[1]
Allard E, Passirani C, Benoit J-P. Convection-enhanced delivery of nanocarriers for the treatment of brain tumors. Biomaterials 2009; 30(12): 2302-18.
[2]
Funmilola AF, Andreas GS, Ijeoma FU. Nanomedicines in the treatment of brain tumor. J Nanomedicine 2018; 13(6): 579-83.
[3]
Roy S, Bandyopadhyay SK. Nanotechnology uses detection of brain tumor- A review. J Nano 2018; 3(4): 555-622.
[4]
Yang H, Chopp M, Schallert T. functional issues in brain tumor treatment. J Neurol Neurophysiol 2011; S5.
[5]
Tajes M, Ramos-Fernández E, Weng-Jiang X, et al. The blood-brain barrier: structure, function and therapeutic approaches to cross it. Mol Membr Biol 2014; 31(5): 152-67.
[6]
Wolburg H, Lippoldt A. Tight junctions of the blood-brain barrier. Vascul Pharmacol 2002; 38(6): 323-37.
[7]
Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis 2010; 37(1): 13-25.
[8]
Wei X, Chen X, Ying M, Lu W. Brain tumor-targeted drug delivery strategies. Acta Pharm Sin B 2014; 4(3): 193-201.
[9]
Palmer AM. The role of the blood-CNS barrier in CNS disorders and their treatment. Neurobiol Dis 2010; 37(1): 3-12.
[10]
Zhan C, Lu W. The blood-brain/tumor barriers: challenges and chances for malignant gliomas targeted drug delivery. Curr Pharm Biotechnol 2012; 13(12): 2380-7.
[11]
Barar J, Rafi MA, Pourseif MM, Omidi Y. Blood-brain barrier transport machineries and targeted therapy of brain diseases. Bioimpacts 2016; 6(4): 225-48.
[12]
Transendothelial Transport and Its Role in Therapeutics. 39 International Scholarly Research Notices 2014.
[13]
Meairs S, Alonso A. Ultrasound, microbubbles and the blood-brain barrier. Prog Biophys Mol Biol 2007; 93(1-3): 354-62.
[14]
Tajes M, Ramos-Fernández E, Weng-Jiang X, et al. The blood-brain barrier: structure, function and therapeutic approaches to cross it. Mol Membr Biol 2014; 31(5): 152-67.
[15]
Jones AR, Shusta EV. Blood-brain barrier transport of therapeutics via receptor-mediation. Pharm Res 2007; 24(9): 1759-71.
[16]
Mária A. Drug transport and the blood - brain barrier. Solubility, delivery and ADME problems of
drugs and drug candidates 2011.
[17]
van Tellingen O, Yetkin-Arik B, de Gooijer MC, Wesseling P, Wurdinger T, de Vries HE. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat 2015; 19: 1-12.
[18]
Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2002; 54(5): 631-51.
[19]
Löscher W. Mechanisms of drug resistance. Epileptic Disord 2005; 7((Suppl. 1)): S3.
[20]
Régina A, Demeule M, Laplante A, et al. Multidrug resistance in brain tumors: roles of the blood-brain barrier. Cancer Metastasis Rev 2001; 20(1-2): 13-25.
[21]
ABC Multidrug Transporters. target for modulation
of drug pharmacokinetics and drug-drug interactions 2011; 12: 600-20.
[22]
Demeule M, Régina A, Jodoin J, et al. Drug transport to the brain: key roles for the efflux pump P-glycoprotein in the blood-brain barrier. Vascul Pharmacol 2002; 38(6): 339-48.
[23]
Castro MG, Cowen R, Williamson IK, et al. Current and future strategies for the treatment of malignant brain tumors. Pharmacol Ther 2003; 98(1): 71-108.
[24]
Chakroun RW, Zhang P, Lin R, Schiapparelli P, Quinones-Hinojosa A, Cui H. Nanotherapeutic systems for local treatment of brain tumors. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2018; 10(1)e1479
[25]
Laquintana V, Trapani A, Denora N, Wang F, Gallo JM, Trapani G. New strategies to deliver anticancer drugs to brain tumors. Expert Opin Drug Deliv 2009; 6(10): 1017-32.
[26]
Deng CX. Targeted drug delivery across the blood-brain barrier using ultrasound technique. Ther Deliv 2010; 1(6): 819-48.
