Letter Article

从全基因组关联研究中鉴定与血压,冠状动脉疾病和中风相关的磷酸化相关SNP

卷 19, 期 10, 2019

页: [731 - 738] 页: 8

弟呕挨: 10.2174/1566524019666190828151540

价格: $65

摘要

目的:磷酸化相关SNP(phosSNP)是一种非同义词SNP,可能会影响蛋白质的磷酸化状态。这项研究的目的是评估phosSNPs对血压(BP),冠状动脉疾病(CAD)和缺血性中风(IS)的影响。 方法:我们在全基因组关联研究(GWAS)的共享数据中检查了phosSNP与BP,CAD和IS的关联,并检验了该疾病位点是否富含phosSNP。此外,我们进行了定量性状基因座分析,以找出鉴定出的phosSNP是否对基因表达,蛋白质和代谢产物水平产生影响。 结果:我们发现大量的phosSNP用于收缩压(count = 148),舒张压(count = 206),CAD(count = 20)和IS(count = 4)。对于SBP,DBP,CAD和IS而言,最重要的phosSNP分别是MTHFR中的rs1801131,SH2B3中的rs3184504,WDR12中的rs35212307和SH2B3中的rs3184504。我们的分析表明,由原始GWAS鉴定的相关SNP大量富含phosSNP,许多易患心血管疾病的众所周知的基因均含有大量phosSNP。我们发现在包含涉及心血管疾病的功能基因的基因座中,phosSNP的BP,CAD和IS共享,例如rs11556924(ZC3HC1),rs1971819(ICA1L),rs3184504(SH2B3),rs3739998(JCAD),rs903160(SMG6)。 ADAMTS7中的四个phosSNP与CAD显着相关,包括已知的功能性SNP rs3825807。此外,已鉴定的phosSNPs似乎有可能影响许多心血管疾病相关蛋白和代谢产物的转录调控和血清水平。 结论:研究结果表明,phosSNPs可能在BP调节以及CAD和IS的病理机制中起重要作用。

关键词: 血压,冠状动脉疾病,中风,磷酸单核苷酸多态性,全基因组关联研究,数量性状基因座

[1]
Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet 2005; 365(9455): 217-23.
[http://dx.doi.org/10.1016/S0140-6736(05)17741-1] [PMID: 15652604]
[2]
Ehret GB, Munroe PB, Rice KM, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 2011; 478(7367): 103-9.
[http://dx.doi.org/10.1038/nature10405] [PMID: 21909115]
[3]
Ehret GB, Ferreira T, Chasman DI, et al. The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nat Genet 2016; 48(10): 1171-84.
[http://dx.doi.org/10.1038/ng.3667] [PMID: 27618452]
[4]
Evangelou E, Warren HR, Mosen-Ansorena D, et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet 2018; 50(10): 1412-25.
[http://dx.doi.org/10.1038/s41588-018-0205-x] [PMID: 30224653]
[5]
Nikpay M, Goel A, Won HH, et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet 2015; 47(10): 1121-30.
[http://dx.doi.org/10.1038/ng.3396] [PMID: 26343387]
[6]
Schunkert H, König IR, Kathiresan S, et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet 2011; 43(4): 333-8.
[http://dx.doi.org/10.1038/ng.784] [PMID: 21378990]
[7]
Deloukas P, Kanoni S, Willenborg C, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet 2013; 45(1): 25-33.
[http://dx.doi.org/10.1038/ng.2480] [PMID: 23202125]
[8]
Malik R, Chauhan G, Traylor M, et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat Genet 2018; 50(4): 524-37.
[http://dx.doi.org/10.1038/s41588-018-0058-3] [PMID: 29531354]
[9]
Malik R, Rannikmäe K, Traylor M, et al. Genome-wide meta-analysis identifies 3 novel loci associated with stroke. Ann Neurol 2018; 84(6): 934-9.
[http://dx.doi.org/10.1002/ana.25369] [PMID: 30383316]
[10]
Collins FS, Brooks LD, Chakravarti A. A DNA polymorphism discovery resource for research on human genetic variation. Genome Res 1998; 8(12): 1229-31.
[http://dx.doi.org/10.1101/gr.8.12.1229] [PMID: 9872978]
[11]
Ryu GM, Song P, Kim KW, Oh KS, Park KJ, Kim JH. Genome-wide analysis to predict protein sequence variations that change phosphorylation sites or their corresponding kinases. Nucleic Acids Res 2009; 37(4): 1297-307.
[http://dx.doi.org/10.1093/nar/gkn1008] [PMID: 19139070]
[12]
Ren J, Jiang C, Gao X, et al. PhosSNP for systematic analysis of genetic polymorphisms that influence protein phosphorylation. Mol Cell Proteomics 2010; 9(4): 623-34.
[http://dx.doi.org/10.1074/mcp.M900273-MCP200] [PMID: 19995808]
[13]
Sudlow C, Gallacher J, Allen N, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 2015; 12(3)e1001779
[http://dx.doi.org/10.1371/journal.pmed.1001779] [PMID: 25826379]
[14]
Pickrell JK. Joint analysis of functional genomic data and genome-wide association studies of 18 human traits. Am J Hum Genet 2014; 94(4): 559-73.
[http://dx.doi.org/10.1016/j.ajhg.2014.03.004] [PMID: 24702953]
[15]
Jansen R, Hottenga JJ, Nivard MG, et al. Conditional eQTL analysis reveals allelic heterogeneity of gene expression. Hum Mol Genet 2017; 26(8): 1444-51.
[http://dx.doi.org/10.1093/hmg/ddx043] [PMID: 28165122]
[16]
Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res 2012; 40(Database issue): D930-4.
[http://dx.doi.org/10.1093/nar/gkr917] [PMID: 22064851]
[17]
Suhre K, Arnold M, Bhagwat AM, et al. Connecting genetic risk to disease end points through the human blood plasma proteome. Nat Commun 2017; 8: 14357.
[http://dx.doi.org/10.1038/ncomms14357] [PMID: 28240269]
[18]
Long T, Hicks M, Yu HC, et al. Whole-genome sequencing identifies common-to-rare variants associated with human blood metabolites. Nat Genet 2017; 49(4): 568-78.
[http://dx.doi.org/10.1038/ng.3809] [PMID: 28263315]
[19]
Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 2018; 50(5): 693-8.
[http://dx.doi.org/10.1038/s41588-018-0099-7] [PMID: 29686387]
[20]
Dale BL, Madhur MS. Linking inflammation and hypertension via LNK/SH2B3. Curr Opin Nephrol Hypertens 2016; 25(2): 87-93.
[http://dx.doi.org/10.1097/MNH.0000000000000196] [PMID: 26717315]
[21]
Wang W, Tang Y, Wang Y, et al. LNK/SH2B3 loss of function promotes atherosclerosis and thrombosis. Circ Res 2016; 119(6): e91-e103.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308955] [PMID: 27430239]
[22]
Cheng Y, Chikwava K, Wu C, et al. LNK/SH2B3 regulates IL-7 receptor signaling in normal and malignant B-progenitors. J Clin Invest 2016; 126(4): 1267-81.
[http://dx.doi.org/10.1172/JCI81468] [PMID: 26974155]
[23]
Takizawa H, Kubo-Akashi C, Nobuhisa I, et al. Enhanced engraftment of hematopoietic stem/progenitor cells by the transient inhibition of an adaptor protein. Lnk Blood 2006; 107(7): 2968-75.
[http://dx.doi.org/10.1182/blood-2005-05-2138] [PMID: 16332975]
[24]
Jones PD, Kaiser MA, Ghaderi Najafabadi M, et al. The coronary artery disease-associated coding variant in zinc finger C3HC-type containing 1 (ZC3HC1) affects cell cycle regulation. J Biol Chem 2016; 291(31): 16318-27.
[http://dx.doi.org/10.1074/jbc.M116.734020] [PMID: 27226629]
[25]
Hara T, Monguchi T, Iwamoto N, et al. Targeted disruption of JCAD (junctional protein associated with coronary artery Disease)/KIAA1462, a coronary artery disease-associated gene product, inhibits angiogenic processes in vitro and in vivo. Arterioscler Thromb Vasc Biol 2017; 37(9): 1667-73.
[http://dx.doi.org/10.1161/ATVBAHA.117.309721] [PMID: 28705794]
[26]
Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 2007; 318(5851): 798-801.
[http://dx.doi.org/10.1126/science.1147182] [PMID: 17916692]
[27]
Venteicher AS, Abreu EB, Meng Z, et al. A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis. Science 2009; 323(5914): 644-8.
[http://dx.doi.org/10.1126/science.1165357] [PMID: 19179534]
[28]
Pu X, Xiao Q, Kiechl S, et al. ADAMTS7 cleavage and vascular smooth muscle cell migration is affected by a coronary-artery-disease-associated variant. Am J Hum Genet 2013; 92(3): 366-74.
[http://dx.doi.org/10.1016/j.ajhg.2013.01.012] [PMID: 23415669]
[29]
Eslam M, McLeod D, Kelaeng KS, et al. IFN-λ3, not IFN-λ4, likely mediates IFNL3-IFNL4 haplotype-dependent hepatic inflammation and fibrosis. Nat Genet 2017; 49(5): 795-800.
[http://dx.doi.org/10.1038/ng.3836] [PMID: 28394349]
[30]
Abd-Elfattah AS, Jessen ME, Lekven J, Doherty NE III, Brunsting LA, Wechsler AS. Myocardial reperfusion injury. Role of myocardial hypoxanthine and xanthine in free radical-mediated reperfusion injury. Circulation 1988; 78(5 Pt 2): III224-35.
[PMID: 3180402]
[31]
Zhang R, Witkowska K, Afonso Guerra-Assunção J, et al. A blood pressure-associated variant of the SLC39A8 gene influences cellular cadmium accumulation and toxicity. Hum Mol Genet 2016; 25(18): 4117-26.
[http://dx.doi.org/10.1093/hmg/ddw236] [PMID: 27466201]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy