Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Review Article

Biological Importance of a Biflavonoid ‘Bilobetin’ in the Medicine: Medicinal Importance, Pharmacological Activities and Analytical Aspects

Author(s): Dinesh Kumar Patel*

Volume 22, Issue 5, 2022

Published on: 21 April, 2022

Article ID: e210322202490 Pages: 9

DOI: 10.2174/1871526522666220321152036

Price: $65

Abstract

Background: Flavonoid class phytochemicals are natural compounds present in different medicinal plants, vegetables and fruits. Ginkgo biloba contains significant amounts of bioflavonoid ‘bilobetin’. Bilobetin is an active phytochemical used for the treatment of human health complications due to its medicinal properties and therapeutic benefit. The purpose of this work is to collect and reviewed scientific data on bilobetin from different literature sources; highlight their biological properties, pharmacological activities and analytical aspects.

Methods: Health beneficial aspects of bilobetin have been investigated in the present work through scientific data analysis. PubMed, Google Scholar, Google, Scopus, etc. have been searched in the present work in order to collect scientific information on bilobetin. Medicinal importance and therapeutic benefit of bilobetin has been searched in the present work through these databases of bilobetin. Detailed pharmacological activities of bilobetin have been reviewed in the present work through literature data analysis of various scientific research works. However, analytical data of bilobetin were also collected and reviewed in the present reaserch.

Results: Literature data analysis of bilobetin in the present work revealed the medicinal properties and therapeutic potential of bilobetin mainly due to its anti-fungal, anti-inflammatory, anti-oxidant, antihyperlipidemic, and anti-proliferative activities. Literature data analysis revealed the effectiveness of bilobetin on osteoporosis, glucose metabolism, adipocytes, SARS CoV-2, Influenza A virus and human thrombin. Scientific data also revealed the importance of different analytical techniques for the isolation, separation, identification, and quantification of bilobetin.

Conclusion: Scientific data analysis revealed biological importance and pharmacological activities of bilobetin in the health sector.

Keywords: Biflavonoid, bilobetin, inflammatory, antioxidant, hyperlipidemic, proliferative, osteoporosis, glucose metabolism, adipocytes, SARS CoV-2, Influenza A.

Graphical Abstract

[1]
Orief YI, Farghaly NF, Ibrahim MIA. Use of herbal medicines among pregnant women attending family health centers in Alexandria. Middle East Fertil Soc J 2014; 19(1): 42-50.
[http://dx.doi.org/10.1016/j.mefs.2012.02.007]
[2]
Patel K, Kumar V, Verma A, Rahman M, Patel DK. Amarogentin as topical anticancer and anti-infective potential: Scope of lipid based vesicular in its effective delivery. Recent Pat Antiinfect Drug Discov 2019; 14(1): 7-15.
[http://dx.doi.org/10.2174/1574891X13666180913154355] [PMID: 30210007]
[3]
Patel K, Gadewar M, Tahilyani V, Patel DK. A review on pharmacological and analytical aspects of diosmetin: A concise report. Chin J Integr Med 2013; 19(10): 792-800.
[http://dx.doi.org/10.1007/s11655-013-1595-3] [PMID: 24092244]
[4]
Firenzuoli F, Gori L. Herbal medicine today: Clinical and research issues. Evid Based Complement Alternat Med 2007; 4(s1): 37-40.
[http://dx.doi.org/10.1093/ecam/nem096] [PMID: 18227931]
[5]
Jang GH, Kim HW, Lee MK, et al. Characterization and quantification of flavonoid glycosides in the Prunus genus by UPLC-DAD-QTOF/MS. Saudi J Biol Sci 2018; 25(8): 1622-31.
[http://dx.doi.org/10.1016/j.sjbs.2016.08.001] [PMID: 30591779]
[6]
Patel K, Jain A, Patel DK. Medicinal significance, pharmacological activities, and analytical aspects of anthocyanidins delphinidin : A concise report. J Acute Dis 2013; 2(3): 169-78.
[http://dx.doi.org/10.1016/S2221-6189(13)60123-7]
[7]
Yuan H, Ma Q, Ye L, Piao G. The traditional medicine and modern medicine from natural products. Molecules 2016; 21(5): 559.
[http://dx.doi.org/10.3390/molecules21050559] [PMID: 27136524]
[8]
Marques GS, Leão WF, Lyra MAM, et al. Comparative evaluation of UV/VIS and HPLC analytical methodologies applied for quantification of flavonoids from leaves of Bauhinia forficata. Rev Bras Farmacogn 2013; 23(1): 51-7.
[http://dx.doi.org/10.1590/S0102-695X2012005000143]
[9]
Pereira DF, Cazarolli LH, Lavado C, et al. Effects of flavonoids on α-glucosidase activity: Potential targets for glucose homeostasis. Nutrition 2011; 27(11-12): 1161-7.
[http://dx.doi.org/10.1016/j.nut.2011.01.008] [PMID: 21684120]
[10]
Ibrahim RM, El-Halawany AM, Saleh DO, El Naggar EMB, El-Shabrawy AE-RO, El-Hawary SS. HPLC-DAD-MS/MS profiling of phenolics from Securigera securidaca flowers and its anti-hyperglycemic and anti-hyperlipidemic activities. Rev Bras Farmacogn 2015; 25(2): 134-41.
[http://dx.doi.org/10.1016/j.bjp.2015.02.008]
[11]
Morita M, Takahashi I, Kanai M, et al. Baicalein 5,6,7-trimethyl ether, a flavonoid derivative, stimulates fatty acid β-oxidation in skin fibroblasts of X-linked adrenoleukodystrophy. FEBS Lett 2005; 579(2): 409-14.
[http://dx.doi.org/10.1016/j.febslet.2004.11.102] [PMID: 15642351]
[12]
Wu X, Zhao Y, Haytowitz DB, Chen P, Pehrsson PR. Effects of domestic cooking on flavonoids in broccoli and calculation of retention factors. Heliyon 2019; 5(3): e01310.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01310] [PMID: 30899833]
[13]
Mohan S, Nandhakumar L. Role of various flavonoids: Hypotheses on novel approach to treat diabetes. J Med Hypotheses Ideas 2014; 8(1): 1-6.
[http://dx.doi.org/10.1016/j.jmhi.2013.06.001]
[14]
Ghorbani A, Rashidi R, Shafiee-Nick R. Flavonoids for preserving pancreatic beta cell survival and function: A mechanistic review. Biomed Pharmacother 2019; 111: 947-57.
[http://dx.doi.org/10.1016/j.biopha.2018.12.127] [PMID: 30841474]
[15]
Bakoyiannis I, Daskalopoulou A, Pergialiotis V, Perrea D. Phytochemicals and cognitive health: Are flavonoids doing the trick? Biomed Pharmacother 2019; 109: 1488-97.
[http://dx.doi.org/10.1016/j.biopha.2018.10.086] [PMID: 30551400]
[16]
Tavsan Z, Kayali HA. Flavonoids showed anticancer effects on the ovarian cancer cells: Involvement of reactive oxygen species, apoptosis, cell cycle and invasion. Biomed Pharmacother 2019; 116: 109004.
[http://dx.doi.org/10.1016/j.biopha.2019.109004] [PMID: 31128404]
[17]
Pi E, Xu J, Li H, et al. Enhanced salt tolerance of rhizobia-inoculated soybean correlates with decreased phosphorylation of the transcription factor GmMYB183 and altered flavonoid biosynthesis. Mol Cell Proteomics 2019; 18(11): 2225-43.
[http://dx.doi.org/10.1074/mcp.RA119.001704] [PMID: 31467032]
[18]
Hu Q, Xiao S, Guan Q, et al. The laccase gene GhLac1 modulates fiber initiation and elongation by coordinating jasmonic acid and flavonoid metabolism. Crop J 2020; 8(4): 522-33.
[http://dx.doi.org/10.1016/j.cj.2019.11.006]
[19]
Tian C, Chang Y, Zhang Z, et al. Extraction technology, component analysis, antioxidant, antibacterial, analgesic and anti-inflammatory activities of flavonoids fraction from Tribulus terrestris L. leaves. Heliyon 2019; 5(8): e02234.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02234] [PMID: 31485505]
[20]
Lee KH, Yu JS, Choi JH, et al. Ginkgobilol, a new diarylpentanoid and an osteogenic diarylpentanoid analog from Ginkgo biloba leaves. Bioorg Med Chem Lett 2020; 30(24): 127641.
[http://dx.doi.org/10.1016/j.bmcl.2020.127641] [PMID: 33127538]
[21]
Lee KH, Jeong SY, Park KH, et al. Ginkgonitroside, a new nitrophenyl glycoside and bioactive compounds from Ginkgo biloba leaves controlling adipocyte and osteoblast differentiation. Bioorg Med Chem Lett 2021; 50: 128322.
[http://dx.doi.org/10.1016/j.bmcl.2021.128322] [PMID: 34407463]
[22]
Zhu J-P, Gong H, Labreche F, et al. In vivo toxicity assessment of 4′-O-methylpyridoxine from Ginkgo biloba seeds: Growth, hematology, metabolism, and oxidative parameters. Toxicon 2021; 201: 66-73.
[http://dx.doi.org/10.1016/j.toxicon.2021.08.015] [PMID: 34425140]
[23]
Fu L, Su W, Chen F, et al. Early sex determination of Ginkgo biloba based on the differences in the electrocatalytic performance of extracted peroxidase. Bioelectrochemistry 2021; 140: 107829.
[http://dx.doi.org/10.1016/j.bioelechem.2021.107829] [PMID: 33964612]
[24]
Wang J, Lei Z, Zhang Y, et al. Saccharogenic refining of Ginkgo biloba leaf residues using a cost-effective enzyme cocktail prepared by the fungal strain A32 isolated from ancient Ginkgo biloba tree. Bioresour Technol 2020; 317: 123980.
[http://dx.doi.org/10.1016/j.biortech.2020.123980] [PMID: 32795881]
[25]
Boateng ID, Yang X-M. Thermal and non-thermal processing affect Maillard reaction products, flavor, and phytochemical profiles of Ginkgo biloba seed. Food Biosci 2021; 41: 101044.
[http://dx.doi.org/10.1016/j.fbio.2021.101044]
[26]
Tian F, Wu C, Kou X, Fan G, Li T. Surface fungal community diversity change and potential pathogens of Ginkgo biloba seed during cold storage. Food Biosci 2021; 41: 100981.
[http://dx.doi.org/10.1016/j.fbio.2021.100981]
[27]
Feodorova Y, Tomova T, Minchev D, Turiyski V, Draganov M, Argirova M. Cytotoxic effect of Ginkgo biloba kernel extract on HCT116 and A2058 cancer cell lines. Heliyon 2020; 6(9): e04941.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04941] [PMID: 33005784]
[28]
Afees OJ, Oladele OJ, Oluwatoni SP, et al. Ginkgo biloba aqueous extract attenuated MDMA-induced neurodegeneration and its accompanying memory aberrations in experimental Wistar rats model. Phytomedicine Plus 2021; 1(4): 100123.
[http://dx.doi.org/10.1016/j.phyplu.2021.100123]
[29]
Si X, Yu Z, Ren X, Huang L, Feng Y. Efficacy and safety of standardized Ginkgo biloba L. leaves extract as an adjuvant therapy for sudden sensorineural hearing loss: A systematic review and meta-analysis. J Ethnopharmacol 2022; 282: 114587.
[http://dx.doi.org/10.1016/j.jep.2021.114587] [PMID: 34474140]
[30]
Li Z, Li J, Zhao W, Li Y. Potential antiosteoporotic effect of Ginkgo biloba extract via regulation of SIRT1-NF-kB signaling pathway. J King Saud Univ Sci 2020; 32(4): 2513-9.
[http://dx.doi.org/10.1016/j.jksus.2020.04.011]
[31]
Li Y, Sheng Y, Liu J, et al. Hair-growth promoting effect and anti-inflammatory mechanism of Ginkgo biloba polysaccharides. Carbohydr Polym 2022; 278: 118811.
[http://dx.doi.org/10.1016/j.carbpol.2021.118811] [PMID: 34973721]
[32]
Li Z, Tian S, Wu Z, et al. Pharmacokinetic herb-disease-drug interactions: Effect of Ginkgo biloba extract on the pharmacokinetics of pitavastatin, a substrate of Oatp1b2, in rats with non-alcoholic fatty liver disease. J Ethnopharmacol 2021; 280: 114469.
[http://dx.doi.org/10.1016/j.jep.2021.114469] [PMID: 34329714]
[33]
Zhang D, Ding J, Feng Z, et al. Origin identification of Ginkgo biloba leaves based on laser-induced breakdown spectroscopy (LIBS). Spectrochim Acta B At Spectrosc 2021; 180: 106192.
[http://dx.doi.org/10.1016/j.sab.2021.106192]
[34]
Wang B, Wei P-W, Wan S, et al. Ginkgo biloba exocarp extracts inhibit S. aureus and MRSA by disrupting biofilms and affecting gene expression. J Ethnopharmacol 2021; 271: 113895.
[http://dx.doi.org/10.1016/j.jep.2021.113895] [PMID: 33524512]
[35]
Abdel-Emam RA, Abd-Eldayem AM. Systemic and topical Ginkgo biloba leaf extract (Egb-761) ameliorated rat paw inflammation in comparison to dexamethasone. J Ethnopharmacol 2022; 282: 114619.
[http://dx.doi.org/10.1016/j.jep.2021.114619] [PMID: 34520829]
[36]
Moawad A, Amir D. Ginkgetin or Isoginkgetin: The dimethylamentoflavone of Dioon edule Lindl. leaves. European J Med Plants 2016; 16(3): 1-7.
[http://dx.doi.org/10.9734/EJMP/2016/28560]
[37]
Menezes JCJMDS, Diederich MF. Bioactivity of natural biflavonoids in metabolism-related disease and cancer therapies. Pharmacol Res 2021; 167: 105525.
[http://dx.doi.org/10.1016/j.phrs.2021.105525] [PMID: 33667686]
[38]
Feng X, Zhang X, Chen Y, Li L, Sun Q, Zhang L. Identification of bilobetin metabolites, in vivo and in vitro, based on an efficient ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry strategy. J Sep Sci 2020; 43(17): 3408-20.
[http://dx.doi.org/10.1002/jssc.202000313] [PMID: 32573953]
[39]
Li M, Li B, Xia Z-M, et al. Anticancer effects of five biflavonoids from Ginkgo biloba L. male flowers in vitro. Molecules 2019; 24(8): 1496.
[http://dx.doi.org/10.3390/molecules24081496] [PMID: 30995808]
[40]
Kou X-H, Zhu M-F, Chen D, et al. Bilobetin ameliorates insulin resistance by PKA-mediated phosphorylation of PPARα in rats fed a high-fat diet. Br J Pharmacol 2012; 165(8): 2692-706.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01727.x] [PMID: 22091731]
[41]
Wang Q, Wu ZL, Yuan X, et al. Bilobetin induces kidney injury by influencing cGMP-mediated AQP-2 trafficking and podocyte cell cycle arrest. Phytomedicine 2019; 64: 153073.
[http://dx.doi.org/10.1016/j.phymed.2019.153073] [PMID: 31542661]
[42]
Li Y-Y, Lu X-Y, Sun J-L, et al. Potential hepatic and renal toxicity induced by the biflavonoids from Ginkgo biloba. Chin J Nat Med 2019; 17(9): 672-81.
[http://dx.doi.org/10.1016/S1875-5364(19)30081-0] [PMID: 31526502]
[43]
Pathak RK, Baunthiyal M, Taj G, Kumar A. Virtual screening of natural inhibitors to the predicted HBx protein structure of Hepatitis B Virus using molecular docking for identification of potential lead molecules for liver cancer. Bioinformation 2014; 10(7): 428-35.
[http://dx.doi.org/10.6026/97320630010428] [PMID: 25187683]
[44]
Lee SJ, Choi JH, Son KH, Chang HW, Kang SS, Kim HP. Suppression of mouse lymphocyte proliferation in vitro by naturally-occurring biflavonoids. Life Sci 1995; 57(6): 551-8.
[http://dx.doi.org/10.1016/0024-3205(95)00305-P] [PMID: 7623623]
[45]
Chen T-R, Wei L-H, Guan X-Q, et al. Biflavones from Ginkgo biloba as inhibitors of human thrombin. Bioorg Chem 2019; 92: 103199.
[http://dx.doi.org/10.1016/j.bioorg.2019.103199] [PMID: 31446241]
[46]
Li M, Li B, Hou Y, et al. Anti-inflammatory effects of chemical components from Ginkgo biloba L. male flowers on lipopolysaccharide-stimulated RAW264.7 macrophages. Phytother Res 2019; 33(4): 989-97.
[http://dx.doi.org/10.1002/ptr.6292] [PMID: 30693991]
[47]
Baek S-H, Yun S-S, Kwon TK, et al. The effects of two new antagonists of secretory PLA2 on TNF, iNOS, and COX-2 expression in activated macrophages. Shock 1999; 12(6): 473-8.
[http://dx.doi.org/10.1097/00024382-199912000-00010] [PMID: 10588517]
[48]
Cheon BS, Kim YH, Son KS, Chang HW, Kang SS, Kim HP. Effects of prenylated flavonoids and biflavonoids on lipopolysaccharide-induced nitric oxide production from the mouse macrophage cell line RAW 264.7. Planta Med 2000; 66(7): 596-600.
[http://dx.doi.org/10.1055/s-2000-8621] [PMID: 11105561]
[49]
Liu P-K, Weng Z-M, Ge G-B, et al. Biflavones from Ginkgo biloba as novel pancreatic lipase inhibitors: Inhibition potentials and mechanism. Int J Biol Macromol 2018; 118(Pt B): 2216-23.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.085] [PMID: 30009906]
[50]
Petersen MJ, de Cássia Lemos Lima R, Kjaerulff L, Staerk D. Immobilized α-amylase magnetic beads for ligand fishing: Proof of concept and identification of α-amylase inhibitors in Ginkgo biloba. Phytochemistry 2019; 164: 94-101.
[http://dx.doi.org/10.1016/j.phytochem.2019.04.016] [PMID: 31103779]
[51]
Liu L, Li Y-F, Gan F, Yang G-Z, Chen Y. Chemical constituents from leaves of Garcinia xanthochymus. Zhongguo Zhongyao Zazhi 2016; 41(11): 2098-104.
[PMID: 28901107]
[52]
Menezes JCJMDS, Campos VR. Natural biflavonoids as potential therapeutic agents against microbial diseases. Sci Total Environ 2021; 769: 145168.
[http://dx.doi.org/10.1016/j.scitotenv.2021.145168] [PMID: 33493916]
[53]
Krauze-Baranowska M. Pobłocka L, El-Hela AA. Biflavones from Chamaecyparis obtusa. Z Naturforsch C J Biosci 2005; 60(9-10): 679-85.
[http://dx.doi.org/10.1515/znc-2005-9-1004] [PMID: 16320608]
