10.1021/ja00328a040]
[22]
Gray, D.O.; Fowden, L. 4-Methyleneproline: A new naturally occurring proline derivative. Nature, 1962, 193, 1285-1286.
[http://dx.doi.org/10.1038/1931285a0] [PMID: 13901295]
[23]
Gray, D.O.; Fowden, L. Isolation of 4-methylene-DL-proline from Eriobotrya japonica. Phytochemistry, 1972, 11, 745-750.
[http://dx.doi.org/10.1016/0031-9422(72)80042-6]
[24]
Tristram, H.; Neale, S. The activity and specificity of the proline permease in wild-type and analogue-resistant strains of Escherichia coli. J. Gen. Microbiol., 1968, 50(1), 121-137.
[http://dx.doi.org/10.1099/00221287-50-1-121] [PMID: 4865475]
[25]
Manfre, F.; Kern, J.M.; Beillmann, J.F. Syntheses of proline analogs as potential mechanism-based inhibitors of proline dehydrogenase: 4-Methylene-L-, (E)- and (Z)-4-(fluoromethylene)-L-, cis and trans-5-ethynyl-(+)-, and cis- and trans- 5-vinyl-L-proline. J. Org. Chem., 1992, 57, 2060-2065.
[http://dx.doi.org/10.1021/jo00033a029]
[26]
Tritsch, D.; Mawlawi, H.; Biellmann, J.F. Mechanism-based inhibition of proline dehydrogenase by proline analogues. Biochim. Biophys. Acta, 1993, 1202(1), 77-81.
[http://dx.doi.org/10.1016/0167-4838(93)90065-Y] [PMID: 8373828]
[27]
Tozuka, Z.; Takaya, T. Tennen Yuki Kagobutsu Toronkai koen Yoshishu. Chem. Abstr, 1981, 24, 552-559.
[28]
Natarajan, S.I.; Ondetti, M.A. US 304148. Chem. Abstr, 1983, 3, 233-339.
[29]
Panday, S.K.; Griffart-Brunet, D.; Langlois, N. A short and efficient synthesis of (S)-4-methylene proline benzyl ester from (S)-pyroglutamic acid. Tetrahedron Lett., 1994, 35, 6673-6676.
[http://dx.doi.org/10.1016/S0040-4039(00)73465-4]
[30]
Shinagawa, S.; Kasahara, F.; Wada, Y.; Harada, S.; Asai, M. Structures of bulgecins, bacterial metabolites with bulge-inducing activity. Tetrahedron, 1984, 40, 3465-3470.
[http://dx.doi.org/10.1016/S0040-4020(01)91497-8]
[31]
Shinagawa, S.; Maki, M.; Kintaka, K.; Imada, A.; Asai, M. Isolation and characterization of bulgecins, new bacterial metabolites with bulge-inducing activity. J. Antibiot. (Tokyo), 1985, 38(1), 17-23.
[http://dx.doi.org/10.7164/antibiotics.38.17] [PMID: 3918981]
[32]
Cooper, R.; Unger, S. Novel potentiators of beta-lactam antibiotics. Structures of SQ 28504 and SQ 28546. J. Org. Chem., 1986, 51, 3942-3946.
[http://dx.doi.org/10.1021/jo00371a005]
[33]
Wakamiya, T.; Yamanoi, K.; Nishikawa, L.; Shiba, T. Synthe-sis of bulgecinine: a new amino acid in bulgecins. Tetrahedron Lett., 1985, 26, 4759-4760.
[http://dx.doi.org/10.1016/S0040-4039(00)94943-8]
[34]
Bashyal, B.; Chow, H-F.; Fleet, G.W.J. Enantiospecific syn-theses of 2S, 3R, 4R, 5S- trihydroxypipecolic acid, 2R,3R,4R,5Strihydroxypipecolic acid, 2S,4S,5S-dihydroxypipecolic acid, and bulgecinine from D-glucuronolactone. Tetrahedron Lett., 1986, 27, 3205-3208.
[http://dx.doi.org/10.1016/s0040-4039(00)84755-3]
[35]
Bashyal, B.; Chow, H-F.; Fleet, G.W.J. Synthesis of 2s, 4s, 5s - dihydroxypipecolic acid and bulgecinine [2s,4s,5r-4-hydroxy-5- (hydroxymethyl)proline] from d-glucuronolactone, a strategy for the synthesis of 2s,4s-4-hydroxy-α-amino acids. Tetrahedron, 1987, 43, 423-430.
