Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Local Ca2+ Signals in Cellular Signalling

Author(s): N. Macrez and J. Mironneau

Volume 4, Issue 3, 2004

Page: [263 - 275] Pages: 13

DOI: 10.2174/1566524043360762

Price: $65

Abstract

Local Ca2+ rises and propagated Ca2+ signals represent different patterns that are differentially decoded for fine tuning cellular signalling. This Ca2+ concentration plasticity is absolutely required to allow adaptation to different needs of the cells ranging from contraction or increased learning to proliferation and cell death. A wide diversity of molecular structures and specific location of Ca2+ signalling molecules confer spatial and temporal versatility to the Ca2+ changes allowing specific cellular responses to be elicited. Various types of local Ca2+ signals have been described. Ca2+ spikes correspond to Ca2+ signals spanning several micrometers but displaying limited propagation into a cell leading to regulation of cellular functions in one particular zone of this cell. This is of particular relevance in cells presenting distinct morphological specializations, i.e. apical versus basal sites or dendritic versus somatic / axonal sites. More stereotyped elementary Ca2+ events (denominated Ca2+ sparks or Ca2+ puffs depending on the type of endoplasmic reticulum Ca2+ release channel involved) are highly confined and nonpropagated Ca2+ rises which are observed in the close neighbouring of the Ca2+ channels. These elementary Ca2+ events play a major role in controlling cellular excitability. Elementary Ca2+ events involve Ca2+ release channels such as the ryanodine receptors (RyRs) and the inositol 1,4,5-trisphosphate receptors (InsP3Rs). The molecular bases underlying the various local Ca2+ release events will be discussed by reviewing the channels and particularly the different isoforms of RyRs and InsP3Rs and their role in inducing localized Ca2+ responses. These calcium release events are controlled by various second messengers and are regulated by Ca2+ channel-associated proteins, intra-luminal Ca2+ content of the endoplasmic reticulum (ER) and other Ca2+ organelles. We will discuss on how the control of local cellular Ca2+ content may account for cellular functions in physiological and physiopathological conditions.

Keywords: cellular signalling, ryanodine receptors, inositol 1,4,5-trisphosphate receptors


Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy