Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Recent Developments in Cholinesterases Inhibitors for Alzheimers Disease Treatment

Author(s): Anna Musial, Marek Bajda and Barbara Malawska

Volume 14, Issue 25, 2007

Page: [2654 - 2679] Pages: 26

DOI: 10.2174/092986707782023217

Price: $65

Abstract

Alzheimers disease (AD) is a progressive neurodegenerative disorder of the central nervous system (CNS) which is the most common cause of dementia in the elderly. It is characterized by the deficits in the cholinergic system and presence of characteristic hallmarks: neurofibrillary tangles and amyloid plaques. Since the cholinergic system plays an important role in the regulation of learning and memory processes it became a target for the design of antialzheimer drugs. Cholinesterase inhibitors enhance cholinergic transmission indirectly, by inhibiting the enzyme which hydrolyses acetylcholine. It has been also demonstrated that acetylcholinesterase (AChE) is involved in the developement of amyloid plaques. Therefore, substances which are AChE inhibitors (AChEI) are the only drugs approved for the symptomatic treatment of AD. This review presents the main classes of cholinesterase inhibitors developed recently for the treatment of AD. We have started with the analogues of the existing drugs: tacrine, donepezil, rivastigmine and galantamine which are still of interest for many research groups. Among them there is a very interesting group - dual binding site inhibitors characterized by increased inhibitory potency against AChE and amyloid plaques formation. There is also a group of compounds with additional properties such as: antioxidant activity, affinity to 5-HT3 receptors, inhibition of N-methyltransferase that metabolize histamine, which can be beneficial for the treatment of AD. Furthermore there are some interesting compounds which belong to different chemical groups also of natural origin. In this review we sum up current research concerned with development of AChEIs which can be more effective in the future treatment of AD.

Keywords: Alzheimer's disease, acetylcholinesterase inhibitors, butyrylcholinesterase inhibitors


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy