Abstract
The presence of T-channels in thalamic cells allows for the generation of rhythmic bursts of spikes and the existence of two firing modes in thalamic cells: tonic and bursting. This intrinsic electrophysiological property has fundamental consequences for the functional properties of the thalamus across waking and sleep stages and is centrally implicated in a growing number of pathological states. Rhythmic bursting brings about highly synchronized activity throughout corticothalamic circuits which is incompatible with the relay of information through the thalamus. Understanding the conditions that determine the change in firing mode of thalamic cells as well as the role of bursting in the generation of synchronized oscillations is critical to understand the function of the thalamus. The functional properties of T-channels and the resulting low threshold spike are discussed here with emphasis on the differences in the bursting properties of reticular thalamic and thalamocortical neurons. The role of thalamic bursting in the generation of sleep oscillations and their specific sequence during slow wave sleep will also be discussed.
Keywords: depolarizing synaptic potential, RETICULAR THALAMIC (RE) CELLS, Oscillations, thalamocortical circuits, GABAergic projections
CNS & Neurological Disorders - Drug Targets
Title: The Role of T-Channels in the Generation of Thalamocortical Rhythms
Volume: 5 Issue: 6
Author(s): Diego Contreras
Affiliation:
Keywords: depolarizing synaptic potential, RETICULAR THALAMIC (RE) CELLS, Oscillations, thalamocortical circuits, GABAergic projections
Abstract: The presence of T-channels in thalamic cells allows for the generation of rhythmic bursts of spikes and the existence of two firing modes in thalamic cells: tonic and bursting. This intrinsic electrophysiological property has fundamental consequences for the functional properties of the thalamus across waking and sleep stages and is centrally implicated in a growing number of pathological states. Rhythmic bursting brings about highly synchronized activity throughout corticothalamic circuits which is incompatible with the relay of information through the thalamus. Understanding the conditions that determine the change in firing mode of thalamic cells as well as the role of bursting in the generation of synchronized oscillations is critical to understand the function of the thalamus. The functional properties of T-channels and the resulting low threshold spike are discussed here with emphasis on the differences in the bursting properties of reticular thalamic and thalamocortical neurons. The role of thalamic bursting in the generation of sleep oscillations and their specific sequence during slow wave sleep will also be discussed.
Export Options
About this article
Cite this article as:
Contreras Diego, The Role of T-Channels in the Generation of Thalamocortical Rhythms, CNS & Neurological Disorders - Drug Targets 2006; 5 (6) . https://dx.doi.org/10.2174/187152706779025526
DOI https://dx.doi.org/10.2174/187152706779025526 |
Print ISSN 1871-5273 |
Publisher Name Bentham Science Publisher |
Online ISSN 1996-3181 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
The Effects of Tamoxifen on Immunity
Current Medicinal Chemistry Epigenetic Modulation: A Promising Avenue to Advance Hematopoietic Stem Cell-Based Therapy for Severe Autoimmune Disorders
Epigenetic Diagnosis & Therapy (Discontinued) Systems Biology in Aging: Linking the Old and the Young
Current Genomics Microarrays in Brain Research: Data Quality and Limitations Revisited
Current Genomics Circadian Cycle and Chronotherapeutics: Recent Trend for the Treatment of Various Biological Disorders
Recent Patents on Drug Delivery & Formulation Role of Environmental Factors in Cocaine Addiction
Current Pharmaceutical Design Cell and Gene Therapies for Refractory Epilepsy
Current Neuropharmacology Endogenous Opioids and Addiction to Alcohol and other Drugs of Abuse
Current Topics in Medicinal Chemistry Generation of Alzheimer’s Disease Transgenic Zebrafish Expressing Human APP Mutation Under Control of Zebrafish appb Promotor
Current Alzheimer Research Meet Our Editorial Board Member
CNS & Neurological Disorders - Drug Targets Collaboration of the Joint Research Centre and European Customs Laboratories for the Identification of New Psychoactive Substances
Current Pharmaceutical Biotechnology Modulation of Apoptosis: New Opportunities for Drug Discovery to Treat Autoimmune Thyroiditis
Recent Patents on Inflammation & Allergy Drug Discovery De Novo Malignancies After Organ Transplantation: Focus on Viral Infections
Current Molecular Medicine Is There A Pulse Wave Encephalopathy Component To Multiple Sclerosis?
Current Neurovascular Research Glucose Levels and Outcome After Primary Intraventricular Hemorrhage
Current Neurovascular Research Future Treatment for COPD: Targeting Oxidative Stress and its Related Signal
Recent Patents on Inflammation & Allergy Drug Discovery Alcohol Related Changes in Regulation of NMDA Receptor Functions
Current Neuropharmacology Involvement of the Septo-Hippocampal Cholinergic Pathway in Association with Septal Acetylcholinesterase Upregulation in a Mouse Model of Tauopathy
Current Alzheimer Research Functional Neuroanatomy of the Noradrenergic Locus Coeruleus: Its Roles in the Regulation of Arousal and Autonomic Function Part II: Physiological and Pharmacological Manipulations and Pathological Alterations of Locus Coeruleus Activity in Humans
Current Neuropharmacology Meet Our Editor
Central Nervous System Agents in Medicinal Chemistry