Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Using PET Studies of P-gp Function to Elucidate Mechanisms Underlying the Disposition of Drugs

Author(s): Stina Syvanen and Margareta Hammarlund-Udenaes

Volume 10, Issue 17, 2010

Page: [1799 - 1809] Pages: 11

DOI: 10.2174/156802610792927997

Price: $65

Abstract

This paper discusses the basic principles of drug/P-glycoprotein (P-gp) interaction, focusing on the methodology and design of positron emission tomography (PET) studies investigating P-gp function. The requirements of a good PET P-gp radiotracer are also evaluated. (R)-[11C]verapamil is used as an example, as this drug is the most common tracer for P-gp studies, but [11C]loperamide, [11C]desmethyl-loperamide and other compounds are also mentioned. The article also discusses the various study designs that can be used for PET drug disposition studies, such as administration of the inhibitor before or after the radiolabeled drug (tracer) and the use of bolus injections or infusions. Concepts such as the unbound partition coefficient (Kp,uu) and the volume of distribution of unbound drug in brain (Vu,brain), which are not easily measured directly with PET, can be used to describe the impact of protein binding and non-specific binding on drug distribution in brain tissue. It is concluded that new imaging probes will be required if the role of PET in studies of the interactions of drugs with efflux transporters is to expand.

Keywords: P-glycoprotein, PET, study design, pharmacokinetics, blood-brain barrier, active transport, efflux pumps, drug interactions


Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy