Abstract
The formal C-20 methylation of 1,25-dihydroxy vitamin D3 (calcitriol) and bridging of two methyl groups produces spiro[cyclopropane-1, 20-calcitriol], colloquially referred to as C-20 cyclopropylcalcitriol, which is much more active in MLR for suppression of interferon-γ release than calcitriol, and hypercalcemia in mice is elicited at a ten-fold lower dose when compared to calcitriol. Introduction of the Δ16,17-double bond, modification of the side chain by 23- unsaturation and replacement of the methyl groups at C-26 and C-27 with trifluoromethyl moieties create a highly active series of vitamin D analogs. As previously observed in the calcitriol series, the presence of the C-16 double bond in the cyclopropyl analogs also arrests metabolic side-chain oxidation in the at the C-24 oxo level in UMR 106 cells. The enhanced biological activity is ascribed, at least in part, to the improved resistance toward metabolic degradation.
Keywords: hydrogenation, Transactivation, Prostate tumor, UMR 106 cells, 20-cyclopropyl analogs
Current Topics in Medicinal Chemistry
Title: C-20 Cyclopropyl Vitamin D3 Analogs
Volume: 6 Issue: 12
Author(s): Milan R. Uskokovic, Percy Manchand, Stanislaw Marczak, Hubert Maehr, Pawel Jankowski, Luciano Adorini and G. Satyanarayana Reddy
Affiliation:
Keywords: hydrogenation, Transactivation, Prostate tumor, UMR 106 cells, 20-cyclopropyl analogs
Abstract: The formal C-20 methylation of 1,25-dihydroxy vitamin D3 (calcitriol) and bridging of two methyl groups produces spiro[cyclopropane-1, 20-calcitriol], colloquially referred to as C-20 cyclopropylcalcitriol, which is much more active in MLR for suppression of interferon-γ release than calcitriol, and hypercalcemia in mice is elicited at a ten-fold lower dose when compared to calcitriol. Introduction of the Δ16,17-double bond, modification of the side chain by 23- unsaturation and replacement of the methyl groups at C-26 and C-27 with trifluoromethyl moieties create a highly active series of vitamin D analogs. As previously observed in the calcitriol series, the presence of the C-16 double bond in the cyclopropyl analogs also arrests metabolic side-chain oxidation in the at the C-24 oxo level in UMR 106 cells. The enhanced biological activity is ascribed, at least in part, to the improved resistance toward metabolic degradation.
Export Options
About this article
Cite this article as:
Uskokovic R. Milan, Manchand Percy, Marczak Stanislaw, Maehr Hubert, Jankowski Pawel, Adorini Luciano and Reddy G. Satyanarayana, C-20 Cyclopropyl Vitamin D3 Analogs, Current Topics in Medicinal Chemistry 2006; 6 (12) . https://dx.doi.org/10.2174/156802606777864962
DOI https://dx.doi.org/10.2174/156802606777864962 |
Print ISSN 1568-0266 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4294 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Quadruplex-Forming Oligonucleotides as Tools in Anticancer Therapy and Aptamers Design: Energetic Aspects
Current Medicinal Chemistry - Anti-Cancer Agents Calcium and Zinc DTPA Administration for Internal Contamination with Plutonium-238 and Americium-241
Current Pharmaceutical Biotechnology Role of microRNAs in Hepatic Stellate Cells and Hepatic Fibrosis: An Update
Current Pharmaceutical Design Using Small Molecule GSK3β Inhibitors to Treat Inflammation
Current Medicinal Chemistry Serpins for Diagnosis and Therapy in Cancer
Cardiovascular & Hematological Disorders-Drug Targets Decreased lncRNA SNHG16 Accelerates Oxidative Stress Induced Pathological Angiogenesis in Human Retinal Microvascular Endothelial Cells by Regulating miR-195/mfn2 Axis
Current Pharmaceutical Design Sida cordifolia, a Traditional Herb in Modern Perspective – A Review
Current Traditional Medicine Co-opting Functions of Cholinesterases in Neural, Limb and Stem Cell Development
Protein & Peptide Letters Pharmacological Intervention at CCR1 and CCR5 as an Approach for Cancer: Help or Hindrance
Current Topics in Medicinal Chemistry How Do Microtubule-Targeted Drugs Work? An Overview
Current Cancer Drug Targets Genistein Inhibits Cell Growth and Induces Apoptosis Through Up-regulation of miR-34a in Pancreatic Cancer Cells
Current Drug Targets AMPK as a Potential Anticancer Target - Friend or Foe?
Current Pharmaceutical Design Phosphodiesterase 3 (PDE3): Structure, Localization and Function
Cardiovascular & Hematological Agents in Medicinal Chemistry Investigation of the Metal Bonding Properties of Some ARA-II Compounds Using Spectrofluorimetric Method
Current Drug Therapy CXCR4 and Glioblastoma
Anti-Cancer Agents in Medicinal Chemistry Natural Products Targeting Cancer Stem Cells: A Revisit
Current Medicinal Chemistry A Systematic Review of Genes Involved in the Inverse Resistance Relationship Between Cisplatin and Paclitaxel Chemotherapy: Role of BRCA1
Current Cancer Drug Targets Mesenchymal Stem Cells and Nano-Bioceramics for Bone Regeneration
Current Stem Cell Research & Therapy Dimethylaminoparthenolide, A Water Soluble Parthenolide, Suppresses Lung Tumorigenesis Through Down-Regulating the STAT3 Signaling Pathway
Current Cancer Drug Targets Regulating TRAIL Receptor-Induced Cell Death at the Membrane: A Deadly Discussion
Recent Patents on Anti-Cancer Drug Discovery