Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

Preliminary Biochemical and Venomic Characterization of the Venom of Phalotris lemniscatus (Serpentes, Colubridae)

Author(s): Jeny Bastida*, Alejandro Crampet, Melitta Meneghel and Victor Morais*

Volume 19, Issue 22, 2019

Page: [1981 - 1989] Pages: 9

DOI: 10.2174/1568026619666190802143252

Price: $65

Abstract

Background: For many decades, research on snake venom toxinology focused mainly on the venoms of Viperidae and Elapidae species, which were traditionally the only ones considered as venomous. However, much less interest has been given to the venom produced by opisthoglyphous colubrid snakes, since they were typically considered of no clinical relevance.

Objective: The aim of this work is to perform a preliminary biochemical and venomic characterization of the venom of the colubrid snake Phalotris lemniscatus, a species that has been responsible for two relevant cases of envenomation in Uruguay.

Methods: We extracted venom from collected specimens and performed different biochemical and proteomic assays to understand its toxin composition.

Results: We found that the venom of P. lemniscatus is composed of protein families typically present in snake venoms, such as metallo and serine preoteases, L-amino acid oxidases, phospholipases A2s, Ctype lectines-like, Kunitz-type proteins and three-finger toxins. Activity assays demonstrated a highly active gelatinolytic component as well as a potent capability to induce blood coagulation.

Conclusion: The results indicate that the venom of P. lemniscatus contains hemotoxic activities and components that resemble those found in Viperidae (Bothrops) snakes and that can induce a clinically relevant accident. Further studies are needed to better understand the venom composition of this colubrid snake and its most active compounds.

Keywords: Snake venom, Colubridae, Phalotris lemniscatus, Proteomics, Envenomation, Hemotoxicity.

