Abstract
Polymersomes are one of the most interesting and versatile architectures among various self assembled systems for drug delivery. The stability and ability to load both hydrophilic and hydrophobic molecules make them excellent candidates to use as drug delivery systems. They demand for certain physicochemical parameters; especially hydrophilic to hydrophobic block ratio of copolymer to form vesicular morphologies. Different amphiphilic copolymers as well as their architectures show differences in the requirement of hydrophilic to hydrophobic block ratio to form polymersomes with various types of morphologies. This review focuses on basic aspects of polymersomes along with a series of copolymers employed for preparation of polymersomes and their potential applications as drug delivery systems.
Keywords: Self assembly, polymers, PEG-PLA, (PEG)3-PLA, polymersomes, polymeric vesicles, stimuli responsive, drug delivery, on-togenesis, embryonal (prenatal), Hb (HbE), foetal Hb (HbF), adult Hb (HbA), HbA, ferritin (Fer), hemosiderin, Stores regulator, Dietary regulator, Erythropoetic (Erythroid) regulator
Current Pharmaceutical Design
Title: Self Assembling Polymers as Polymersomes for Drug Delivery
Volume: 17 Issue: 1
Author(s): Jay Prakash Jain, Wubeante Yenet Ayen and Neeraj Kumar
Affiliation:
Keywords: Self assembly, polymers, PEG-PLA, (PEG)3-PLA, polymersomes, polymeric vesicles, stimuli responsive, drug delivery, on-togenesis, embryonal (prenatal), Hb (HbE), foetal Hb (HbF), adult Hb (HbA), HbA, ferritin (Fer), hemosiderin, Stores regulator, Dietary regulator, Erythropoetic (Erythroid) regulator
Abstract: Polymersomes are one of the most interesting and versatile architectures among various self assembled systems for drug delivery. The stability and ability to load both hydrophilic and hydrophobic molecules make them excellent candidates to use as drug delivery systems. They demand for certain physicochemical parameters; especially hydrophilic to hydrophobic block ratio of copolymer to form vesicular morphologies. Different amphiphilic copolymers as well as their architectures show differences in the requirement of hydrophilic to hydrophobic block ratio to form polymersomes with various types of morphologies. This review focuses on basic aspects of polymersomes along with a series of copolymers employed for preparation of polymersomes and their potential applications as drug delivery systems.
Export Options
About this article
Cite this article as:
Prakash Jain Jay, Yenet Ayen Wubeante and Kumar Neeraj, Self Assembling Polymers as Polymersomes for Drug Delivery, Current Pharmaceutical Design 2011; 17 (1) . https://dx.doi.org/10.2174/138161211795049822
DOI https://dx.doi.org/10.2174/138161211795049822 |
Print ISSN 1381-6128 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4286 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
L-Thyroxine Acts as a Hormone as well as a Prohormone at the Cell Membrane
Immunology, Endocrine & Metabolic Agents in Medicinal Chemistry (Discontinued) Nanotechnology in Neuroscience and its Perspective as Gene Carrier
Current Topics in Medicinal Chemistry Design and Virtual Screening Towards Synthesis of Novel Substituted Thiosemicarbozones as Ribonuleotide Reductase (RNR) Inhibitors with Improved Cellular Trafficking and Anticancer Activity
Current Topics in Medicinal Chemistry Curcumin and Curcumin-like Molecules: From Spice to Drugs
Current Medicinal Chemistry Development of HIV Reservoir Targeted Long Acting Nanoformulated Antiretroviral Therapies
Current Medicinal Chemistry Recent Developments in Patented DC-Based Immunotherapy for Various Malignancies
Recent Patents on Regenerative Medicine Apoptosis in Drug Response
Current Pharmacogenomics Clinical Applicability of Conditioning Techniques in Ischemia-Reperfusion Injury: A Review of the Literature
Current Cardiology Reviews The Blood-Brain Barrier: Its Influence in the Treatment of Brain Tumors Metastases
Current Cancer Drug Targets Modulation of Gene Transcription by Natural Products - A Viable Anticancer Strategy
Current Pharmaceutical Design CD248: Reviewing its Role in Health and Disease
Current Drug Targets Therapy Based on the Regulation of Thiol-dependent Redox Systems
Current Medicinal Chemistry The Interaction of Histone Deacetylase Inhibitors and DNA Methyltransferase Inhibitors in the Treatment of Human Cancer Cells
Current Medicinal Chemistry - Anti-Cancer Agents Bacteria and Bacterial Toxins as Therapeutic Agents for Solid Tumors
Current Cancer Drug Targets Advances in the Development of Class I Phosphoinositide 3-Kinase (PI3K) Inhibitors
Current Topics in Medicinal Chemistry Anti-Cancer Effects of a New Docosahexaenoic Acid Monoacylglyceride in Lung Adenocarcinoma
Recent Patents on Anti-Cancer Drug Discovery Regulatable Gene Expression Systems for Gene Therapy
Current Gene Therapy Nitric Oxide Synthase Potentiates the Resistance of Cancer Cell Lines to Anticancer Chemotherapeutics
Anti-Cancer Agents in Medicinal Chemistry Inventions Designed to Enhance Drug Delivery Across Epithelial and Endothelial Cells Through the Paracellular Pathway
Recent Patents on Drug Delivery & Formulation Therapeutic Potential of Herbal Molecules against Breast Cancer
Current Nutrition & Food Science