Abstract
Recent efforts combining nanotechnology and magnetic properties resulted in the development and commercialization of magnetic nanoparticles that can be used as carriers for nucleic acids for in vitro transfection and for gene therapy approaches including DNA-based vaccination strategies. The efficiency of intracellular delivery is still a limiting factor for basic cell biological research and also for emerging technologies such as temporary gene silencing based on inhibitory RNA/siRNA. Nanotechnology has resulted in a variety of different nanostructures and especially nanoparticles as carriers in a wide range of new drug delivery systems for conventional drugs, recombinant proteins, vaccines and more recently nucleic acids. It is possible to combine superparamagnetic nanoparticles with magnetic forces to increase, direct and optimize intracellular delivery of biomolecules. This article discusses the main approaches in the field of magnet assisted transfection (MATra) focusing on the transfection or intracellular delivery of nucleic acids, although also suitable to improve the intracellular delivery of other biomolecules.
Keywords: Magnet assisted transfection, MATra, nucleic acids, intracellular delivery, nanoparticles, magnetic gene transfection, magnetic nanoparticles
Current Pharmaceutical Biotechnology
Title: MATra - Magnet Assisted Transfection: Combining Nanotechnology and Magnetic Forces to Improve Intracellular Delivery of Nucleic Acids
Volume: 7 Issue: 4
Author(s): J. Bertram
Affiliation:
Keywords: Magnet assisted transfection, MATra, nucleic acids, intracellular delivery, nanoparticles, magnetic gene transfection, magnetic nanoparticles
Abstract: Recent efforts combining nanotechnology and magnetic properties resulted in the development and commercialization of magnetic nanoparticles that can be used as carriers for nucleic acids for in vitro transfection and for gene therapy approaches including DNA-based vaccination strategies. The efficiency of intracellular delivery is still a limiting factor for basic cell biological research and also for emerging technologies such as temporary gene silencing based on inhibitory RNA/siRNA. Nanotechnology has resulted in a variety of different nanostructures and especially nanoparticles as carriers in a wide range of new drug delivery systems for conventional drugs, recombinant proteins, vaccines and more recently nucleic acids. It is possible to combine superparamagnetic nanoparticles with magnetic forces to increase, direct and optimize intracellular delivery of biomolecules. This article discusses the main approaches in the field of magnet assisted transfection (MATra) focusing on the transfection or intracellular delivery of nucleic acids, although also suitable to improve the intracellular delivery of other biomolecules.
Export Options
About this article
Cite this article as:
Bertram J., MATra - Magnet Assisted Transfection: Combining Nanotechnology and Magnetic Forces to Improve Intracellular Delivery of Nucleic Acids, Current Pharmaceutical Biotechnology 2006; 7 (4) . https://dx.doi.org/10.2174/138920106777950825
DOI https://dx.doi.org/10.2174/138920106777950825 |
Print ISSN 1389-2010 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4316 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
β -Glucans and their Applications in Cancer Therapy: Focus on human studies
Anti-Cancer Agents in Medicinal Chemistry Nanosized Tamoxifen-Porphyrin-Glucose [TPG] Conjugate: Novel Selective Anti-breast-cancer Agent, Synthesis and In Vitro Evaluations
Medicinal Chemistry Exosome-like Nanoparticles: A New Type of Nanocarrier
Current Medicinal Chemistry Secondary Metabolites from Cordyceps Species and Their Antitumor Activity Studies
Recent Patents on Biotechnology Immune Response and Immunotherapy: Live Attenuated Listeria monocytogenes (Lm)-LLO Immunotherapy for the Treatment of Prostate Cancer
Current Cancer Therapy Reviews Targeting Indoleamine 2,3-dioxygenase (IDO) to Counteract Tumour- Induced ImmuneDysfunction: From Biochemistry to Clinical Development
Endocrine, Metabolic & Immune Disorders - Drug Targets Cancer Stem-Cells Patents in the Context of their Therapeutic Purposes: Exploring the Latest Trends (2011-2015)
Recent Patents on Regenerative Medicine Role of Resveratrol in Modulating microRNAs in Human Diseases: From Cancer to Inflammatory Disorder
Current Medicinal Chemistry Dinuclear Berenil-Platinum (II) Complexes as Modulators of Apoptosis in Human MCF-7 and MDA-MB231 Breast Cancer Cells
Anti-Cancer Agents in Medicinal Chemistry Recent Patents Reveal Microtubules as Persistent Promising Target for Novel Drug Development for Cancers
Recent Patents on Anti-Infective Drug Discovery Role of the Cannabinoid System in Pain Control and Therapeutic Implications for the Management of Acute and Chronic Pain Episodes
Current Neuropharmacology Leukotriene A4 Hydrolase as a Target for Cancer Prevention and Therapy
Current Cancer Drug Targets PPARγ in Angiogenesis and Vascular Development
Current Angiogenesis (Discontinued) Chemokine Like Receptor-1 (CMKLR-1) Receptor: A Potential Therapeutic Target in Management of Chemerin Induced Type 2 Diabetes Mellitus and Cancer
Current Pharmaceutical Design The Role and Impact of SNPs in Pharmacogenomics and Personalized Medicine
Current Drug Metabolism Antibacterial Function of the Human Cathelicidin-18 Peptide (LL-37) between Theory and Practice
Protein & Peptide Letters Long Non-Coding RNA GAS5 in Age-Related Diseases
Current Medicinal Chemistry Molecular Chaperone ORP150 in ER Stress–related Diseases
Current Pharmaceutical Design AFM-Based Single Molecule Techniques: Unraveling the Amyloid Pathogenic Species
Current Pharmaceutical Design Pictorial US, CT and MRI Findings of Common Hepatic Tumours
Current Medical Imaging