Abstract
The drug delivery system described here is based on a virus like particle consisting of the recombinant expressed major capsid protein of Polyomavirus, VP1. Polyoma, a murine virus belonging to the Papovaviridae, forms a non-enveloped icosahedral capsid. These capsids are organized as a double shell composed of three different proteins: VP1,VP2 and VP3. The outer shell of the vision is composed of 360 VP1 molecules arranged as 72 pentamers. These capsids have a diameter of about 50 nm. The VP1 protein acts as a major ligand for certain membrane receptors during virus infection. Furthermore, the N-terminus of the VP1 protein contains a DNA-binding domain and a nuclear localization sequence. The recombinant production of the VP1 protein offers a save way to obtain a highly purified, non-pathogenic pharmaceutical excipient. Combining these aspects, VP1 proteins provide a targeting as well as a drug binding site when used as a save drug carrier for gene therapy. Current applications are also including oligonucleotides as well as small molecules as well as vaccines.
Keywords: artificial virus, virus like particle, vp1 capsids, drug delivery system
Current Pharmaceutical Biotechnology
Title: Recombinant Virus Like Particles as Drug Delivery System
Volume: 6 Issue: 1
Author(s): Christiane Georgens, Jorg Weyermann and Andreas Zimmer
Affiliation:
Keywords: artificial virus, virus like particle, vp1 capsids, drug delivery system
Abstract: The drug delivery system described here is based on a virus like particle consisting of the recombinant expressed major capsid protein of Polyomavirus, VP1. Polyoma, a murine virus belonging to the Papovaviridae, forms a non-enveloped icosahedral capsid. These capsids are organized as a double shell composed of three different proteins: VP1,VP2 and VP3. The outer shell of the vision is composed of 360 VP1 molecules arranged as 72 pentamers. These capsids have a diameter of about 50 nm. The VP1 protein acts as a major ligand for certain membrane receptors during virus infection. Furthermore, the N-terminus of the VP1 protein contains a DNA-binding domain and a nuclear localization sequence. The recombinant production of the VP1 protein offers a save way to obtain a highly purified, non-pathogenic pharmaceutical excipient. Combining these aspects, VP1 proteins provide a targeting as well as a drug binding site when used as a save drug carrier for gene therapy. Current applications are also including oligonucleotides as well as small molecules as well as vaccines.
Export Options
About this article
Cite this article as:
Georgens Christiane, Weyermann Jorg and Zimmer Andreas, Recombinant Virus Like Particles as Drug Delivery System, Current Pharmaceutical Biotechnology 2005; 6 (1) . https://dx.doi.org/10.2174/1389201053167202
DOI https://dx.doi.org/10.2174/1389201053167202 |
Print ISSN 1389-2010 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4316 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Experimental Strategies in Autoimmunity: Antagonists of Cytokines and their Receptors, Nanocarriers, Inhibitors of Immunoproteasome, Leukocyte Migration and Protein Kinases
Current Pharmaceutical Design Transgenic Mice as a Model for Alzheimers Disease
Current Alzheimer Research A Review on Clinical Pharmacokinetics, Pharmacodynamics, and Pharmacogenomics of Natalizumab: A Humanized Anti-α4 Integrin Monoclonal Antibody
Current Drug Metabolism Immune Thrombocytopenic Purpura: New Biological Therapy of an Old Disease
Current Medicinal Chemistry STAT3 and Its Phosphorylation are Involved in HIV-1 Tat-Induced Transactivation of Glial Fibrillary Acidic Protein
Current HIV Research Cerebrovascular Diseases in HIV-Infected Patients
Current HIV Research Role of microRNAs on Blood Brain Barrier Dysfunction in Vascular Cognitive Impairment
Current Drug Delivery Nuclear Magnetic Resonance Spectroscopy and Genetic Disorders
Current Medicinal Chemistry Brain Innate Immunity in the Regulation of Neuroinflammation: Therapeutic Strategies by Modulating CD200-CD200R Interaction Involve the Cannabinoid System
Current Pharmaceutical Design Prediction of Disease-Related Genes Based on Hybrid Features
Current Proteomics The Importance of NAD in Multiple Sclerosis
Current Pharmaceutical Design HIV-Infected Patients and Liver Transplantation: Who, When and Why
Current HIV Research Triggering Receptor Expressed on Myeloid Cells (TREM) Family and the Application of Its Antagonists
Recent Patents on Anti-Infective Drug Discovery Plasma Infusions into Porcine Cerebral White Matter Induce Early Edema, Oxidative Stress, Pro-Inflammatory Cytokine Gene Expression and DNA Fragmentation: Implications for White Matter Injury with Increased Blood- Brain-Barrier Permeability
Current Neurovascular Research HELLP Syndrome: Pathophysiology and Current Therapies
Current Pharmaceutical Biotechnology Combined Transcriptomic and Proteomic Analyses of Cerebral Frontal Lobe Tissue Identified RNA Metabolism Dysregulation as One Potential Pathogenic Mechanism in Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL)
Current Neurovascular Research Treatment of Leukoaraiosis: A Futuristic View
Current Drug Targets Neurological Involvement in Rheumatoid Arthritis
Current Immunology Reviews (Discontinued) Recent Patents on Nucleic Acid-Based Antiviral Therapeutics
Recent Patents on Anti-Infective Drug Discovery Monoclonal Antibodies in the Treatment of Neuroimmunological Diseases
Current Pharmaceutical Design