Abstract
Purpose: Phosphorylation-related SNP (phosSNP) is a non-synonymous SNP that might influence protein phosphorylation status. The aim of this study was to assess the effect of phosSNPs on blood pressure (BP), coronary artery disease (CAD) and ischemic stroke (IS).
Methods: We examined the association of phosSNPs with BP, CAD and IS in shared data from genome-wide association studies (GWAS) and tested if the disease loci were enriched with phosSNPs. Furthermore, we performed quantitative trait locus analysis to find out if the identified phosSNPs have impacts on gene expression, protein and metabolite levels. Results: We found numerous phosSNPs for systolic BP (count=148), diastolic BP (count=206), CAD (count=20) and IS (count=4). The most significant phosSNPs for SBP, DBP, CAD and IS were rs1801131 in MTHFR, rs3184504 in SH2B3, rs35212307 in WDR12 and rs3184504 in SH2B3, respectively. Our analyses revealed that the associated SNPs identified by the original GWAS were significantly enriched with phosSNPs and many well-known genes predisposing to cardiovascular diseases contain significant phosSNPs. We found that BP, CAD and IS shared for phosSNPs in loci that contain functional genes involve in cardiovascular diseases, e.g., rs11556924 (ZC3HC1), rs1971819 (ICA1L), rs3184504 (SH2B3), rs3739998 (JCAD), rs903160 (SMG6). Four phosSNPs in ADAMTS7 were significantly associated with CAD, including the known functional SNP rs3825807. Moreover, the identified phosSNPs seemed to have the potential to affect transcription regulation and serum levels of numerous cardiovascular diseases-related proteins and metabolites. Conclusion: The findings suggested that phosSNPs may play important roles in BP regulation and the pathological mechanisms of CAD and IS.Keywords: Blood pressure, coronary artery disease, stroke, phosSNP, genome-wide association study, quantitative trait locus.
[1]
Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet 2005; 365(9455): 217-23.
[http://dx.doi.org/10.1016/S0140-6736(05)17741-1] [PMID: 15652604]
[http://dx.doi.org/10.1016/S0140-6736(05)17741-1] [PMID: 15652604]
[2]
Ehret GB, Munroe PB, Rice KM, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 2011; 478(7367): 103-9.
[http://dx.doi.org/10.1038/nature10405] [PMID: 21909115]
[http://dx.doi.org/10.1038/nature10405] [PMID: 21909115]
[3]
Ehret GB, Ferreira T, Chasman DI, et al. The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nat Genet 2016; 48(10): 1171-84.
[http://dx.doi.org/10.1038/ng.3667] [PMID: 27618452]
[http://dx.doi.org/10.1038/ng.3667] [PMID: 27618452]
[4]
Evangelou E, Warren HR, Mosen-Ansorena D, et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet 2018; 50(10): 1412-25.
[http://dx.doi.org/10.1038/s41588-018-0205-x] [PMID: 30224653]
[http://dx.doi.org/10.1038/s41588-018-0205-x] [PMID: 30224653]
[5]
Nikpay M, Goel A, Won HH, et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet 2015; 47(10): 1121-30.
[http://dx.doi.org/10.1038/ng.3396] [PMID: 26343387]
[http://dx.doi.org/10.1038/ng.3396] [PMID: 26343387]
[6]
Schunkert H, König IR, Kathiresan S, et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet 2011; 43(4): 333-8.
[http://dx.doi.org/10.1038/ng.784] [PMID: 21378990]
[http://dx.doi.org/10.1038/ng.784] [PMID: 21378990]
[7]
Deloukas P, Kanoni S, Willenborg C, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet 2013; 45(1): 25-33.
[http://dx.doi.org/10.1038/ng.2480] [PMID: 23202125]
[http://dx.doi.org/10.1038/ng.2480] [PMID: 23202125]
[8]
Malik R, Chauhan G, Traylor M, et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat Genet 2018; 50(4): 524-37.
[http://dx.doi.org/10.1038/s41588-018-0058-3] [PMID: 29531354]
[http://dx.doi.org/10.1038/s41588-018-0058-3] [PMID: 29531354]
[9]
Malik R, Rannikmäe K, Traylor M, et al. Genome-wide meta-analysis identifies 3 novel loci associated with stroke. Ann Neurol 2018; 84(6): 934-9.
[http://dx.doi.org/10.1002/ana.25369] [PMID: 30383316]
[http://dx.doi.org/10.1002/ana.25369] [PMID: 30383316]
[10]
Collins FS, Brooks LD, Chakravarti A. A DNA polymorphism discovery resource for research on human genetic variation. Genome Res 1998; 8(12): 1229-31.
[http://dx.doi.org/10.1101/gr.8.12.1229] [PMID: 9872978]
[http://dx.doi.org/10.1101/gr.8.12.1229] [PMID: 9872978]
[11]
Ryu GM, Song P, Kim KW, Oh KS, Park KJ, Kim JH. Genome-wide analysis to predict protein sequence variations that change phosphorylation sites or their corresponding kinases. Nucleic Acids Res 2009; 37(4): 1297-307.
[http://dx.doi.org/10.1093/nar/gkn1008] [PMID: 19139070]
[http://dx.doi.org/10.1093/nar/gkn1008] [PMID: 19139070]
[12]
Ren J, Jiang C, Gao X, et al. PhosSNP for systematic analysis of genetic polymorphisms that influence protein phosphorylation. Mol Cell Proteomics 2010; 9(4): 623-34.
[http://dx.doi.org/10.1074/mcp.M900273-MCP200] [PMID: 19995808]
[http://dx.doi.org/10.1074/mcp.M900273-MCP200] [PMID: 19995808]
[13]
Sudlow C, Gallacher J, Allen N, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 2015; 12(3)e1001779
[http://dx.doi.org/10.1371/journal.pmed.1001779] [PMID: 25826379]
[http://dx.doi.org/10.1371/journal.pmed.1001779] [PMID: 25826379]
[14]
Pickrell JK. Joint analysis of functional genomic data and genome-wide association studies of 18 human traits. Am J Hum Genet 2014; 94(4): 559-73.
[http://dx.doi.org/10.1016/j.ajhg.2014.03.004] [PMID: 24702953]
[http://dx.doi.org/10.1016/j.ajhg.2014.03.004] [PMID: 24702953]
[15]
Jansen R, Hottenga JJ, Nivard MG, et al. Conditional eQTL analysis reveals allelic heterogeneity of gene expression. Hum Mol Genet 2017; 26(8): 1444-51.
[http://dx.doi.org/10.1093/hmg/ddx043] [PMID: 28165122]
[http://dx.doi.org/10.1093/hmg/ddx043] [PMID: 28165122]
[16]
Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res 2012; 40(Database issue): D930-4.
[http://dx.doi.org/10.1093/nar/gkr917] [PMID: 22064851]
[http://dx.doi.org/10.1093/nar/gkr917] [PMID: 22064851]
[17]
Suhre K, Arnold M, Bhagwat AM, et al. Connecting genetic risk to disease end points through the human blood plasma proteome. Nat Commun 2017; 8: 14357.
[http://dx.doi.org/10.1038/ncomms14357] [PMID: 28240269]
[http://dx.doi.org/10.1038/ncomms14357] [PMID: 28240269]
[18]
Long T, Hicks M, Yu HC, et al. Whole-genome sequencing identifies common-to-rare variants associated with human blood metabolites. Nat Genet 2017; 49(4): 568-78.
[http://dx.doi.org/10.1038/ng.3809] [PMID: 28263315]
[http://dx.doi.org/10.1038/ng.3809] [PMID: 28263315]
[19]
Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 2018; 50(5): 693-8.
[http://dx.doi.org/10.1038/s41588-018-0099-7] [PMID: 29686387]
[http://dx.doi.org/10.1038/s41588-018-0099-7] [PMID: 29686387]
[20]
Dale BL, Madhur MS. Linking inflammation and hypertension via LNK/SH2B3. Curr Opin Nephrol Hypertens 2016; 25(2): 87-93.
[http://dx.doi.org/10.1097/MNH.0000000000000196] [PMID: 26717315]
[http://dx.doi.org/10.1097/MNH.0000000000000196] [PMID: 26717315]
[21]
Wang W, Tang Y, Wang Y, et al. LNK/SH2B3 loss of function promotes atherosclerosis and thrombosis. Circ Res 2016; 119(6): e91-e103.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308955] [PMID: 27430239]
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308955] [PMID: 27430239]
[22]
Cheng Y, Chikwava K, Wu C, et al. LNK/SH2B3 regulates IL-7 receptor signaling in normal and malignant B-progenitors. J Clin Invest 2016; 126(4): 1267-81.
[http://dx.doi.org/10.1172/JCI81468] [PMID: 26974155]
[http://dx.doi.org/10.1172/JCI81468] [PMID: 26974155]
[23]
Takizawa H, Kubo-Akashi C, Nobuhisa I, et al. Enhanced engraftment of hematopoietic stem/progenitor cells by the transient inhibition of an adaptor protein. Lnk Blood 2006; 107(7): 2968-75.
[http://dx.doi.org/10.1182/blood-2005-05-2138] [PMID: 16332975]
[http://dx.doi.org/10.1182/blood-2005-05-2138] [PMID: 16332975]
[24]
Jones PD, Kaiser MA, Ghaderi Najafabadi M, et al. The coronary artery disease-associated coding variant in zinc finger C3HC-type containing 1 (ZC3HC1) affects cell cycle regulation. J Biol Chem 2016; 291(31): 16318-27.
[http://dx.doi.org/10.1074/jbc.M116.734020] [PMID: 27226629]
[http://dx.doi.org/10.1074/jbc.M116.734020] [PMID: 27226629]
[25]
Hara T, Monguchi T, Iwamoto N, et al. Targeted disruption of JCAD (junctional protein associated with coronary artery Disease)/KIAA1462, a coronary artery disease-associated gene product, inhibits angiogenic processes in vitro and in vivo. Arterioscler Thromb Vasc Biol 2017; 37(9): 1667-73.
[http://dx.doi.org/10.1161/ATVBAHA.117.309721] [PMID: 28705794]
[http://dx.doi.org/10.1161/ATVBAHA.117.309721] [PMID: 28705794]
[26]
Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 2007; 318(5851): 798-801.
[http://dx.doi.org/10.1126/science.1147182] [PMID: 17916692]
[http://dx.doi.org/10.1126/science.1147182] [PMID: 17916692]
[27]
Venteicher AS, Abreu EB, Meng Z, et al. A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis. Science 2009; 323(5914): 644-8.
[http://dx.doi.org/10.1126/science.1165357] [PMID: 19179534]
[http://dx.doi.org/10.1126/science.1165357] [PMID: 19179534]
[28]
Pu X, Xiao Q, Kiechl S, et al. ADAMTS7 cleavage and vascular smooth muscle cell migration is affected by a coronary-artery-disease-associated variant. Am J Hum Genet 2013; 92(3): 366-74.
[http://dx.doi.org/10.1016/j.ajhg.2013.01.012] [PMID: 23415669]
[http://dx.doi.org/10.1016/j.ajhg.2013.01.012] [PMID: 23415669]
[29]
Eslam M, McLeod D, Kelaeng KS, et al. IFN-λ3, not IFN-λ4, likely mediates IFNL3-IFNL4 haplotype-dependent hepatic inflammation and fibrosis. Nat Genet 2017; 49(5): 795-800.
[http://dx.doi.org/10.1038/ng.3836] [PMID: 28394349]
[http://dx.doi.org/10.1038/ng.3836] [PMID: 28394349]
[30]
Abd-Elfattah AS, Jessen ME, Lekven J, Doherty NE III, Brunsting LA, Wechsler AS. Myocardial reperfusion injury. Role of myocardial hypoxanthine and xanthine in free radical-mediated reperfusion injury. Circulation 1988; 78(5 Pt 2): III224-35.
[PMID: 3180402]
[PMID: 3180402]
[31]
Zhang R, Witkowska K, Afonso Guerra-Assunção J, et al. A blood pressure-associated variant of the SLC39A8 gene influences cellular cadmium accumulation and toxicity. Hum Mol Genet 2016; 25(18): 4117-26.
[http://dx.doi.org/10.1093/hmg/ddw236] [PMID: 27466201]
[http://dx.doi.org/10.1093/hmg/ddw236] [PMID: 27466201]