Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Autonomic Neural Functions in Space

Author(s): T. Mano

Volume 6, Issue 4, 2005

Page: [319 - 324] Pages: 6

DOI: 10.2174/1389201054553743

Price: $65

Abstract

Autonomic neural functions are important to regulate vital functions in the living body. There are different methods to evaluate indirectly and directly autonomic, sympathetic and parasympathetic, neural functions of human body. Among various methods, microneurography is a technique to evaluate directly sympathetic neural functions in humans. Using this technique sympathetic neural traffic leading to skeletal muscles (muscle sympathetic nerve activity; MSNA) can be recorded from human peripheral nerves in situ. MSNA plays essentially important roles to maintain blood pressure homeostasis against gravity. Orthostatic intolerance is an important problem as an autonomic dysfunction encountered after exposure of human beings to microgravity. There exist at least two different types of sympathetic neural responses, low and high responders to orthostatic stress in orthostatic hypotension seen in neurological disorders. To answer the question if post-spaceflight orthostatic intolernace is induced by low or high MSNA responses to orthostatic stress, MSNA was microneurographically recorded for the first time before, during and after spaceflight in 1998 under Neurolab international research project. The same activity has been recorded during and/or after ground-based short- and long-term simulations of microgravity. MSNA was rather enhanced on the 12th and 13th day of spaceflight and just after landing day. Postflight MSNA response to head-up tilt was well preserved in astronauts who were orthostatically well tolerant. MSNA was suppressed during short-term simulation of microgravity less than 2 hours but was enhanced after long-term simulation of microgravity more than 3 days. Orthostatic intolerance after exposure to long-term simulation of microgravity was associated with reduced MSNA response to orthostatic stress with impaired baroreflex functions. These findings obtained from MSNA recordings in subjects exposed to space as well as short- and long-term simulations of microgravity indicate that sympathetic neural control is lowered when exposed to short-term microgravity but becomes enhanced after exposure to long-tem micrograivity. A lack of enhanced sympathetic neural response to orhtostatic stress may induce orthostatic intolerance. Based on these findings effective countermeasures should be developed to prevent autonomic dysfunctions induced by exposure to microgravity. These include development of prescription and devices of physical exercise, electrical and magnetic nerve stimulations, body vibration, elastic bandage and stocking, lower body negative pressure, artificial gravity, medical drugs, and combinations of them. These countermeaures will be beneficial to prevent autonomic dysfunctions related to gravitational stress such encountered in bedridden subjects as orthostatic hypotension, atrophy of antigravity muscles and so on. This is particularly important in the present aged-society with many bedridden elderly people. The knowledge accumulated from studies on autonomic neural functions in space should be very useful to establish effective countermeasures and preventive methods for gravity-dependent autonomic dysfunctions.

Keywords: microgravity, muscle sympathetic nerve activity, microneurography, orthostatic hypotension, orthostatic intolerance, countermeasure, aged society, bedridden people


Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy