Abstract
Cells often respond to viral infection by activating a cellular suicide process, limiting viral replicative potential and hence minimising the spread of the infection. This cellular self-destruction, termed apoptosis, occurs in a tightly regulated, morphologically and biochemically defined manner. To counter this host response to infection, some viruses have evolved molecular strategies to evade apoptosis by encoding proteins that inhibit components of the hosts apoptotic machinery. The first identified member of the p35 family, encoded by an insect virus genome, was cloned by virtue of its ability to inhibit insect cell death induced by viral infection. Many insect viruses carry p35 genes and numerous studies have indicated that p35 proteins can suppress a wide variety of cell death stimuli in cells of evolutionarily divergent organisms. A second member of the p35 family, p49, has also recently been cloned and characterised. Like p35, p49 was originally isolated as an inhibitor of infection mediated insect cell death but can also suppress other apoptotic stimuli. Members of the p35 family suppress apoptosis by inhibiting caspases, a family of cysteine proteases that constitute the effector arm of cell death pathways, through a substrate-inhibitor mechanism. This article reviews the anti-apoptotic capacities of members of the p35 family and the mechanism of action underlying their pro-survival activity. Insights into the molecular regulation of apoptosis gained through experimental approaches exploiting p35 family members are also discussed.
Keywords: apoptosis, baculovirus, caspases, caspase independent
Current Genomics
Title: The p35 Family of Apoptosis Inhibitors
Volume: 5 Issue: 3
Author(s): A. M. Jabbour and C. J. Hawkins
Affiliation:
Keywords: apoptosis, baculovirus, caspases, caspase independent
Abstract: Cells often respond to viral infection by activating a cellular suicide process, limiting viral replicative potential and hence minimising the spread of the infection. This cellular self-destruction, termed apoptosis, occurs in a tightly regulated, morphologically and biochemically defined manner. To counter this host response to infection, some viruses have evolved molecular strategies to evade apoptosis by encoding proteins that inhibit components of the hosts apoptotic machinery. The first identified member of the p35 family, encoded by an insect virus genome, was cloned by virtue of its ability to inhibit insect cell death induced by viral infection. Many insect viruses carry p35 genes and numerous studies have indicated that p35 proteins can suppress a wide variety of cell death stimuli in cells of evolutionarily divergent organisms. A second member of the p35 family, p49, has also recently been cloned and characterised. Like p35, p49 was originally isolated as an inhibitor of infection mediated insect cell death but can also suppress other apoptotic stimuli. Members of the p35 family suppress apoptosis by inhibiting caspases, a family of cysteine proteases that constitute the effector arm of cell death pathways, through a substrate-inhibitor mechanism. This article reviews the anti-apoptotic capacities of members of the p35 family and the mechanism of action underlying their pro-survival activity. Insights into the molecular regulation of apoptosis gained through experimental approaches exploiting p35 family members are also discussed.
Export Options
About this article
Cite this article as:
Jabbour M. A. and Hawkins J. C., The p35 Family of Apoptosis Inhibitors, Current Genomics 2004; 5 (3) . https://dx.doi.org/10.2174/1389202043349417
DOI https://dx.doi.org/10.2174/1389202043349417 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Modulation of Stem Cell Differentiation by the Influence of Nanobiomaterials/ Carriers
Current Stem Cell Research & Therapy Integrins: Novel Therapeutic Targets for Cardiovascular Diseases
Cardiovascular & Hematological Agents in Medicinal Chemistry Antiapoptotic Effect of Novel Compound from Herba leonuri-Leonurine (SCM-198): A Mechanism Through Inhibition of Mitochondria Dysfunction in H9c2 Cells
Current Pharmaceutical Biotechnology The Links Between Sleep Apnea and Chronic Kidney Disease
Current Respiratory Medicine Reviews Erythropoietin and mTOR: A “One-Two Punch” for Aging-Related Disorders Accompanied by Enhanced Life Expectancy
Current Neurovascular Research Biomarkers Determining Cardiovascular Risk in Patients with Kidney Disease
Current Medicinal Chemistry Patent Selections
Recent Patents on Cardiovascular Drug Discovery Cellular FLICE-Like Inhibitory Protein (C-FLIP): A Novel Target for Cancer Therapy
Current Cancer Drug Targets Differences in Bioaccumulation of Essential and Toxic Elements by White and Red Hawthorn
Current Analytical Chemistry Current and Future Pharmaceutical Therapy for Rheumatoid Arthritis
Current Pharmaceutical Design Novel Nanostructured Polymeric Carriers to Enable Drug Delivery for Cardiovascular Diseases
Current Pharmaceutical Design Can Functionally Mature Islet β-Cells be Derived from Pluripotent Stem Cells? A Step Towards Ready-To-Use β-Cells in Type 1 Diabetes
Current Stem Cell Research & Therapy Modulation of Neuro-Inflammation and Vascular Response by Oxidative Stress Following Cerebral Ischemia-Reperfusion Injury
Current Medicinal Chemistry Biological Responses to Hydrogen Molecule and its Preventive Effects on Inflammatory Diseases
Current Pharmaceutical Design Subject Index to Volume 2
Current Medicinal Chemistry - Cardiovascular & Hematological Agents Hypertension and Atrial Fibrillation: Any Change with the New Anticoagulants
Current Pharmaceutical Design Nicotine Addiction and Coronary Artery Disease: Impact of Cessation Interventions
Current Pharmaceutical Design Medicinal Chemistry of Antimigraine Drugs
Current Medicinal Chemistry A Review on Screening Models for Potential Therapeutic Candidates and Targets Against SARS-CoV-2
Current Drug Targets Functions of Fukutin, a Gene Responsible for Fukuyama Type Congenital Muscular Dystrophy, in Neuromuscular System and Other Somatic Organs
Central Nervous System Agents in Medicinal Chemistry