Graphical Abstract

[1]
Weinstein, S.A.; Kardong, K.V. Properties of Duvernoy’s secretions from opisthoglyphous and aglyphous colubrid snakes. Toxicon, 1994, 32(10), 1161-1185.
[http://dx.doi.org/10.1016/0041-0101(94)90347-6] [PMID: 7846688]
[2]
Fry, B.G.; Scheib, H.; van der Weerd, L.; Young, B.; McNaughtan, J.; Ramjan, S.F.R.; Vidal, N.; Poelmann, R.E.; Norman, J.A. Evolution of an arsenal: structural and functional diversification of the venom system in the advanced snakes (Caenophidia). Mol. Cell. Proteomics, 2008, 7(2), 215-246.
[http://dx.doi.org/10.1074/mcp.M700094-MCP200] [PMID: 17855442]
[3]
Fry, B.G.; Vidal, N.; Norman, J.A.; Vonk, F.J.; Scheib, H.; Ramjan, S.F.R.; Kuruppu, S.; Fung, K.; Hedges, S.B.; Richardson, M.K.; Hodgson, W.C.; Ignjatovic, V.; Summerhayes, R.; Kochva, E. Early evolution of the venom system in lizards and snakes. Nature, 2006, 439(7076), 584-588.
[http://dx.doi.org/10.1038/nature04328] [PMID: 16292255]
[4]
Calvete, J.J. Proteomic tools against the neglected pathology of snake bite envenoming. Expert Rev. Proteomics, 2011, 8(6), 739-758.
[http://dx.doi.org/10.1586/epr.11.61] [PMID: 22087658]
[5]
Calvete, J.J. Venomics: integrative venom proteomics and beyond. Biochem. J., 2017, 474(5), 611-634.
[http://dx.doi.org/10.1042/BCJ20160577] [PMID: 28219972]
[6]
Modahl, C.M.; Frietze, S.; Mackessy, S.P. Transcriptome-facilitated proteomic characterization of rear-fanged snake venoms reveal abundant metalloproteinases with enhanced activity. J. Proteomics, 2018, 187, 223-234.
[http://dx.doi.org/10.1016/j.jprot.2018.08.004] [PMID: 30092380]
[7]
Pawlak, J.; Mackessy, S.P.; Fry, B.G.; Bhatia, M.; Mourier, G.; Fruchart-Gaillard, C.; Servent, D.; Ménez, R.; Stura, E.; Ménez, A.; Kini, R.M. Denmotoxin, a three-finger toxin from the colubrid snake Boiga dendrophila (Mangrove Catsnake) with bird-specific activity. J. Biol. Chem., 2006, 281(39), 29030-29041.
[http://dx.doi.org/10.1074/jbc.M605850200] [PMID: 16864572]
[8]
Jackson, T.N.W.; Fry, B.G. A tricky trait: applying the fruits of the “function debate” in the philosophy of biology to the “venom debate” in the science of toxinology. Toxins (Basel), 2016, 8(9), 1-14.
[http://dx.doi.org/10.3390/toxins8090263] [PMID: 27618098]
[9]
Jackson, T.N.W.; Young, B.; Underwood, G.; McCarthy, C.J.; Kochva, E.; Vidal, N.; van der Weerd, L.; Nabuurs, R.; Dobson, J.; Whitehead, D.; Vonk, F.J.; Hendrikx, I.; Hay, C.; Fry, B.G. Endless forms most beautiful: The evolution of ophidian oral glands, including the venom system, and the use of appropriate terminology for homologous structures. Zoomorphology, 2017, 136, 107-130.
[http://dx.doi.org/10.1007/s00435-016-0332-9]
[10]
Peichoto, M.E.; Tavares, F.L.; Santoro, M.L.; Mackessy, S.P. Venom proteomes of South and North American opisthoglyphous (Colubridae and Dipsadidae) snake species: A preliminary approach to understanding their biological roles. Comp. Biochem. Physiol. Part D Genomics Proteomics, 2012, 7(4), 361-369.
[http://dx.doi.org/10.1016/j.cbd.2012.08.001] [PMID: 22974712]
[11]
Rocha, M.M.T.; Paes Leme, A.F.; Ching, A.T.C.; Serrano, S.M.T.; Pimenta, D.C.; Junqueira-de-Azevedo, I.L.M.; Ho, P.L.; de Fátima, D. Furtado, M. Some aspects of the venom proteome of the colubridae snake Philodryas olfersii revealed from a duvernoy’s (venom) gland transcriptome. FEBS Lett., 2006.
[12]
Hess, P.L.; Squaiella-Baptistao, C.C. Animal toxins: Serpents of the colubridae family and their poison. Estud. Biol. Ambient. Divers., 2012, 34, 135-142.
[http://dx.doi.org/10.7213/estud.biol.7326]
[13]
Mackessy, S.P.; Sixberry, N.M.; Heyborne, W.H.; Fritts, T. Venom of the Brown Treesnake, Boiga irregularis: Ontogenetic shifts and taxa-specific toxicity. Toxicon, 2006, 47(5), 537-548.
[http://dx.doi.org/10.1016/j.toxicon.2006.01.007] [PMID: 16545413]
[14]
Kamiguti, A.S.; Theakston, R.D.G.; Sherman, N.; Fox, J.W. Mass spectrophotometric evidence for P-III/P-IV metalloproteinases in the venom of the Boomslang (Dispholidus typus). Toxicon, 2000, 38(11), 1613-1620.
[http://dx.doi.org/10.1016/S0041-0101(00)00089-1] [PMID: 10775761]
[15]
Robertson, S.S.D.; Delpierre, G.R. Studies on African snake venoms. IV. Some enzymatic activities in the venom of the boomslang Dispholidus typus. Toxicon, 1969, 7(3), 189-194.