[http://dx.doi.org/10.1016/S0040-4020(01)89973-7]
[36]
Ohta, T.; Hosoi, A.; Nozoe, S. Stereoselective hydroxylation of Ncarbamoyl-L-pyroglutamate. Synthesis of (−)- bulgecinine. Tetrahedron Lett., 1988, 29, 329-332.
[http://dx.doi.org/10.1016/S0040-4039(00)80087-8]
[37]
Barett, A.G.M.; Pilipauskas, D. Electrochemical oxidation of proline derivatives: Total syntheses of bulgecinine and bulgecin C. J. Org. Chem., 1991, 56, 2787-2800.
[http://dx.doi.org/10.1021/jo00008a040]
[38]
Hirai, Y.; Terada, T.; Amemiya, Y.; Mamose, T. An efficient synthesis of (-)-bulgecinine. Tetrahedron Lett., 1992, 33, 7893-7894.
[http://dx.doi.org/10.1016/S0040-4039(00)74771-X]
[39]
Madau, A.; Porzi, G.; Sandri, S. Stereoselective synthesis of unnatural aminoacids cis-4-hydroxyproline and bulgecinine. Tetrahedron Asymmetry, 1996, 7, 825-830.
[http://dx.doi.org/10.1016/0957-4166(96)00079-1]
[40]
Yuasa, Y.; Ando, J.; Shibuya, S. Diastereoselective synthesis of 2,5-disubstituted 3-hydroxypyrrolidine and 2,6-disubstituted 3-hydroxypiperidine derivatives by radical cy-clisation; synthesis of (+)-bulgecinine and (–)-desoxoprosopinine. J. Chem. Soc., Perkin Trans. 1, 1996, 793-802.
[http://dx.doi.org/10.1039/P19960000793]
[41]
Panday, S.K.; Langlois, N. An efficient straightforward synthesis of (-)-bulgecinine. Synth. Commun., 1997, 27, 1373-1384.
[http://dx.doi.org/10.1080/00397919708006067]
[42]
Banga, N.R.; Welter, A.; Jadot, J.; Casimir, J. Un nouvel acide amine isole de Lycoperdon perlatum. Phytochemistry, 1979, 18, 482-484.
[http://dx.doi.org/10.1016/S0031-9422(00)81892-0]
[43]
Lamotte, J.; Oleksyn, B.; Dupont, L.; Didberg, O.; Campsteyn, H.; Vermeire, M. The crystal and molecular structure of 3-[(5 S)-5-carboxy-2-oxotetrahydrofur-5-yl]- (2 S)-alanine (lycoperdic acid). Acta Crystallogr., 1978, B34, 3635-3638.
[http://dx.doi.org/10.1107/S0567740878011772]
[44]
Ohfune, Y.; Shinada, T. Enantio‐ and diastereoselective construction of α,α‐disubstituted α‐amino acids for the synthesis of biologically active compounds. Eur. J. Org. Chem., 2005, 24, 5127-5143.
[http://dx.doi.org/10.1002/ejoc.200500434]
[45]
Tamura, O.; Shiro, T.; Ogasawara, M.; Toyao, A.; Ishibashi, H. Stereoselective syntheses of 4-hydroxy 4-substituted glutamic acids. J. Org. Chem., 2005, 70(12), 4569-4577.
[http://dx.doi.org/10.1021/jo040296h] [PMID: 15932291]
[46]
Sakai, R.; Kamiyla, H.; Murata, M.; Shimamoto, K. Dysiherbaine: A new neurotoxic amino acid from the Micronesian marine sponge Dysidea herbacea. J. Am. Chem. Soc., 1997, 119, 4112-4116.
[http://dx.doi.org/10.1021/ja963953z]
[47]
Sakai, R.; Koike, T.; Sasaki, M.; Shimamoto, K.; Oiwa, C.; Yano, A.; Suzuki, K.; Tachibana, K.; Kamiya, H. Isolation, structure determination, and synthesis of neodysiherbaine A, a new excitatory amino acid from a marine sponge. Org. Lett., 2001, 3(10), 1479-1482.
[http://dx.doi.org/10.1021/ol015798l] [PMID: 11388846]
[48]
Sanders, J.M.; Ito, K.; Settimo, L.; Pentikäinen, O.T.; Shoji, M.; Sasaki, M.; Johnson, M.S.; Sakai, R.; Swanson, G.T. Divergent pharmacological activity of novel marine-derived excitatory amino acids on glutamate receptors. J. Pharmacol. Exp. Ther., 2005, 314(3), 1068-1078.
[http://dx.doi.org/10.1124/jpet.105.086389] [PMID: 15914675]
[49]
Sakai, R.; Swanson, G.T.; Shimamoto, K.; Green, T.; Contractor, A.; Ghetti, A.; Tamura-Horikawa, Y.; Oiwa, C.; Kamiya, H. Pharmacological properties of the potent epileptogenic amino acid dysiherbaine, a novel glutamate receptor agonist isolated from the marine sponge Dysidea herbacea. J. Pharmacol. Exp. Ther., 2001, 296(2), 650-658.
[PMID: 11160654]
[50]
Swanson, G.T.; Green, T.; Sakai, R.; Contractor, A.; Che, W.; Kamiya, H.; Heinemann, S.F. Differential activation of individual subunits in heteromeric kainate receptors. Neuron, 2002, 34(4), 589-598.
[http://dx.doi.org/10.1016/S0896-6273(02)00676-1] [PMID: 12062042]
[51]
Cohen, J.L.; Chamberlin, A.R. Diastereoselective synthesis of glutamate-appended oxolane rings: Synthesis of (s)-(+)-lycoperdic acid. J. Org. Chem., 2007, 72(24), 9240-9247.
[http://dx.doi.org/10.1021/jo7017137] [PMID: 17975930]
[52]
Feling, R.H.; Buchanan, G.O.; Mincer, T.J.; Kauffman, C.A.; Jensen, P.R.; Fenical, W.; Salinosporamide, A. Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus salinospora. Angew. Chem. Int. Ed. Engl., 2003, 42(3), 355-357.
[http://dx.doi.org/10.1002/anie.200390115] [PMID: 12548698]
[53]
Chauhan, D.; Catley, L.; Li, G.; Podar, K.; Hideshima, T.; Velankar, M.; Mitsiades, C.; Mitsiades, N.; Yasui, H.; Letai, A.; Ovaa, H.; Berkers, C.; Nicholson, B.; Chao, T.H.; Neuteboom, S.T.; Richardson, P.; Palladino, M.A.; Anderson, K.C. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell, 2005, 8(5), 407-419.
[http://dx.doi.org/10.1016/j.ccr.2005.10.013] [PMID: 16286248]
[54]
Caubert, V.; Masse, J.; Retailleau, P.; Langlois, N. Stereoselec-tive formal synthesis of the potent proteasome inhibitor. Salinosporamide A. Tetrahedron Lett., 2007, 48, 381-384.
[http://dx.doi.org/10.1016/j.tetlet.2006.11.087]
[55]
Reddy, L.R.; Saravanan, P.; Corey, E.J. A simple stereocontrolled synthesis of salinosporamide A. J. Am. Chem. Soc., 2004, 126(20), 6230-6231.
[http://dx.doi.org/10.1021/ja048613p] [PMID: 15149210]
[56]
Reddy, L.R.; Fournier, J-F.; Reddy, B.V.S.; Corey, E.J. New synthetic route for the enantioselective total synthesis of salinosporamide A and biologically active analogues. Org. Lett., 2005, 7(13), 2699-2701.
[http://dx.doi.org/10.1021/ol0508734] [PMID: 15957925]
[57]
Endo, A.; Danishefsky, S.J. Total synthesis of salinosporamide A. J. Am. Chem. Soc., 2005, 127(23), 8298-8299.
[http://dx.doi.org/10.1021/ja0522783] [PMID: 15941259]
[58]
Mulholland, N.P.; Pattenden, G.; Walters, I.A.S. A concise total synthesis of salinosporamide A. Org. Biomol. Chem., 2006, 4(15), 2845-2846.
[http://dx.doi.org/10.1039/b607109k] [PMID: 16855730]
[59]
Ling, T.; Macherla, V.R.; Manam, R.R.; McArthur, K.A.; Potts, B.C. Enantioselective total synthesis of (−)-salinosporamide A. Org. Lett., 2007, 9(12), 2289-2292.
[http://dx.doi.org/10.1021/ol0706051] [PMID: 17497868]
[60]
Langlois, N.; Le Nguyen, B.K. Diastereoselective syntheses of deoxydysibetaine, dysibetaine, and its 4-epimer. J. Org. Chem., 2004, 69(22), 7558-7564.
