Abstract
The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), gefitinib and erlotinib, show dramatic effects against non-small cell lung cancer (NSCLC) with EGFR activating mutations. However, 25% – 30% of EGFR mutant lung cancer patients show intrinsic resistance, and the responders almost invariably acquire resistance to EGFR-TKIs within several years. Three mechanisms — second-site point mutation that substitutes methionine for threonine at position 790 (T790M) in EGFR, amplification of MET protooncogene, and overexpression of hepatocyte growth factor (HGF, a ligand of MET) — have been reported to contribute to resistance to EGFR-TKIs. These three factors were detected simultaneously in a population of patients with acquired resistance to EGFR-TKIs. Further investigations to develop optimal therapy based on accurate diagnosis of resistant mechanism are warranted to improve the prognosis of EGFR mutant lung cancer.
Keywords: Acquired resistance, EGFR mutation, gene amplification, lung cancer, tyrosine kinase inhibitor, HGF, gefitinib, erlotinib, intrinsic resistance, T790M mutation, Met amplification, fibroblasts, microenvironment, EGFR-TKI, ErbB3, PI3K, Akt
Current Signal Transduction Therapy
Title: HGF-MET in Resistance to EGFR Tyrosine Kinase Inhibitors in Lung Cancer
Volume: 6 Issue: 2
Author(s): Seiji Yano, Wei Wang, Qi Li, Tadaaki Yamada, Shinji Takeuchi, Kunio Matsumoto, Yasuhiko Nishioka and Saburo Sone
Affiliation:
Keywords: Acquired resistance, EGFR mutation, gene amplification, lung cancer, tyrosine kinase inhibitor, HGF, gefitinib, erlotinib, intrinsic resistance, T790M mutation, Met amplification, fibroblasts, microenvironment, EGFR-TKI, ErbB3, PI3K, Akt
Abstract: The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), gefitinib and erlotinib, show dramatic effects against non-small cell lung cancer (NSCLC) with EGFR activating mutations. However, 25% – 30% of EGFR mutant lung cancer patients show intrinsic resistance, and the responders almost invariably acquire resistance to EGFR-TKIs within several years. Three mechanisms — second-site point mutation that substitutes methionine for threonine at position 790 (T790M) in EGFR, amplification of MET protooncogene, and overexpression of hepatocyte growth factor (HGF, a ligand of MET) — have been reported to contribute to resistance to EGFR-TKIs. These three factors were detected simultaneously in a population of patients with acquired resistance to EGFR-TKIs. Further investigations to develop optimal therapy based on accurate diagnosis of resistant mechanism are warranted to improve the prognosis of EGFR mutant lung cancer.
Export Options
About this article
Cite this article as:
Yano Seiji, Wang Wei, Li Qi, Yamada Tadaaki, Takeuchi Shinji, Matsumoto Kunio, Nishioka Yasuhiko and Sone Saburo, HGF-MET in Resistance to EGFR Tyrosine Kinase Inhibitors in Lung Cancer, Current Signal Transduction Therapy 2011; 6 (2) . https://dx.doi.org/10.2174/157436211795659928
DOI https://dx.doi.org/10.2174/157436211795659928 |
Print ISSN 1574-3624 |
Publisher Name Bentham Science Publisher |
Online ISSN 2212-389X |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Profilin 1 Potentiates Apoptosis Induced by Staurosporine in Cancer Cells
Current Molecular Medicine Synthesis and Antitumoral Evaluation of 7-chloro-4-quinolinylhydrazones Derivatives
Medicinal Chemistry Bioinformatic Analysis of HIV-1 Entry and Pathogenesis
Current HIV Research Imaging of HER-2 Overexpression in Tumors for Guiding Therapy
Current Pharmaceutical Design Better Targeting Melanoma: Options Beyond Surgery and Conventional Chemotherapy
Recent Patents on Endocrine, Metabolic & Immune Drug Discovery (Discontinued) EGFR(S) Inhibitors in the Treatment of Gastro-Intestinal Cancers: Whats New?
Current Drug Targets Patent Selections
Recent Patents on Endocrine, Metabolic & Immune Drug Discovery (Discontinued) Fluorescent Immortalized Human Adipose Derived Stromal Cells (hASCs-TS/GFP+) for Studying Cell Drug Delivery Mediated by Microvesicles
Anti-Cancer Agents in Medicinal Chemistry Potential Utility of Mycobacterium w Vaccine in Control of Tuberculosis
Current Respiratory Medicine Reviews Modulation of pRb/E2F Functions in the Regulation of Cell Cycle and in Cancer
Current Cancer Drug Targets Design, Synthesis, and Evaluation of (2-(Pyridinyl)methylene)-1-tetralone Chalcones for Anticancer and Antimicrobial Activity
Medicinal Chemistry Biology of Cox-2: An Application in Cancer Therapeutics
Current Drug Targets Histone Deacetylase Inhibitors as Potent Modulators of Cellular Contacts
Current Drug Targets Regulation of Mitochondrial Function and its Impact in Metabolic Stress
Current Medicinal Chemistry The Pharmacological Treatment of Cachexia
Current Drug Targets Protein-protein Interactions: Network Analysis and Applications in Drug Discovery
Current Pharmaceutical Design The Novel VEGF<sub>121</sub>-VEGF<sub>165</sub> Fusion Attenuates Angiogenesis and Drug Resistance via Targeting VEGFR2-HIF-1α-VEGF<sub>165</sub>/Lon Signaling Through PI3K-AKT-mTOR Pathway
Current Cancer Drug Targets Current Trends in the Chemotherapy of Colorectal Cancer
Current Medicinal Chemistry Metalloproteinases Suppression Driven by the Curcumin Analog DM-1 Modulates Invasion in BRAF-Resistant Melanomas
Anti-Cancer Agents in Medicinal Chemistry Cytotoxic Potential of Phenothiazines
Current Drug Targets