Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

The Eker Rat: Establishing a Genetic Paradigm Linking Renal Cell Carcinoma and Uterine Leiomyoma

Author(s): J. D. Cook and C. L. Walker

Volume 4, Issue 8, 2004

Page: [813 - 824] Pages: 12

DOI: 10.2174/1566524043359656

Price: $65

Abstract

Renal Cell Carcinoma (RCC) and uterine leiomyoma (often referred to as fibroids) are tumors arising from tubular epithelium and myometrial compartments of the kidney and uterus, respectively. These tumors have a very different clinical presentation, with RCC being one of the less common cancers, having a very poor prognosis, and occurring predominantly in men, whereas uterine leiomyoma are the most common tumor of women and are benign. Although they are distinct histologically, with RCC arising from epithelial cells and leiomyoma arising from smooth muscle cells, they share a common embryological origin. Renal tubular epithelial cells arise during nephrogenesis as a result of the mesenchymal-epithelial transition of condensed mesenchyme induced by the developing ureteric bud, and have a shared mesenchymal lineage with smooth muscle cells of the uterus. In addition to a common embryological origin, RCC and leiomyoma have been demonstrated to share a common genetic etiology. The Eker rat model was the first demonstration of a specific genetic linkage between RCC and uterine leiomyoma. Eker rats carry a germline defect in the rat homologue of the tuberous sclerosis complex 2 (TSC-2) tumor suppressor gene and develop spontaneous RCC and uterine leiomyoma with a high frequency. TSC patients are also at risk for RCC, and sporadic human uterine leiomyomas exhibit loss of function of the TSC-2 gene product, tuberin. Individuals with the inherited cancer syndrome hereditary leiomyomatosis and renal cell cancer (HLRCC) that have germline defects in the fumarate hydratase (FH) gene develop papillary RCC and uterine and skin leiomyomas. Benign cutaneous lesions and uterine leiomyoma also arise in German Shepherd dogs with germline mutations in the Birt-Hogg-Dube (BHD) gene, and these animals develop RCC and uterine leiomyoma with a high frequency. Identification of the tumor suppressor genes involved in these diseases, TSC, FH and BHD, and the elucidation of the function of their protein products, tuberin, fumarate hydratase and folliculin, respectively, opens new avenues for understanding the pathogenesis of both RCC and uterine leiomyoma.

Keywords: renal cell carcinoma, metastatic, (tsc-1 and tsc-2) tumor suppressor genes, birt-hogg-dube, birt-hogg-dube syndrome (bhd)


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy