Abstract
The ability to silence specific genes of choice consistently and efficiently has always been a major goal for scientists. The emerging field of RNA interference (RNAi), a process in which target mRNAs are degraded by small interfering RNA (siRNA), may indeed provide this long sought after tool. The importance of this technology has been highlighted recently by Science, which has voted the RNAi discoveries as the “ & ;Breakthrough of the Year” in 2002. Essentially, RNAi involves an initiation and an effector step whereby introduced dsRNA is digested into 19-21 duplex siRNA by cleavage with Dicer and siRNA binds to an RNA-induced silencing complex (RISC). Activation of RISC targets the homologous sequence (transcript) and results in the cleavage of mRNA. The models of this RNAi mechanism and its applications, derived from biochemical and genetic approaches, are described in this minireview. So far, RNAi has proven to be a useful technique for genomic studies in C.elegans, D.melanogaster and various plants, for example. The use of RNAi has also been invaluable in studies in which morphological and developmental variability between species was investigated. Targeted, sequence specific siRNAs that suppress or silence gene expression have the potential to be in great demand as tools for for the treatment of human disease. There have already been several studies that have utilized siRNA to inhibit HIV-1 infection and replication, for example. The expansion of RNAi for biomedical therapeutics seems inevitable. This minireview analytically summarizes the advantages and the current and future potential of RNAi technology whilst simultaneously investigating any shortfalls or difficulties. Importantly, in vitro and in vivo applications in the laboratory and in human disease models are also described.
Keywords: sirna, rnai, co-suppression, ptgs
Current Genomics
Title: Silence of the Genes: A Targeted Approach to the Suppression of Specific Genes in Human Disease Using Small Interfering RNA (siRNA)
Volume: 4 Issue: 7
Author(s): Jim Apostolopoulos
Affiliation:
Keywords: sirna, rnai, co-suppression, ptgs
Abstract: The ability to silence specific genes of choice consistently and efficiently has always been a major goal for scientists. The emerging field of RNA interference (RNAi), a process in which target mRNAs are degraded by small interfering RNA (siRNA), may indeed provide this long sought after tool. The importance of this technology has been highlighted recently by Science, which has voted the RNAi discoveries as the “ & ;Breakthrough of the Year” in 2002. Essentially, RNAi involves an initiation and an effector step whereby introduced dsRNA is digested into 19-21 duplex siRNA by cleavage with Dicer and siRNA binds to an RNA-induced silencing complex (RISC). Activation of RISC targets the homologous sequence (transcript) and results in the cleavage of mRNA. The models of this RNAi mechanism and its applications, derived from biochemical and genetic approaches, are described in this minireview. So far, RNAi has proven to be a useful technique for genomic studies in C.elegans, D.melanogaster and various plants, for example. The use of RNAi has also been invaluable in studies in which morphological and developmental variability between species was investigated. Targeted, sequence specific siRNAs that suppress or silence gene expression have the potential to be in great demand as tools for for the treatment of human disease. There have already been several studies that have utilized siRNA to inhibit HIV-1 infection and replication, for example. The expansion of RNAi for biomedical therapeutics seems inevitable. This minireview analytically summarizes the advantages and the current and future potential of RNAi technology whilst simultaneously investigating any shortfalls or difficulties. Importantly, in vitro and in vivo applications in the laboratory and in human disease models are also described.
Export Options
About this article
Cite this article as:
Apostolopoulos Jim, Silence of the Genes: A Targeted Approach to the Suppression of Specific Genes in Human Disease Using Small Interfering RNA (siRNA), Current Genomics 2003; 4 (7) . https://dx.doi.org/10.2174/1389202033490178
DOI https://dx.doi.org/10.2174/1389202033490178 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
P53 Family: At the Crossroads in Cancer Therapy
Current Medicinal Chemistry Synthesis and Anti-cancer Activity of 3-substituted Benzoyl-4-substituted Phenyl-1H-pyrrole Derivatives
Anti-Cancer Agents in Medicinal Chemistry A Review Exploring Therapeutic Worth of 1,3,4-Oxadiazole Tailored Compounds
Mini-Reviews in Medicinal Chemistry E-Cadherin Upregulation as a Therapeutic Goal in Cancer Treatment
Mini-Reviews in Medicinal Chemistry Organoselenium Compounds in Cancer Chemoprevention
Mini-Reviews in Medicinal Chemistry Meet Our Editorial Board Member:
Current Medicinal Chemistry Gene Therapy: Optimising DNA Delivery to the Nucleus
Current Drug Targets Gene Therapy for the Peripheral Nervous System: A Strategy to Repair the Injured Nerve?
Current Gene Therapy Polynuclear Ruthenium, Osmium and Gold Complexes. The Quest for Innovative Anticancer Chemotherapeutics
Current Topics in Medicinal Chemistry HIV-1 TAT and IMMUNE DYSREGULATION in AIDS PATHOGENESIS: a THERAPEUTIC TARGET
Current Drug Targets A Review on Recent Technologies and Patents on Silica Nanoparticles for Cancer Treatment and Diagnosis
Recent Patents on Drug Delivery & Formulation Tumor-Targeted Inhibition by a Novel Strategy - Mimoretrovirus Expressing siRNA Targeting the Pokemon Gene
Current Cancer Drug Targets Clonetics
Current Drug Metabolism Effect of Administration Route on the Biodistribution and Shedding of Replication-Deficient AAV2: A Qualitative Modelling Approach
Current Gene Therapy Association between MTHFR Gene Polymorphism and the Risk of Ovarian Cancer: A Meta-analysis of the Literature
Current Pharmaceutical Design Therapeutic Benefit and Biological Importance of Ginkgetin in the Medicine: Medicinal Importance, Pharmacological Activities and Analytical Aspects
Current Bioactive Compounds Reactive Oxygen Species, Cancer and Anti-Cancer Therapies
Current Chemical Biology Predictive Efficacy Biomarkers of Programmed Cell Death 1/Programmed Cell Death 1 Ligand Blockade Therapy
Recent Patents on Anti-Cancer Drug Discovery Target Based Virtual Screening of New Leads Inhibitor against Bacterial Cell Division Protein FtsZ for the Discovery of Antibacterial Agents
Medicinal Chemistry Implication of Gastric Cancer Molecular Genetic Markers in Surgical Practice
Current Genomics