[http://dx.doi.org/10.1016/0041-0101(69)90005-1] [PMID: 5358064]
[16]
Kornalik, F.; Táborská, E.; Mebs, D. Pharmacological and biochemical properties of a venom gland extract from the snake Thelotornis kirtlandi. Toxicon, 1978, 16(6), 535-542.
[http://dx.doi.org/10.1016/0041-0101(78)90180-0] [PMID: 31712]
[17]
Junqueira-de-Azevedo, I.L.M.; Campos, P.F.; Ching, A.T.C.; Mackessy, S.P. Colubrid venom composition: An -Omics perspective. Toxins (Basel), 2016, 8(8)E230
[http://dx.doi.org/10.3390/toxins8080230] [PMID: 27455326]
[18]
Pla, D.; Sanz, L.; Whiteley, G.; Wagstaff, S.C.; Harrison, R.A.; Casewell, N.R.; Calvete, J.J. What killed Karl Patterson Schmidt? Combined venom gland transcriptomic, venomic and antivenomic analysis of the South African green tree snake (the boomslang), Dispholidus typus. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(4), 814-823.
[http://dx.doi.org/10.1016/j.bbagen.2017.01.020] [PMID: 28130154]
[19]
Mackessy, S.P.; Saviola, A.J. Understanding biological roles of venoms among the caenophidia: The importance of rear-fanged snakes. Integr. Comp. Biol., 2016, 56(5), 1004-1021.
[http://dx.doi.org/10.1093/icb/icw110] [PMID: 27639275]
[20]
Ferrarezzi, H. Note on the genus Phalotris with review of the Nasutus group and description of three new species (Snakes, Colubridae, Xenodontinae). Mem. Inst. Butantan, 1993, 55, 21-38.
[21]
Carreira, S.; Meneghel, M.; Achaval, F. Reptiles of Uruguay; GAVE; R.A.C; Faculty of Sciences, University of the Republic: Montevideo, 2005.
[22]
Carreira, S.; Maneyro, R. Uruguay Reptile Guide; 1st Ed .; Editions of the Fugue, Science Friend Collection: Montevideo, 2013.
[23]
de Lema, T. Report of poisoning by a non-poisonous snake. Natl. Rev., 1978, 4, 62-63.
[24]
de Lema, T. Report of human ophidic accident by phalotris trilineatus (snakes, colubridae) on southern coast of Brazil. Cad. Pesqui. Sér. Biol., 2007, 19, 6-16.
[25]
Negrin, A.; Morais, V.; Carreira, S.; Tortorella, M.N. First report of two cases of serious accidents by bite of Phalotris lemniscatus (Duméril, Bibron & Duméril, 1854) (Squamata, Dipsadidae); Uruguay. Toxicol Act: Argentina, 2019.
[26]
Campos, P.F.; Andrade-Silva, D.; Zelanis, A.; Paes Leme, A.F.; Rocha, M.M.T.; Menezes, M.C.; Serrano, S.M.T. Junqueira-de-Azevedo, Ide.L. Trends in the evolution of snake toxins underscored by an integrative omics approach to profile the venom of the Colubrid Phalotris mertensi. Genome Biol. Evol., 2016, 8(8), 2266-2287.
[http://dx.doi.org/10.1093/gbe/evw149] [PMID: 27412610]
[27]
Rosenberg, H.I.; Bdolah, A.; Kochva, E. Lethal factors and enzymes in the secretion from Duvernoy’s gland of three colubrid snakes. J. Exp. Zool., 1985, 233(1), 5-14.
[http://dx.doi.org/10.1002/jez.1402330103] [PMID: 2982993]
[28]
Hill, R.E.; Mackessy, S.P. Venom yields from several species of colubrid snakes and differential effects of ketamine. Toxicon, 1997, 35(5), 671-678.
[http://dx.doi.org/10.1016/S0041-0101(96)00174-2] [PMID: 9203291]
[29]
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259), 680-685.
[http://dx.doi.org/10.1038/227680a0] [PMID: 5432063]
[30]
Cox, J.; Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol., 2008, 26(12), 1367-1372.
[http://dx.doi.org/10.1038/nbt.1511] [PMID: 19029910]
[31]
Cox, J.; Neuhauser, N.; Michalski, A.; Scheltema, R.A.; Olsen, J.V.; Mann, M. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res., 2011, 10(4), 1794-1805.
[http://dx.doi.org/10.1021/pr101065j] [PMID: 21254760]
[32]
Tyanova, S.; Temu, T.; Carlson, A.; Sinitcyn, P.; Mann, M.; Cox, J. Visualization of LC-MS/MS proteomics data in MaxQuant. Proteomics, 2015, 15(8), 1453-1456.
[http://dx.doi.org/10.1002/pmic.201400449] [PMID: 25644178]
[33]
Hasson, S.S.; Theakston, R.D.G.; Harrison, R.A. Antibody zymography: A novel adaptation of zymography to determine the protease-neutralising potential of specific antibodies and snake antivenoms. J. Immunol. Methods, 2004, 292(1-2), 131-139.
[http://dx.doi.org/10.1016/j.jim.2004.06.004] [PMID: 15350518]
[34]
Öhler, M.; Georgieva, D.; Seifert, J.; von Bergen, M.; Arni, R.K.; Genov, N.; Betzel, C. The venomics of Bothrops alternatus is a pool of acidic proteins with predominant hemorrhagic and coagulopathic activities. J. Proteome Res., 2010, 9(5), 2422-2437.
