Abstract
The ability of an animal, normally dependent on aerobic respiration, to suspend breathing and enter an anoxic state for long term survival is clearly a fascinating feat, and has been the focus of numerous biochemical studies. When anoxia tolerant turtles are faced with periods of oxygen deprivation, numerous physiological and biochemical alterations take place in order to facilitate vital reductions in ATP consumption. Such strategies include reversible post-translational modifications as well as the implementation of translation and transcription controls facilitating metabolic depression. Although it is clear that anoxic survival relies on the suppression of ATP consuming processes, the state of the cell cycle in anoxia tolerant vertebrates remain elusive. Several anoxia tolerant invertebrate and embryonic vertebrate models display cell cycle arrest when presented with anoxic stress. Despite this, the cell cycle has not yet been characterized for anoxia tolerant turtles. Understanding how vertebrates respond to anoxia can have important clinical implications. Uncontrollable cellular proliferation and hypoxic tumor progression are inescapably linked in vertebrate tissues. Consequentially, the molecular mechanisms controlling these processes have profound clinical consequences. This review article will discuss the theory of cell cycle arrest in anoxic vertebrates and more specifically, the control of the retinoblastoma pathway, the molecular markers of cell cycle arrest, the activation of checkpoint kinases, and the possibility of translational controls implemented by microRNAs.
Keywords: Cell cycle, microRNA, anoxia tolerance, retinoblastoma, ischemia, chromatin remodeling, Trachemys scripta elegans
Current Genomics
Title: Perspectives in Cell Cycle Regulation: Lessons from an Anoxic Vertebrate
Volume: 10 Issue: 8
Author(s): Kyle K. Biggar and Kenneth B. Storey
Affiliation:
Keywords: Cell cycle, microRNA, anoxia tolerance, retinoblastoma, ischemia, chromatin remodeling, Trachemys scripta elegans
Abstract: The ability of an animal, normally dependent on aerobic respiration, to suspend breathing and enter an anoxic state for long term survival is clearly a fascinating feat, and has been the focus of numerous biochemical studies. When anoxia tolerant turtles are faced with periods of oxygen deprivation, numerous physiological and biochemical alterations take place in order to facilitate vital reductions in ATP consumption. Such strategies include reversible post-translational modifications as well as the implementation of translation and transcription controls facilitating metabolic depression. Although it is clear that anoxic survival relies on the suppression of ATP consuming processes, the state of the cell cycle in anoxia tolerant vertebrates remain elusive. Several anoxia tolerant invertebrate and embryonic vertebrate models display cell cycle arrest when presented with anoxic stress. Despite this, the cell cycle has not yet been characterized for anoxia tolerant turtles. Understanding how vertebrates respond to anoxia can have important clinical implications. Uncontrollable cellular proliferation and hypoxic tumor progression are inescapably linked in vertebrate tissues. Consequentially, the molecular mechanisms controlling these processes have profound clinical consequences. This review article will discuss the theory of cell cycle arrest in anoxic vertebrates and more specifically, the control of the retinoblastoma pathway, the molecular markers of cell cycle arrest, the activation of checkpoint kinases, and the possibility of translational controls implemented by microRNAs.
Export Options
About this article
Cite this article as:
Biggar K. Kyle and Storey B. Kenneth, Perspectives in Cell Cycle Regulation: Lessons from an Anoxic Vertebrate, Current Genomics 2009; 10 (8) . https://dx.doi.org/10.2174/138920209789503905
DOI https://dx.doi.org/10.2174/138920209789503905 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Genetic Abnormalities in Prostate Cancer
Current Genomics Immunophilins in Nervous System Degeneration and Regeneration
Current Topics in Medicinal Chemistry Quinoxalinone as a Privileged Platform in Drug Development
Mini-Reviews in Medicinal Chemistry The Role of local Insulin-like Growth Factor-1 Isoforms in the Pathophysiology of Skeletal Muscle
Current Genomics BRCA1-Associated Triple-Negative Breast Cancer and Potential Treatment for Ruthenium-Based Compounds
Current Cancer Drug Targets An Overview of Nanoformulated Nutraceuticals and their Therapeutic Approaches
Current Nutrition & Food Science Possible Role of DNA Methylation in the Induction of Systemic Lupus Erythematosus
Current Rheumatology Reviews In-Situ Hybridization as a Molecular Tool in Cancer Diagnosis and Treatment
Current Medicinal Chemistry The Role Oxidative Stress in the Pathogenesis of Eye Diseases: Currnt Status and a Dual Role of Physical Activity
Mini-Reviews in Medicinal Chemistry Molecular and Enzymatic Profiles of Mammalian DNA Methyltransferases: Structures and Targets for Drugs
Current Medicinal Chemistry Network Pharmacology of Glioblastoma
Current Drug Discovery Technologies Histone Acetyltransferases in Plant Development and Plasticity
Current Genomics Chemotherapy and Target Therapy in the Management of Adult High- Grade Gliomas
Current Cancer Drug Targets Standards and Novel Therapeutic Options in the Treatment of Patients with Soft Tissue Sarcoma
Reviews on Recent Clinical Trials Heat Shock Proteins as Prognostic Markers of Cancer
Current Cancer Drug Targets The Synergistic Cytotoxic and Apoptotic Effect of Resveratrol and Naringenin on Y79 Retinoblastoma Cell Line
Anti-Cancer Agents in Medicinal Chemistry The RING-Finger Protein Haprin: Domains and Function in the Acrosome Reaction
Current Protein & Peptide Science Pathobiology and Prevention of Cancer Chemotherapy-Induced Bone Growth Arrest, Bone Loss, and Osteonecrosis
Current Molecular Medicine CD26/Dipeptidyl Peptidase IV as a Novel Therapeutic Target for Cancer and Immune Disorders
Mini-Reviews in Medicinal Chemistry Microbubble-Assisted p53, RB, and p130 Gene Transfer in Combination with Radiation Therapy in Prostate Cancer
Current Gene Therapy