[27]
Guilherme FSF, Diego EC, Thais RFM, Jean LS, Man CC. The prodrug approach: a successful tool for improving drug solubility. Molecules 2016; 21: 42.
[28]
Rautio J, Laine K, Gynther M, Savolainen J. Prodrug approaches for CNS delivery. AAPS J 2008; 10(1): 92-102.
[29]
Varsha A. Poles apart inimitability of brain targeted drug delivery system in middle of NDDS. Int J Drug Dev & Res 2014; 6(4): 15-27.
[30]
Xiao G, Gan L. Receptor- Journal of Cell Biology
Volume 2013; 14
[31]
Li H, Qian ZM. Transferrin/transferrin receptor-mediated drug delivery. Med Res Rev 2002; 22(3): 225-50.
[32]
Kinsky SC. Preparation of liposomes and a spectrophotometric assay for release of trapped glucose marker. Methods Enzymol 1974; 32: 501-13.
[33]
Vieira DB, Gamarra LF. Getting into the brain: liposome-based strategies for effective drug delivery across the blood-brain barrier. Int J Nanomedicine 2016; 11: 5381-414.
[34]
Seleci M, Ag Seleci D, Scheper T, Stahl F. Theranostic Liposome-Nanoparticle Hybrids for Drug Delivery and Bioimaging. Int J Mol Sci 2017; 18(7): 1415.
[35]
Qin Y, Fan W, Chen H, et al. In vitro and in vivo investigation of glucose-mediated brain-targeting liposomes. J Drug Target 2010; 18(7): 536-49.
[36]
Siegal T, Horowitz A, Gabizon A. Doxorubicin encapsulated in sterically stabilized liposomes for the treatment of a brain tumor model: biodistribution and therapeutic efficacy. J Neurosurg 1995; 83(6): 1029-37.
[37]
Peters GJ, Adema AD, Bijnsdorp IV, Sandvold ML. Lipophilic prodrugs and formulations of conventional (deoxy)nucleoside and fluoropyrimidine analogs in cancer. Nucleosides Nucleotides Nucleic Acids 2011; 30(12): 1168-80.
[38]
Dimendra J. Treatment of cancer by using Nanoparticles
as a Drug Delivery Int J Drug Dev 4(1): 14-27.2012;
[39]
Tosi G, Costantino L, Ruozi B, Forni F, Vandelli MA. Polymeric nanoparticles for the drug delivery to the central nervous system. Expert Opin Drug Deliv 2008; 5(2): 155-74.
[40]
Agrawal P, Singh RP, et al. TPGS-chitosan cross-linked targeted nanoparticles for effective brain cancer therapy. Mater Sci Eng C 2017; 74: 167-76.
[41]
Xia H, Gao X, Gu G, et al. Penetratin-functionalized PEG-PLA nanoparticles for brain drug delivery. Int J Pharm 2012; 436(1-2): 840-50.
[42]
Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 2006; 6(9): 688-701.
[43]
Nance E, Timbie K, Miller GW, et al. Non-invasive delivery of stealth, brain-penetrating nanoparticles across the blood-brain barrier using MRI-guided focused ultrasound. J Control Release 2014; 189: 123-32.
[44]
Suresh Kumar M, Yuvaraj M, Aruna P, Koteeswaran D, Ganesan S. Influence of Anionic Surface Charged Biocompatible Dendrimer With a Photosensitizer, Protoporphyrin IX, on Human Red Blood Cells: A Spectroscopic Investigation. International Journal of Polymeric Materials and Polymeric Biomaterials 2015; 64(10): 519-25.
[45]
Ghalamfarsa G, Hojjat-Farsangi M, Mohammadnia-Afrouzi M, et al. Application of nanomedicine for crossing the blood-brain barrier: Theranostic opportunities in multiple sclerosis. J Immunotoxicol 2016; 13(5): 603-19.
[46]
Kumar MS, Aruna P, Ganesan S. Influence of protoporphyrin IX loaded phloroglucinol succinic acid dendrimer in photodynamic therapy. Mater Res Express 2018; 5(3)034004
[47]
Xu L, Zhang H, Wu Y. Dendrimer advances for the central nervous system delivery of therapeutics. ACS Chem Neurosci 2014; 5(1): 2-13.
[48]
Gonawala S, Ali MM. Application of Dendrimer-based Nanoparticles in Glioma Imaging. J Nanomed Nanotechnol 2017; 8(3): 444.
[49]
He H, Li Y, Jia X-R, et al. PEGylated Poly(amidoamine) dendrimer-based dual-targeting carrier for treating brain tumors. Biomaterials 2011; 32(2): 478-87.
[50]
Dhanikula RS, Argaw A, Bouchard J-F, Hildgen P. Methotrexate loaded polyether-copolyester dendrimers for the treatment of gliomas: enhanced efficacy and intratumoral transport capability. Mol Pharm 2008; 5(1): 105-16.
[51]
Sonali V, Viswanadh MK, Singh RP, et al. Nanotheranostics: Emerging Strategies for Early Diagnosis and Therapy of Brain Cancer. Nanotheranostics 2018; 2(1): 70-86.
[52]
Chertok B, Moffat BA, David AE, et al. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 2008; 29(4): 487-96.
[53]
Wen X, Wang K, Zhao Z, et al. Brain-targeted delivery of trans-activating transcriptor-conjugated magnetic PLGA/lipid nanoparticles. PLoS One 2014; 9(9)e106652
[54]
Sanginario A, Miccoli B, Demarchi D. Carbon Nanotubes as an Effective Opportunity for Cancer Diagnosis and Treatment. Biosensors (Basel) 2017; 7(1): 9.
[55]
Elhissi AMA, Ahmed W, Hassan IU, Dhanak VR, D’Emanuele A. Carbon nanotubes in cancer therapy and drug delivery. J Drug Deliv 2012.2012837327
[56]
Ren J, Shen S, Wang D, et al. The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with angiopep-2. Biomaterials 2012; 33(11): 3324-33.
[57]
Puente P, Fettig N, Luderer MJ, et al. Injectable Hydrogels for Localized Chemotherapy and Radiotherapy in Brain Tumors. J Pharm Sci 2018; 107(3): 922-33.
[58]
Rahman CV, Smith SJ, Morgan PS, et al. Adjuvant
chemotherapy for brain tumors delivered via a novel
intra-cavity moldable polymer matrix. PLoS One 2013; 8(10) e77435
[59]
Torres AJ, Zhu C, Shuler ML, Pannullo S. Paclitaxel delivery to brain tumors from hydrogels: a computational study. Biotechnol Prog 2011; 27(5): 1478-87.
[60]
Lu CT, Zhao YZ, Wong HL, Cai J, Peng L, Tian XQ. Current approaches to enhance CNS delivery of drugs across the brain barriers. Int J Nanomedicine 2014; 9: 2241-57.
[61]
Jahangiri A, Chin AT, Flanigan PM, Chen R, Bankiewicz K, Aghi MK. Convection-enhanced delivery in glioblastoma: a review of preclinical and clinical studies. J Neurosurg 2017; 126(1): 191-200.
[62]
Gumerlock MK, Belshe BD, Madsen R, Watts C. Osmotic blood-brain barrier disruption and chemotherapy in the treatment of high grade malignant glioma: patient series and literature review. J Neurooncol 1992; 12(1): 33-46.
[63]
Bellavance M-A, Blanchette M, Fortin D. Recent advances in blood-brain barrier disruption as a CNS delivery strategy. AAPS J 2008; 10(1): 166-77.
[64]
Joshi S, Ergin A, Wang M, et al. Inconsistent blood brain barrier disruption by intraarterial mannitol in rabbits: implications for chemotherapy. J Neurooncol 2011; 104(1): 11-9.
[65]
Chandran S. Pichandy Muthu Prasanna, “Blood Brain Barrier and Various Strategies for Drug Delivery to Brain. Br Biomed Bull 2014; 2(3): 504-20.
[66]
Brem H, Gabikian P. Biodegradable polymer implants to treat brain tumors. J Control Release 2001; 74(1-3): 63-7.
[67]
Fan Ching-Hsiang, et al. SPIO-conjugated, doxorubicin-loaded microbubbles for concurrent MRI and focused-ultrasound enhanced brain-tumor drug delivery. J. Biomaterial 2013.
[68]
Fan C-H, Liu H-L, Ting C-Y, et al. Submicron-bubble-enhanced focused ultrasound for blood-brain barrier disruption and improved CNS drug delivery. PLoS One 2014; 9(5)e96327
[69]
Liu H-L, Hua M-Y, Yang H-W, et al. Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain. Proc Natl Acad Sci USA 2010; 107(34): 15205-10.