[http://dx.doi.org/10.1021/pr901128x] [PMID: 20329766]
[35]
Ribeiro, P.H.; Zuliani, J.P.; Fernandes, C.F.C.; Calderon, L.A.; Stábeli, R.G.; Nomizo, A.; Soares, A.M. Mechanism of the cytotoxic effect of l-amino acid oxidase isolated from Bothrops alternatus snake venom. Int. J. Biol. Macromol., 2016, 92, 329-337.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.07.022] [PMID: 27394649]
[36]
de Paula, F.F.P.; Ribeiro, J.U.; Santos, L.M.; de Souza, D.H.F.; Leonardecz, E.; Henrique-Silva, F.; Selistre-de-Araújo, H.S. Molecular characterization of metalloproteases from Bothrops alternatus snake venom. Comp. Biochem. Physiol. Part D Genomics Proteomics, 2014, 12, 74-83.
[http://dx.doi.org/10.1016/j.cbd.2014.09.001] [PMID: 25463060]
[37]
Nisenbom, H.E.; Perazzo, J.C.; Monserrat, A.J.; Vidal, J.C. Contribution of phospholipase A2 to the lethal potency of Bothrops alternatus (víbora de la cruz) venom. Toxicon, 1986, 24(8), 807-817.
[http://dx.doi.org/10.1016/0041-0101(86)90106-6] [PMID: 3775796]
[38]
Calvete, J.J. Antivenomics and venom phenotyping: A marriage of convenience to address the performance and range of clinical use of antivenoms. Toxicon, 2010, 56(7), 1284-1291.
[http://dx.doi.org/10.1016/j.toxicon.2009.12.015] [PMID: 20036274]
[39]
Calvete, J.J.; Juárez, P.; Sanz, L. Snake venomics. Strategy and applications. J. Mass Spectrom., 2007, 42(11), 1405-1414.
[http://dx.doi.org/10.1002/jms.1242] [PMID: 17621391]
[40]
Francischetti, I.M.B.; Castro, H.C.; Zingali, R.B.; Carlini, C.R.; Guimarães, J.A. Bothrops sp. snake venoms: comparison of some biochemical and physicochemical properties and interference in platelet functions. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol., 1998, 119(1), 21-29.
[http://dx.doi.org/10.1016/S0742-8413(97)00163-1] [PMID: 9580495]
[41]
Gay, C.; Sanz, L.; Calvete, J.J.; Pla, D. Snake venomics and antivenomics of Bothrops Diporus, a medically important pitviper in northeastern argentina. Toxins (Basel), 2015, 8(1), 1-13.
[http://dx.doi.org/10.3390/toxins8010009] [PMID: 26712790]
[42]
Machado, T.; Silva, V.X.; Silva, M.J. Phylogenetic relationships within Bothrops neuwiedi group (Serpentes, Squamata): Geographically highly-structured lineages, evidence of introgressive hybridization and Neogene/Quaternary diversification. Mol. Phylogenet. Evol., 2014, 71, 1-14.
[http://dx.doi.org/10.1016/j.ympev.2013.10.003] [PMID: 24140980]
[43]
Rocha, M.M.T.; Paixão-Cavalcante, D.; Tambourgi, D.V. Furtado, Mde.F. Duvernoy’s gland secretion of Philodryas olfersii and Philodryas patagoniensis (Colubridae): Neutralization of local and systemic effects by commercial bothropic antivenom (Bothrops genus). Toxicon, 2006, 47(1), 95-103.
[http://dx.doi.org/10.1016/j.toxicon.2005.10.005] [PMID: 16360723]
[44]
Minton, S.A. Venomous bites by nonvenomous snakes: An annotated bibliography of colubrid envenomation. J. Wilderness Med., 1990, 1, 119-127.
[http://dx.doi.org/10.1580/0953-9859-1.2.119]
[45]
Pyron, R.A.; Burbrink, F.T.; Wiens, J.J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol., 2013, 13, 93.
[http://dx.doi.org/10.1186/1471-2148-13-93] [PMID: 23627680]
[46]
Zheng, Y.; Wiens, J.J. Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol. Phylogenet. Evol.,2016, 94(Pt B), 537-547.
[http://dx.doi.org/10.1016/j.ympev.2015.10.009] [PMID: 26475614]
[47]
Salomão, M. da G.; Albolea, A.B.P.; Santos, S.M.A. Colubrid snakebite: A public health problem in brazil. Herpetol. Rev., 2003, 34, 307-312.
[48]
Weinstein, S.A.; Warrell, D.A.; White, J.; Keyler, D.E. Medically significant bites by “colubrid” snakes. In: Venomous bites from non-venomous snakes, 1st ed; Elsevier, 2012; p. 364.
[http://dx.doi.org/10.1016/B978-0-12-387732-1.00004-X]
[49]
de Medeiros, C.R.; Hess, P.L.; Nicoleti, A.F.; Sueiro, L.R.; Duarte, M.R.; de Almeida-Santos, S.M.; França, F.O.S. Bites by the colubrid snake Philodryas patagoniensis: A clinical and epidemiological study of 297 cases. Toxicon, 2010, 56(6), 1018-1024.
[http://dx.doi.org/10.1016/j.toxicon.2010.07.006] [PMID: 20643156]
[50]
Natarajan, N.; Basheer, A.; Mookkappan, S.; Periyasamy, S. Reversible lower limb deep vein thrombosis following haemotoxic snakebite-A case report. Australas. Med. J., 2014, 7(5), 232-235.
[PMID: 24944721]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy