Abstract
The human genome project has been completed, but the function of many genes is unknown. It is, therefore, necessary to elucidate the function of a large number of genes within a short time. To achieve this goal, materials are needed that condense or package DNA into nano-particles that can easily be taken up by cells and would allow DNA to be retained without degradation. Atelocollagen is a reliable carrier for gene delivery because it is considered safe and appropriate for practical use [1-5]. We developed a basic technique for high-throughput gene transfer and expression screening by pre-coating a multi-well plate with an Atelocollagen/DNA complex in which cells are then seeded [6]. Complexes with a nano-particle form were efficiently transduced into cells without the use of additional transfection reagents, and they allowed for long-term gene expression. The complex spotted onto the well of a plate was stable for a long period and allowed the cells to transduce and express reporter genes. We also showed that the present method with Atelocollagen-based gene transfer is applicable to gene medicines, such as antisense ODNs, siRNA, and adenovirus vectors. These results suggest that an Atelocollagen-based cell transfection array may be appropriate for general use in the high-throughput screening of large sets of gene medicines with functions in mammalian cells.
Keywords: atelocollagen, transfection, array, high-throughput, gene function, drug discovery