Abstract
The Transforming Growth Factor (TGF)-β-Smad signaling pathway regulates diverse biological processes essential for normal development and homeostasis. The Smad-interacting transcriptional modulator SnoN and its related homologs have emerged as important modulators of TGF-β signaling and responses. SnoN forms a physical complex with the TGF-β-regulated Smad2/Smad3 and co-Smad4 proteins and either represses or stimulates TGF-β-induced Smad-dependent transcription in a cell- and promoter-specific manner. In addition, the TGF-β-activated Smads recruit several ubiquitin ligases to SnoN and thereby promote the ubiquitination and consequent degradation of SnoN. Additional modifications of SnoN, including sumoylation, may contribute to the regulation of SnoN function and its role in TGF-β signaling. Collectively, these studies suggest that SnoN function is intimately linked to the TGF-β-Smad pathway in cellular signaling. Although the mechanisms by which SnoN modulates signaling in the TGF-β-Smad pathway are beginning to be characterized, the full range of SnoN functions and underlying mechanisms in normal development and disease processes remains to be elucidated.
Keywords: SnoN, Ski, TGF-β, Smad, signaling, transcription control, cell cycle, cancer
Current Molecular Medicine
Title: SnoN in TGF-β Signaling and Cancer Biology
Volume: 8 Issue: 4
Author(s): Isabelle Pot and Shirin Bonni
Affiliation:
Keywords: SnoN, Ski, TGF-β, Smad, signaling, transcription control, cell cycle, cancer
Abstract: The Transforming Growth Factor (TGF)-β-Smad signaling pathway regulates diverse biological processes essential for normal development and homeostasis. The Smad-interacting transcriptional modulator SnoN and its related homologs have emerged as important modulators of TGF-β signaling and responses. SnoN forms a physical complex with the TGF-β-regulated Smad2/Smad3 and co-Smad4 proteins and either represses or stimulates TGF-β-induced Smad-dependent transcription in a cell- and promoter-specific manner. In addition, the TGF-β-activated Smads recruit several ubiquitin ligases to SnoN and thereby promote the ubiquitination and consequent degradation of SnoN. Additional modifications of SnoN, including sumoylation, may contribute to the regulation of SnoN function and its role in TGF-β signaling. Collectively, these studies suggest that SnoN function is intimately linked to the TGF-β-Smad pathway in cellular signaling. Although the mechanisms by which SnoN modulates signaling in the TGF-β-Smad pathway are beginning to be characterized, the full range of SnoN functions and underlying mechanisms in normal development and disease processes remains to be elucidated.
Export Options
About this article
Cite this article as:
Pot Isabelle and Bonni Shirin, SnoN in TGF-β Signaling and Cancer Biology, Current Molecular Medicine 2008; 8 (4) . https://dx.doi.org/10.2174/156652408784533797
DOI https://dx.doi.org/10.2174/156652408784533797 |
Print ISSN 1566-5240 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5666 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Regulatory T Cells and Skin Tumors
Recent Patents on Inflammation & Allergy Drug Discovery Molecular Analysis of the In Vivo Metabolism and Biodistribution of Metabolically and Non-Metabolically Activated Combi-Molecules of the Triazene Class
Drug Metabolism Letters Design of Fucoidan Functionalized - Iron Oxide Nanoparticles for Biomedical Applications
Current Drug Delivery Role of Osmolytes in Regulating Immune System
Current Pharmaceutical Design Adenosine Receptors: What We Know and What We are Learning
Current Topics in Medicinal Chemistry Hsp90 Inhibitor Geldanamycin and Its Derivatives as Novel Cancer Chemotherapeutic Agents
Current Pharmaceutical Design Targeting of Hsp32 in Solid Tumors and Leukemias: A Novel Approach to Optimize Anticancer Therapy (Supplementry Material)
Current Cancer Drug Targets Chemometric Evaluation of the Significance of Molecular Structural Descriptors on Binding of Acridinone Derivatives to DNA
Letters in Drug Design & Discovery Regulation of Hypoxia-inducible Factor-1α and Vascular Endothelial Growth Factor Signaling by Plant Flavonoids
Mini-Reviews in Medicinal Chemistry Changes in and Impact of the Death Review Process in the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial
Reviews on Recent Clinical Trials The Mouse In Cancer Research Past, Present, Future
Current Genomics Occupational Risk Assessment of Engineered Nanomaterials: Limits, Challenges and Opportunities
Current Nanoscience Antiproliferative Effects of Molecular Iodine in Cancers
Current Chemical Biology Recent Advances in the Identification of Genetic and Biochemical Components of Breast Cancer Predisposition
Current Genomics Evolution of Ipsilateral Head and Neck Radiotherapy
Current Cancer Therapy Reviews Peptides to Target Tumor Vasculature and Lymphatics for Improved Anti-Angiogenesis Therapy
Current Cancer Drug Targets Sirtuins: Novel Players in Male Reproductive Health
Current Medicinal Chemistry MicroRNA-31 Inhibits Lung Adenocarcinoma Stem-Like Cells via Down-Regulation of MET-PI3K-Akt Signaling Pathway
Anti-Cancer Agents in Medicinal Chemistry Effect of Selenium Enrichment of <i>Lenzites betulinus</i> and <i>Trametes hirsuta</i> Mycelia on Antioxidant, Antifungal and Cytostatics Potential
Current Pharmaceutical Biotechnology Therapeutic Potential of Janus Kinase 3 (JAK3) Inhibitors
Current Pharmaceutical Design