[54]
Lee MK, Lim SW, Yang H, et al. Osteoblast differentiation stimulating activity of biflavonoids from Cephalotaxus koreana. Bioorg Med Chem Lett 2006; 16(11): 2850-4.
[http://dx.doi.org/10.1016/j.bmcl.2006.03.018] [PMID: 16574412]
[55]
Wang G, Yao S, Zhang X-X, Song H. Rapid screening and structural characterization of antioxidants from the extract of Selaginella doederleinii hieron with DPPH-UPLC-Q-TOF/MS method. Int J Anal Chem 2015; 2015: 849769.
[http://dx.doi.org/10.1155/2015/849769] [PMID: 25792983]
[56]
Hyun SK, Jung HA, Chung HY, Choi JS. In vitro peroxynitrite scavenging activity of 6-hydroxykynurenic acid and other flavonoids from Gingko biloba yellow leaves. Arch Pharm Res 2006; 29(12): 1074-9.
[http://dx.doi.org/10.1007/BF02969294] [PMID: 17225453]
[57]
Dell Agli M, Bosisio E. Biflavones of Ginkgo biloba stimulate lipolysis in 3T3-L1 adipocytes. Planta Med 2002; 68(1): 76-9.
[http://dx.doi.org/10.1055/s-2002-19876] [PMID: 11842336]
[58]
Dell Agli M, Galli GV, Bosisio E. Inhibition of cGMP-phosphodiesterase-5 by biflavones of Ginkgo biloba. Planta Med 2006; 72(5): 468-70.
[http://dx.doi.org/10.1055/s-2005-916236] [PMID: 16557462]
[59]
Saponara R, Bosisio E. Inhibition of cAMP-phosphodiesterase by biflavones of Ginkgo biloba in rat adipose tissue. J Nat Prod 1998; 61(11): 1386-7.
[http://dx.doi.org/10.1021/np970569m] [PMID: 9834158]
[60]
Song Y-Q, He R-J, Pu D, et al. Discovery and characterization of the biflavones From Ginkgo biloba as highly specific and potent inhibitors against human carboxylesterase 2. Front Pharmacol 2021; 12: 655659.
[http://dx.doi.org/10.3389/fphar.2021.655659] [PMID: 34084136]
[61]
Ghosh R, Chakraborty A, Biswas A, Chowdhuri S. Computer aided identification of potential SARS CoV-2 main protease inhibitors from diterpenoids and biflavonoids of Torreya nucifera leaves. J Biomol Struct Dyn 2020; 1-16. Online ahead of print
[http://dx.doi.org/10.1080/07391102.2020.1841680] [PMID: 33140695]
[62]
Zhang J, Wang Y. Bilobetin, a novel small molecule inhibitor targeting influenza virus polymerase acidic (PA) endonuclease was screened from plant extracts. Nat Prod Res 2021; 35(24): 5968-71.
[http://dx.doi.org/10.1080/14786419.2020.1808636] [PMID: 32820654]
[63]
Son H, Kang W. Quantitative determination of bilobetin in rat plasma by HPLC-MS/MS and its application to a pharmacokinetic study. Biomed Chromatogr 2020; 34(4): e4784.
[http://dx.doi.org/10.1002/bmc.4784] [PMID: 31853982]
[64]
Krauze-Baranowska M. Flavonoids from Metasequoia glyptostroboides. Acta Pol Pharm 2004; 61(3): 199-202.
[PMID: 15481245]
[65]
Silva GL, Chai H, Gupta MP, et al. Cytotoxic biflavonoids from Selaginella willdenowii. Phytochemistry 1995; 40(1): 129-34.
[http://dx.doi.org/10.1016/0031-9422(95)00212-P] [PMID: 7546547]
[66]
Freitas AM, Almeida MTR, Andrighetti-Fröhner CR, et al. Antiviral activity-guided fractionation from Araucaria angustifolia leaves extract. J Ethnopharmacol 2009; 126(3): 512-7.
[http://dx.doi.org/10.1016/j.jep.2009.09.005] [PMID: 19761825]
[67]
Woldemichael GM, Singh MP, Maiese WM, Timmermann BN. Constituents of antibacterial extract of Caesalpinia paraguariensis burk. Z Naturforsch C J Biosci 2003; 58(1-2): 70-5.
[http://dx.doi.org/10.1515/znc-2003-1-213] [PMID: 12622230]
[68]
Yao X, Zhou G, Tang Y, et al. UPLC-PDA-TOF/MS coupled with multivariate statistical analysis to rapidly analyze and evaluate Ginkgo biloba leaves from different origin. Drug Test Anal 2014; 6(3): 288-94.
[http://dx.doi.org/10.1002/dta.1477] [PMID: 23666896]
[69]
Yuan Y, Wang B, Chen L, et al. How to realize the linear scale-up process for rapid purification using high-performance counter-current chromatography. J Chromatogr A 2008; 1194(2): 192-8.
[http://dx.doi.org/10.1016/j.chroma.2008.04.049] [PMID: 18479689]
[70]
Briançon-Scheid F, Lobstein-Guth A, Anton R. HPLC separation and quantitative determination of biflavones in leaves from Ginkgo biloba. Planta Med 1983; 49(12): 204-7.
[http://dx.doi.org/10.1055/s-2007-969851] [PMID: 17405053]
[71]
Chi JD, He XF, Liu AR, Xu LX. HPLC determination of six flavonoid constituents in Ginkgo biloba leaves Yao Xue Xue Bao 1997; 32(8): 625-8.
[PMID: 11596315]
[72]
Lobstein A, Rietsch-Jako L, Haag-Berrurier M, Anton R. Seasonal variations of the flavonoid content from Ginkgo biloba leaves. Planta Med 1991; 57(5): 430-3.
[http://dx.doi.org/10.1055/s-2006-960142] [PMID: 17226181]
[73]
Castañeda P, Garcia MR, Hernandez BE, Torres BA, Anaya AL, Mata R. Effects of some compounds isolated from Celaenodendron mexicanum standl (Euphorbiaceae) on seeds and phytopathogenic fungi. J Chem Ecol 1992; 18(7): 1025-37.
[http://dx.doi.org/10.1007/BF00980060] [PMID: 24254145]
[74]
Negm WA, Abo El-Seoud KA, Kabbash A, Kassab AA, El-Aasr M. Hepatoprotective, cytotoxic, antimicrobial and antioxidant activities of Dioon spinulosum leaves dyer ex eichler and its isolated secondary metabolites. Nat Prod Res 2021; 35(23): 5166-76.
[http://dx.doi.org/10.1080/14786419.2020.1789636] [PMID: 32643403]
[75]
Lei J, Zhu L, Zheng Y, Yu M, Li G, Zhang F. Homogenate-ultrasound-assisted ionic liquid extraction of total flavonoids from Selaginella involven: Process optimization, composition identification, and antioxidant activity. ACS Omega 2021; 6(22): 14327-40.
[http://dx.doi.org/10.1021/acsomega.1c01087]
[76]
Ekpo DE, Joshua PE, Ogidigo JO, Nwodo OFC. High resolution UPLC-PDA-QTOF-ESI-MS/MS analysis of the flavonoid-rich fraction of Lasianthera africana leaves, and in vivo evaluation of its renal and cardiac function effects. Heliyon 2020; 6(7): e04154.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04154] [PMID: 32642576]
[77]
Zimare SB, Mankar GD, Barmukh RB. Optimization of ultrasound-assisted extraction of total phenolics and flavonoids from the leaves of Lobelia nicotianifolia and their radical scavenging potential. Curr Res Green Sustain Chem 2021; 4: 100109.
[http://dx.doi.org/10.1016/j.crgsc.2021.100109]
[78]
Kim J-K, Choi MS, Kim J-Y, et al. Ginkgo biloba leaf extract suppresses intestinal human breast cancer resistance protein expression in mice: Correlation with gut microbiota. Biomed Pharmacother 2021; 140: 111712.
[http://dx.doi.org/10.1016/j.biopha.2021.111712] [PMID: 34010745]
[79]
Men X, Sun L, Li Y, Li W, Xing S. Multi-omics analysis reveals the ontogenesis of basal chichi in Ginkgo biloba L. Genomics 2021; 113(4): 2317-26.
[http://dx.doi.org/10.1016/j.ygeno.2021.05.027] [PMID: 34048909]
[80]
Farhan A, Abdulmajeed BA, Shehan MA. Ginkgo biloba extract effect on the proteus mirabilis virulence factor that extracted from urinary tract infections. Mater Today Proc 2021. In press

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy