Abstract
Craniofacial anomalies, bone defects and cartilage lesions pose a difficult and challenging problem for both the doctor and for patients and their families. Conventional therapies focus on orthopaedic surgery, grafting with autogenous bone, allogenic bone grafts, or distraction osteogenesis. However, the efficacy of these techniques is limited by high cost, donor morbidity, scarcity of tissue resources, and alterations in volume [Marx & Morales, 1988]. On the basis of recent insights into the development, growth, and adaptation of bone, together with the significant advances in recombinant DNA technology, gene therapy is increasingly becoming recognised as an alternative technique for augmenting and promoting bone regeneration in vivo. It can be applied in craniofacial skeletal tissues by transferring genes encoding for specific growth factors such as BMPs in osteoblasts, chondrocytes or progenitor cells for the purpose of enhancing protein production [Scaduto & Lieberman, 1999]. It can be performed by either direct administration of gene delivery vectors, or by transplantation of genetically modified cells. This review will focus on recent advances in molecular mechanisms of bone formation, and development in various viral and non-viral vectors for direct in vivo therapeutic gene transfer and genetically engineered cells ex vivo therapy.
Keywords: craniofacial malformation, matrix-based therapies, polylactide-co-glycolide, ossification, osteoblasts
Current Gene Therapy
Title: Alternative Gene Therapy Strategies for the Repair of Craniofacial Bone Defects
Volume: 4 Issue: 4
Author(s): Juan Dai, A. B. M. Rabie, U. Hagg and Ruian Xu
Affiliation:
Keywords: craniofacial malformation, matrix-based therapies, polylactide-co-glycolide, ossification, osteoblasts
Abstract: Craniofacial anomalies, bone defects and cartilage lesions pose a difficult and challenging problem for both the doctor and for patients and their families. Conventional therapies focus on orthopaedic surgery, grafting with autogenous bone, allogenic bone grafts, or distraction osteogenesis. However, the efficacy of these techniques is limited by high cost, donor morbidity, scarcity of tissue resources, and alterations in volume [Marx & Morales, 1988]. On the basis of recent insights into the development, growth, and adaptation of bone, together with the significant advances in recombinant DNA technology, gene therapy is increasingly becoming recognised as an alternative technique for augmenting and promoting bone regeneration in vivo. It can be applied in craniofacial skeletal tissues by transferring genes encoding for specific growth factors such as BMPs in osteoblasts, chondrocytes or progenitor cells for the purpose of enhancing protein production [Scaduto & Lieberman, 1999]. It can be performed by either direct administration of gene delivery vectors, or by transplantation of genetically modified cells. This review will focus on recent advances in molecular mechanisms of bone formation, and development in various viral and non-viral vectors for direct in vivo therapeutic gene transfer and genetically engineered cells ex vivo therapy.
Export Options
About this article
Cite this article as:
Dai Juan, M. Rabie B. A., Hagg U. and Xu Ruian, Alternative Gene Therapy Strategies for the Repair of Craniofacial Bone Defects, Current Gene Therapy 2004; 4 (4) . https://dx.doi.org/10.2174/1566523043346039
DOI https://dx.doi.org/10.2174/1566523043346039 |
Print ISSN 1566-5232 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5631 |
Call for Papers in Thematic Issues
Programmed Cell Death Genes in Oncology: Pioneering Therapeutic and Diagnostic Frontiers (BMS-CGT-2024-HT-45)
Programmed Cell Death (PCD) is recognized as a pivotal biological mechanism with far-reaching effects in the realm of cancer therapy. This complex process encompasses a variety of cell death modalities, including apoptosis, autophagic cell death, pyroptosis, and ferroptosis, each of which contributes to the intricate landscape of cancer development and ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Inhibitor Binding to Hsp90: A Review of Thermodynamic, Kinetic, Enzymatic, and Cellular Assays
Current Protein & Peptide Science Selenium in the Therapy of Neurological Diseases. Where is it Going?
Current Neuropharmacology Structure-Based Virtual Screening for the Identification of High Affinity Compounds as Potent VEGFR2 Inhibitors for the Treatment of Renal Cell Carcinoma
Current Topics in Medicinal Chemistry Genome and Transcriptome Analysis of Neuroblastoma Advanced Diagnosis from Innovative Therapies
Current Pharmaceutical Design Dual Roles of Sulforaphane in Cancer Treatment
Anti-Cancer Agents in Medicinal Chemistry Vitamin D Receptor Agonists: Opportunities and Challenges in Drug Discovery
Current Topics in Medicinal Chemistry Could Growth Factor-Mediated Extracellular Matrix Deposition and Degradation Offer the Ground for Directed Pharmacological Targeting in Fibrosarcoma?
Current Medicinal Chemistry Double Layered Hydroxides as Potential Anti-Cancer Drug Delivery Agents
Mini-Reviews in Medicinal Chemistry Combined Anticancer Therapies: An Overview of the Latest Applications
Anti-Cancer Agents in Medicinal Chemistry Mechanisms for the Selective Actions of Vitamin D Analogues
Current Pharmaceutical Design The use of Azoles Containing Natural Products in Cancer Prevention and Treatment: An Overview
Anti-Cancer Agents in Medicinal Chemistry Angiogenesis: A Target for Cancer Therapy
Current Pharmaceutical Design The Development of Oncolytic Adenovirus Therapy in the Past and Future - For the Case of Pancreatic Cancer
Current Cancer Drug Targets Lumiflavin Enhances the Effects of Ionising Radiation on Ovarian Cancer Stem-Like Cells by Inhibiting Autophagy
Anti-Cancer Agents in Medicinal Chemistry Extracellular Citrate in Health and Disease
Current Molecular Medicine The Heat Shock Protein 90 Chaperone Complex: An Evolving Therapeutic Target
Current Cancer Drug Targets Biosystems Engineering of Prokaryotes with Tumor-Killing Capacities
Current Pharmaceutical Design Pro-Inflammatory Cytokines: New Potential Therapeutic Targets for Obesity-Related Bone Disorders
Current Drug Targets Methionine-Derived Metabolites in Apoptosis: Therapeutic Opportunities for Inhibitors of their Metabolism in Chemoresistant Cancer Cells
Current Medicinal Chemistry Chemical Constituents and Antitumor Mechanisms of <i>Artemisia</i>
Anti-Cancer Agents in Medicinal Chemistry