[http://dx.doi.org/10.1021/jo040216+] [PMID: 15497982]
[61]
Cubert, V.; Langlois, N. Studies toward the synthesis of salinosporamide A, a potent proteasome inhibitor. Tetrahedron Lett., 2006, 47, 4473-4475.
[http://dx.doi.org/10.1016/j.tetlet.2006.04.070]
[62]
Lin, G-J.; Huang, P-Q. A concise and fully selective synthesis of the ant venom alkaloid (3S,5R,8S,9S)-3-butyl-5-propyl-8-hydroxyindolizidine. Org. Biomol. Chem., 2009, 7(21), 4491-4495.
[http://dx.doi.org/10.1039/b912190k] [PMID: 19830300]
[63]
Jin, Z.; Li, S.P.; Wang, Q.M.; Huang, R.Q. A concise total synthesis of S-(+)-tylophorine. Chin. Chem. Lett., 2004, 15, 1164.
[64]
Hanessian, S.; Margarita, R.; Hall, A.; Johnstone, S.; Tremblay, M.; Parlanti, L. Total synthesis and structural confirmation of the marine natural product Dysinosin A: a novel inhibitor of thrombin and Factor VIIa. J. Am. Chem. Soc., 2002, 124(45), 13342-13343.
[http://dx.doi.org/10.1021/ja0208153] [PMID: 12418860]
[65]
Ishibashi, M. Ohizumi,Y.; Sasaki, T.; Nakamura, H.; Hirata, Y.; Kobayashi, J. Pseudodistomins A and B, novel antineo-plastic piperdine alkaloids with calmodulin antagonistic activity from the Okinawan tunicate Pseudodistoma kanoko. J. Org. Chem., 1987, 52, 450-453.
[http://dx.doi.org/10.1021/jo00379a028]
[66]
Ishibashi, M.; Deki, K.; Kobayashi, J. Revised structure of Pseudodistomin A, a piperidine alkaloid isolated from the Okinawan tunicate Pseudodistoma kanoko. J. Nat. Prod., 1995, 58, 804-806.
[http://dx.doi.org/10.1021/np50119a028]
[67]
Kobayashi, J. Naitoh, K.; Doi, Y.; Deki, K.; Ishibashi, M.; Pseudodistomin C, a new piperidine alkaloid with unusual absolute configuration from the Okinawan tunicate Pseudodistoma kanoko. J. Org. Chem., 1995, 60, 6941-6945.
[http://dx.doi.org/10.1021/jo00126a053]
[68]
Freyer, A.J.; Patil, A.D.; Killmer, L.; Troupe, N.; Mentzer, M.; Carte, B.; Faucette, L.; Johnson, R.K. Three new pseudodistomins, piperidine alkaloids from the ascidian Pseudodistoma megalarva. J. Nat. Prod., 1997, 60(10), 986-990.
[http://dx.doi.org/10.1021/np9701438] [PMID: 9358640]
[69]
Kobayashi, J. Ishibashi, M.; Sphingosine-related marine alkaloids: Cyclic amino alcohols. Heterocycles, 1996, 42, 943-970.
[http://dx.doi.org/10.3987/REV-95-SR6]
[70]
Ninomiya, I.; Kiguchi, T.; Naito, T. Chapter 8 Pseudodistomins: Structure, synthesis, and pharmacology. Alkaloids Chem. Biol., 1998, 50, 317-342.
[71]
Langlois, N. Stereoselective formal synthesis of pseudodistomin C. Org. Lett., 2002, 4(2), 185-187.
[http://dx.doi.org/10.1021/ol010221p] [PMID: 11796046]
[72]
Doi, Y.; Ishbashi, M.; Kobayashi, J. Total synthesis of Pseudodistomin C, a sphingosine-related piperidine alkaloid from tunicate Pseudodistoma kanoko. Tetrahedron, 1996, 52, 4573-4580.
[http://dx.doi.org/10.1016/0040-4020(96)00137-8]
[73]
Schwartz, R.E.; Helms, G.L.; Bolessa, E.A.; Wilson, K.E.; Giacobbe, R.A.; Tkacz, J.S.; Bills, G.F.; Liesch, J.M.; Zink, D.L.; Curotto, J.E.; Pramanik, B.; Onishi, J.C. Pramanicin, a novel antimicrobial agent from a fungal fermentation. Tetrahedron, 1994, 50, 1675-1686.
[http://dx.doi.org/10.1016/S0040-4020(01)80843-7]
[74]
Barett, A. G. M.; Smith, M. L. Total synthesis of (+)-pramanicin and stereochemical elucidation of the natural product; Chem. Comm, 1999, 133-134.
[75]
Barett, A.G.M.; Head, J.; Smith, M.L.; Stock, N.S.; White, A.J.P.; Williams, D.J. Fleming-Tamao oxidation and masked hydroxyl functionality: Total synthesis of (+)-pramanicin and structural elucidation of the antifungal natural product (−)-pramanicin. J. Org. Chem., 1999, 64, 6005-6018.
[http://dx.doi.org/10.1021/jo9905672]
[76]
Kutuk, O.; Pedrech, A.; Harrison, P.; Basaga, H. Pramanicin induces apoptosis in Jurkat leukemia cells: A role for JNK, p38 and caspase activation. Apoptosis, 2005, 10(3), 597-609.
[http://dx.doi.org/10.1007/s10495-005-1894-z] [PMID: 15909121]
[77]
Bodur, C.; Kutuk, O.; Karsli-Uzunbas, G.; Isimjan, T.T.; Harrison, P.; Basaga, H. Pramanicin analog induces apoptosis in human colon cancer cells: Critical roles for Bcl-2, Bim, and p38 MAPK signaling. PLoS One, 2013, 8(2), e56369.
[http://dx.doi.org/10.1371/journal.pone.0056369] [PMID: 23441183]
[78]
Bailey, J.H.; Cherry, D.T.; Crapnell, K.M.; Moloney, M.G.; Shim, S.B.; Bamford, M.; Lamont, R.B. Functionalised pyrrol-idinones derived from (S)-pyroglutamic acid by cycloaddition reactions. Tetrahedron, 1997, 53, 11731-11744.
[http://dx.doi.org/10.1016/S0040-4020(97)00740-0]
[79]
Dyer, J.; Keelings, S.; King, A.; Moloney, M.G. Pyrroli-dinones derived from (S)-pyroglutamic acid. Part 2. Conformationally constrained kainoid analogues. J. Chem. Soc. Per-kin Trans., 2000, I, 2793-2804.
[http://dx.doi.org/10.1039/b002001j]
[80]
Bailey, J.H.; Cherry, D.; Dyer, J.; Moloney, M.G.; Bamford, M.J.; Keeling, S.; Lamont, R.B. Pyrrolidinones derived from (S)-pyroglutamic acid, Part 1. Conformationally constrained glutamate. J. Chem. Soc. Perkin Trans., 2000, I, 2783-2792.
[http://dx.doi.org/10.1039/b001999m]
[81]
Chan, P.W.H.; Cottrell, I.F.; Moloney, M.G. Pyrrolidinones derived from (S)-pyroglutamic acid. Part 3. β -Aminopyrrolidinones. J. Chem. Soc. Perkin Trans., 2001, I, 2997-3006.
[http://dx.doi.org/10.1039/b106782f]
[82]
Langlois, N. Short stereocontrolled synthesis of (2S,3S,4R)-3,4-dihydroxyglutamic acid. Tetrahedron Lett., 1999, 40, 8801-8803.
[http://dx.doi.org/10.1016/S0040-4039(99)01873-0]
[83]
D.; Langlois, N.; A short diastereoselective synthesis of the natural (2R, 3R, 4R)-2-hydroxymethyl-3, 4-dihydroxypyrrolidine. Tetrahedron Lett., 1994, 35, 2889-2890.
[http://dx.doi.org/10.1016/S0040-4039(00)76651-2]
[84]
Tan, S.W.B.; Chai, C.L.L.; Moloney, M.G.; Thompson, A.L. Synthesis of mimics of pramanicin from pyroglutamic acid and their antibacterial activity. J. Org. Chem., 2015, 80(5), 2661-2675.
[http://dx.doi.org/10.1021/jo502810b] [PMID: 25647715]
[85]
Saliou, C.; Fleurant, A.; Celerier, J.P.; Lhommet, G. Total synthesis of (+) monomorine I from chiral cyclic β-enamino ester. Tetrahedron Lett., 1991, 32, 3365-3368.
[http://dx.doi.org/10.1016/S0040-4039(00)92707-2]
[86]
Nguyen, B.K.L.; Langlois, N. Concise syntheses of racemic and enantiopure deoxydysibetaine. Tetrahedron Lett., 2003, 44, 5961-5963.
[http://dx.doi.org/10.1016/S0040-4039(03)01505-3]
[87]
Aggarwal, V.K.; Astle, C.J.; Rogers-Evans, M. A concise asymmetric route to the bridged bicyclic tropane alkaloid ferruginine using enyne ring-closing metathesis. Org. Lett., 2004, 6(9), 1469-1471.
[http://dx.doi.org/10.1021/ol049665m] [PMID: 15101769]
[88]
Olivo, H.F.; Tovar-Miranda, R.; Barragán, E. Synthesis of (-)-stemoamide using a stereoselective anti-aldol step. J. Org. Chem., 2006, 71(8), 3287-3290.
[http://dx.doi.org/10.1021/jo052364l] [PMID: 16599632]
[89]
Torssell, S.; Wanngren, E.; Somfai, P. Total synthesis of (-)-stemoamide. J. Org. Chem., 2007, 72(11), 4246-4249.
[http://dx.doi.org/10.1021/jo070498o] [PMID: 17451274]
[90]
Yoritate, M.; Takahashi, Y.; Tajima, H.; Ogihara, C.; Yokoyama, T.; Soda, Y.; Oishi, T.; Sato, T.; Chida, N. Unified total synthesis of stemoamide-type alkaloids by chemoselective assembly of fivemembered building blocks. J. Am. Chem. Soc., 2017, 139(50), 18386-18391.
[http://dx.doi.org/10.1021/jacs.7b10944] [PMID: 29179540]
[91]
Kato, A.; Adachi, I.; Miyauchi, M.; Ikeda, K.; Komae, T.; Kizu, H.; Kameda, Y.; Watson, A.A.; Nash, R.J.; Wormald, M.R.; Fleet, G.W.J.; Asano, N. Polyhydroxylated pyrrolidine and pyrrolizidine alkaloids from Hyancinthoides non-scripta and Scilla campanulata. Carbohydr. Res., 1999, 316(1-4), 95-103.
[http://dx.doi.org/10.1016/S0008-6215(99)00043-9] [PMID: 10515698]
[92]
Reddy, P.V.; Smith, J.; Kamath, A.; Jamet, H.; Veyron, A.; Koos, P.; Philouze, C.; Greene, A.E.; Delair, P. Asymmetric approach to hyacinthacines B1 and B2. J. Org. Chem., 2013, 78(10), 4840-4849.
[http://dx.doi.org/10.1021/jo400386f] [PMID: 23557153]
[93]
Sengoku, T.; Satoh, Y.; Oshima, M.; Takahashi, M.; Yoda, H. First asymmetric synthesis of pyrrolizidine alkaloids, (+)-hyacinthacine B1 and (+)-B2. Tetrahedron, 2008, 64, 8052-8058.
[http://dx.doi.org/10.1016/j.tet.2008.06.078]
[94]
Seigler, D.S. Pyrrolizidine; Quinolizidine, and Indolizidine Alkaloids. Plant Secondary Metabolism; Springer Science and Business Media: New York, 1998, pp. 546-567.
[95]
Toyooka, N.; Zhou, D.; Nemoto, H.; Tezuka, Y.; Kadota, S.; Jones, T.H.; Garraffo, H.M.; Spande, T.F.; Daly, J.W. First enantioselective synthesis of a hydroxyindolizidine alkaloid from the Ant Myrmicaria melanogaster. Synlett, 2008, 12, 1894-1896.
[http://dx.doi.org/10.1055/s-2008-1078502]
[96]
Segraves, N.L.; Crews, P. A Madagascar sponge Batzella sp. as a source of alkylated iminosugars. J. Nat. Prod., 2005, 68(1), 118-121.
[http://dx.doi.org/10.1021/np049763g] [PMID: 15679333]
[97]
Wierzejska, J.; Motogoe, S.; Makino, Y.; Sengoku, T.; Takahashi, M.; Yoda, H. A new approach toward the total synthesis of (+)-batzellaside B. Beilstein J. Org. Chem., 2012, 8, 1831-1838.
[http://dx.doi.org/10.3762/bjoc.8.210] [PMID: 23209519]
[98]
Wierzejska, J.; Ohshima, M.; Inuzuka, T.; Sengoku, T.; Takahashi, M.; Yoda, H. Total synthesis and absolute stereo-chemistry of (+)-batzellaside B and its C8-epimer, a new class of piperidine alkaloids from the sponge Batzella sp. Tetrahedron Lett., 2011, 52, 1173-1175.
[http://dx.doi.org/10.1016/j.tetlet.2011.01.018]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy