Abstract
Tuberculosis (TB) kills more youth and adults than any other infectious disease in the world today. The emergence of new strains of Mycobacterium tuberculosis resistant to some or all current antituberculosis drugs is a serious and crescent problem. The resistance is often a corollary to HIV infection and drug-resistant TB is more difficult and more expensive to treat, besides to be more likely fatal. Thus, it is still necessary to search for new antimycobacterial agents. The identification of novel targets need the identification of biochemical pathways specific to mycobacteria and related organisms. Many unique metabolic processes occur during the biosynthesis of mycobacterial cell wall components. In this report, we examine one of these attractive targets for the rational design of new antituberculosis agents - the mycolic acids.