Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Abstract

Background: COVID-19 pandemic information is critical to study it further, but the virus has still not been confined. In addition, even if there is no longer any threat, more knowledge may be gathered from these resources.

Methods: The data used in this study was gathered from several scientific areas and the links between them. Since the COVID-19 pandemic has not been fully contained, and additional information can be gleaned from these references, bibliometric analysis of it is important

Results: A total of 155 publications on the topic of "COVID-19" and the keyword "nanotechnology" was identified in the Scopus database between 2020 and 2021 in a network visualization map.

Conclusion: As a result, our analysis was conducted appropriately to provide a comprehensive understanding of COVID-19 and nanotechnology and prospective research directions for medicinal chemistry.

Keywords: COVID-19, Bibliometric data, nanotechnology, medicinal chemistry, drug delivery, target.

Next »
Graphical Abstract

[1]
Weiss, C.; Carriere, M.; Fusco, L.; Capua, I.; Regla-Nava, J.A.; Pasquali, M.; Scott, J.A.; Vitale, F.; Unal, M.A.; Mattevi, C.; Bedognetti, D.; Merkoçi, A.; Tasciotti, E.; Yilmazer, A.; Gogotsi, Y.; Stellacci, F.; Delogu, L.G. Toward nanotechnology-enabled approaches against the COVID-19 pandemic. ACS Nano, 2020, 14(6), 6383-6406.
[http://dx.doi.org/10.1021/acsnano.0c03697] [PMID: 32519842]
[2]
Shin, M.D.; Shukla, S.; Chung, Y.H.; Beiss, V.; Chan, S.K.; Ortega-Rivera, O.A.; Wirth, D.M.; Chen, A.; Sack, M.; Pokorski, J.K.; Steinmetz, N.F. COVID-19 vaccine development and a potential nanomaterial path forward. Nat. Nanotechnol., 2020, 15(8), 646-655.
[http://dx.doi.org/10.1038/s41565-020-0737-y] [PMID: 32669664]
[3]
Asif, M.; Xu, Y.; Xiao, F.; Sun, Y. Diagnosis of COVID-19, vitality of emerging technologies and preventive measures. Chem. Eng. J., 2021, 423, 130189.
[http://dx.doi.org/10.1016/j.cej.2021.130189] [PMID: 33994842]
[4]
Bhalla, N.; Pan, Y.; Yang, Z.; Payam, A.F. Opportunities and challenges for biosensors and nanoscale analytical tools for pandemics: COVID-19. ACS Nano, 2020, 14(7), 7783-7807.
[http://dx.doi.org/10.1021/acsnano.0c04421] [PMID: 32551559]
[5]
Kalantar-Zadeh, K.; Ward, S.A.; Kalantar-Zadeh, K.; El-Omar, E.M. Considering the effects of microbiome and diet on SARS-CoV-2 infection: Nanotechnology roles. ACS Nano, 2020, 14(5), 5179-5182.
[http://dx.doi.org/10.1021/acsnano.0c03402] [PMID: 32356654]
[6]
Chung, Y.H.; Beiss, V.; Fiering, S.N.; Steinmetz, N.F. COVID-19 Vaccine frontrunners and their nanotechnology design. ACS Nano, 2020, 14(10), 12522-12537.
[http://dx.doi.org/10.1021/acsnano.0c07197] [PMID: 33034449]
[7]
Chan, W.C.W. Nano research for COVID-19. ACS Nano, 2020, 14(4), 3719-3720.
[http://dx.doi.org/10.1021/acsnano.0c02540] [PMID: 32227916]
[8]
Talebian, S.; Wallace, G.G.; Schroeder, A.; Stellacci, F.; Conde, J. Nanotechnology-based disinfectants and sensors for SARS-CoV-2. Nat. Nanotechnol., 2020, 15(8), 618-621.
[http://dx.doi.org/10.1038/s41565-020-0751-0] [PMID: 32728083]
[9]
Chauhan, D.S.; Prasad, R.; Srivastava, R.; Jaggi, M.; Chauhan, S.C.; Yallapu, M.M. Comprehensive review on current interventions, diagnostics, and nanotechnology perspectives against SARS-CoV-2. Bioconjug. Chem., 2020, 31(9), 2021-2045.
[http://dx.doi.org/10.1021/acs.bioconjchem.0c00323] [PMID: 32680422]
[10]
Ruiz-Hitzky, E.; Darder, M.; Wicklein, B.; Ruiz-Garcia, C.; Martín-Sampedro, R.; Del Real, G.; Aranda, P. Nanotechnology responses to COVID-19. Adv. Healthc. Mater., 2020, 9(19), e2000979.
[http://dx.doi.org/10.1002/adhm.202000979] [PMID: 32885616]
[11]
Rabiee, N.; Rabiee, M.; Bagherzadeh, M.; Rezaei, N. COVID-19 and picotechnology: Potential opportunities. Med. Hypotheses, 2020, 144, 109917.
[http://dx.doi.org/10.1016/j.mehy.2020.109917] [PMID: 32505072]
[12]
Lukas, H.; Xu, C.; Yu, Y.; Gao, W. Emerging telemedicine tools for remote COVID-19 diagnosis, monitoring, and management. ACS Nano, 2020, 14(12), 16180-16193.
[http://dx.doi.org/10.1021/acsnano.0c08494] [PMID: 33314910]
[13]
Zyoud, S.H.; Zyoud, A.H. Coronavirus disease-19 in environmental fields: A bibliometric and visualization mapping analysis. Environ. Dev. Sustain., 2020, 6, 1-29.
[PMID: 33041643]
[14]
Vaksevanidis, M.N.; Vencl, A.; Asenova, E.; Kandeva, M.; Psilaki, P. Scientific literature on thermal spray coatings from Southeastern Europe: A ten years bibliometric analysis. FME Transactions., 2019, 47(3), 649-657.
[http://dx.doi.org/10.5937/fmet1903649V]
[15]
van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 2010, 84(2), 523-538.
[http://dx.doi.org/10.1007/s11192-009-0146-3] [PMID: 20585380]
[16]
Zhao, Y. Special issue “new studies of conjugated compounds”. Molecules, 2020, 25(14), 3220.
[http://dx.doi.org/10.3390/molecules25143220] [PMID: 32679658]
[17]
Bhavana, V.; Thakor, P.; Singh, S.B.; Mehra, N.K. COVID-19: Pathophysiology, treatment options, nanotechnology approaches, and research agenda to combating the SARS-CoV2 pandemic. Life Sci., 2020, 261, 118336.
[http://dx.doi.org/10.1016/j.lfs.2020.118336] [PMID: 32846164]
[18]
de Sousa, F.D.B. Management of plastic waste: A bibliometric mapping and analysis. Waste Manag. Res., 2021, 39(5), 664-678.
[http://dx.doi.org/10.1177/0734242X21992422] [PMID: 33624576]
[19]
Hassan, N.R.; Loebbecke, C. Engaging scientometrics in in- formation systems. J. Inf. Technol., 2017, 32(1), 85-109.
[http://dx.doi.org/10.1057/jit.2015.29]
[20]
Losse, M.; Geissdoerfer, M. Mapping socially responsible investing: A bibliometric and citation network analysis. J. Clean. Prod., 2021, 296(4), 126376.
[http://dx.doi.org/10.1016/j.jclepro.2021.126376]
[21]
Muñoz-Écija, T.; Vargas-Quesada, B.; Chinchilla-Rodríguez, Z. Identification and visualization of the intellectual structure and the main research lines in nanoscience and nanotechnology at the worldwide level. J. Nanopart. Res., 2017, 19(2), 62-62.
[http://dx.doi.org/10.1007/s11051-016-3732-3] [PMID: 28250713]
[22]
van Eck, N.J.; Waltman, L.; Dekker, R.; van den Berg, J. A comparison of two techniques for bibliometric mapping: Multidimensional scaling and VOS. J. Am. Soc. Inf. Sci. Technol., 2010, 61(12), 2405-2416.
[http://dx.doi.org/10.1002/asi.21421]
[23]
Darsono, D.; Rohmana, J.A.; Busro, B. Against COVID-19 Pandemic: Bibliometric assessment of world scholars’ international publications related to COVID-19. Jurnal Komunikasi Ikatan Sarjana Komunikasi Indonesia., 2020, 5(1), 75-89.
[http://dx.doi.org/10.25008/jkiski.v5i1.356]
[24]
Galvez, C. Evolution of the field of social media research through science maps (2008-2017). Commun. Soc., 2019, 32(2), 61-76.
[http://dx.doi.org/10.15581/003.32.2.61-76]
[25]
Aristovnik, A.; Ravšelj, D.; Umek, L. A bibliometric analysis of COVID-19 across science and social science research landscape. Sustainability (Basel), 2020, 12(21), 9132.
[http://dx.doi.org/10.3390/su12219132]
[26]
Geraghty, R.J.; Aliota, M.T.; Bonnac, L.F. Broad-spectrum antiviral strategies and nucleoside analogues. Viruses, 2021, 13(4), 667.
[http://dx.doi.org/10.3390/v13040667] [PMID: 33924302]
[27]
Ma, Y.; Frutos-Beltrán, E.; Kang, D.; Pannecouque, C.; De Clercq, E.; Menéndez-Arias, L.; Liu, X.; Zhan, P. Medicinal chemistry strategies for discovering antivirals effective against drug-resistant viruses. Chem. Soc. Rev., 2021, 50(7), 4514-4540.
[http://dx.doi.org/10.1039/D0CS01084G] [PMID: 33595031]
[28]
Chauhan, G.; Madou, M.J.; Kalra, S.; Chopra, V.; Ghosh, D.; Martinez-Chapa, S.O. Nanotechnology for COVID-19: Therapeutics and vaccine research. ACS Nano, 2020, 14(7), 7760-7782.
[http://dx.doi.org/10.1021/acsnano.0c04006] [PMID: 32571007]
[29]
Jones, G.W.; Monopoli, M.P.; Campagnolo, L.; Pietroiusti, A.; Tran, L.; Fadeel, B. No small matter: a perspective on nanotechnology-enabled solutions to fight COVID-19. Nanomedicine (Lond.), 2020, 15(24), 2411-2427.
[http://dx.doi.org/10.2217/nnm-2020-0286] [PMID: 32873192]
[30]
Diag Liu, Y.; Ye, H.; Huynh, H.; Kang, P.; Xie, C.; Kahn, J.S.; Qin, Z. Single-particle counting based on digital plasmonic nanobubble detection for rapid and ultrasensitive diagnostics. medRxiv, 2021. preprint.
[31]
Reina, G.; Peng, S.; Jacquemin, L.; Andrade, A.F.; Bianco, A. Hard nanomaterials in time of viral pandemics. ACS Nano, 2020, 14(8), 9364-9388.
[http://dx.doi.org/10.1021/acsnano.0c04117] [PMID: 32667191]
[32]
Rabiee, N.; Bagherzadeh, M.; Ghasemi, A.; Zare, H.; Ahmadi, S.; Fatahi, Y.; Dinarvand, R.; Rabiee, M.; Ramakrishna, S.; Shokouhimehr, M.; Varma, R.S. Point-of-use rapid detection of SARS-CoV-2: Nanotechnology-enabled solutions for the COVID-19 pandemic. Int. J. Mol. Sci., 2020, 21(14), 5126.
[http://dx.doi.org/10.3390/ijms21145126] [PMID: 32698479]
[33]
Nikaeen, G.; Abbaszadeh, S.; Yousefinejad, S. Application of nanomaterials in treatment, anti-infection and detection of coronaviruses. Nanomedicine (Lond.), 2020, 15(15), 1501-1512.
[http://dx.doi.org/10.2217/nnm-2020-0117] [PMID: 32378459]
[34]
Jackson, L.A.; Anderson, E.J.; Rouphael, N.G.; Roberts, P.C.; Makhene, M.; Coler, R.N.; McCullough, M.P.; Chappell, J.D.; Denison, M.R.; Stevens, L.J.; Pruijssers, A.J.; McDermott, A.; Flach, B.; Doria-Rose, N.A.; Corbett, K.S.; Morabito, K.M.; O’Dell, S.; Schmidt, S.D.; Swanson, P.A., II; Padilla, M.; Mascola, J.R.; Neuzil, K.M.; Bennett, H.; Sun, W.; Peters, E.; Makowski, M.; Albert, J.; Cross, K.; Buchanan, W.; Pikaart-Tautges, R.; Ledgerwood, J.E.; Graham, B.S.; Beigel, J.H. mRNA-1273 study group. An mRNA vaccine against SARS-CoV-2 - preliminary report. N. Engl. J. Med., 2020, 383(20), 1920-1931.
[http://dx.doi.org/10.1056/NEJMoa2022483] [PMID: 32663912]
[35]
Lee, W.S.; Wheatley, A.K.; Kent, S.J.; DeKosky, B.J. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat. Microbiol., 2020, 5(10), 1185-1191.
[http://dx.doi.org/10.1038/s41564-020-00789-5] [PMID: 32908214]
[36]
Zahid, M.N.; Moosa, M.S.; Perna, S.; Buti, E.B. A review on COVID-19 vaccines: stages of clinical trials, mode of actions and efficacy. Arab. J. Basic App. Sci., 2021, 28(1), 225-233.
[http://dx.doi.org/10.1080/25765299.2021.1903144]
[37]
Kumar, A.; Dowling, W.E.; Román, R.G.; Chaudhari, A.; Gurry, C.; Le, T.T.; Tollefson, S.; Clark, C.E.; Bernasconi, V.; Kristiansen, P.A. Status report on COVID-19 vaccines development. Curr. Infect. Dis. Rep., 2021, 23(6), 9.
[http://dx.doi.org/10.1007/s11908-021-00752-3] [PMID: 33867863]
[38]
Forni, G.; Mantovani, A. COVID-19 vaccines: where we stand and challenges ahead. Cell Death Differ., 2021, 28(2), 626-639.
[http://dx.doi.org/10.1038/s41418-020-00720-9] [PMID: 33479399]
[39]
Antiochia, R. Nanobiosensors as new diagnostic tools for SARS, MERS and COVID-19: from past to perspectives. Mikrochim. Acta, 2020, 187(12), 639.
[http://dx.doi.org/10.1007/s00604-020-04615-x] [PMID: 33151419]
[40]
Pinals, R.L.; Ledesma, F.; Yang, D.; Navarro, N.; Jeong, S.; Pak, J.E.; Kuo, L.; Chuang, Y.C.; Cheng, Y.W.; Sun, H.Y.; Landry, M.P. Rapid SARS-CoV-2 spike protein detection by carbon nanotube-based near-infrared nanosensors. Nano Lett., 2021, 21(5), 2272-2280.
[http://dx.doi.org/10.1021/acs.nanolett.1c00118] [PMID: 33635655]
[41]
Qiao, J; Qi, L Recent progress in plant-gold nanoparticles fabrication methods and bio-applications. Talanta, 2021, 223(Pt 2), 121396.
[http://dx.doi.org/10.1016/j.talanta.2020.121396]
[42]
Sharifi, M; Hasan, A; Haghighat, S; Taghizadeh, A; Attar, F; Bloukh, SH; Edis, Z; Xue, M; Khan, S; Falahati, M Rapid diagnostics of coronavirus disease 2019 in early stages using nanobiosensors: Challenges and opportunities. Talanta, 2021, 223(Pt 1), 121704.
[43]
Vermisoglou, E; Panáček, D; Jayaramulu, K; Pykal, M; Frébort, I; Kolář, M; Hajdúch, M; Zbořil, R; Otyepka, M Human virus detection with graphene-based materials. Biosens Bioelectron., 2020, 15(166), 112436.
[http://dx.doi.org/10.1016/j.bios.2020.112436]
[44]
Rahimkhoei, V.; Rezaie, J.; Akbari, A.; Nourani, A.; Jabbari, N.; Lighvan, Z.M.; Amini, M. Nano-based methods for novel coronavirus 2019 (2019-nCoV) diagnosis: A review. Cell Biochem. Funct., 2021, 39(1), 29-34.
[http://dx.doi.org/10.1002/cbf.3606] [PMID: 33319383]
[45]
Castillo-Henríquez, L.; Brenes-Acuña, M.; Castro-Rojas, A.; Cordero-Salmerón, R.; Lopretti-Correa, M.; Vega-Baudrit, J.R. Biosensors for the detection of bacterial and viral clinical pathogens. Sensors (Basel), 2020, 20(23), 6926.
[http://dx.doi.org/10.3390/s20236926] [PMID: 33291722]
[46]
Zhao, M.; Liao, L.; Xiao, W.; Yu, X.; Wang, H.; Wang, Q.; Lin, Y.L.; Kilinc-Balci, F.S.; Price, A.; Chu, L.; Chu, M.C.; Chu, S.; Cui, Y. Household materials selection for homemade cloth face coverings and their filtration efficiency enhancement with triboelectric charging. Nano Lett., 2020, 20(7), 5544-5552.
[http://dx.doi.org/10.1021/acs.nanolett.0c02211] [PMID: 32484683]
[47]
Campos, E.V.R.; Pereira, A.E.S.; de Oliveira, J.L.; Carvalho, L.B.; Guilger-Casagrande, M.; de Lima, R.; Fraceto, L.F. How can nanotechnology help to combat COVID-19? Opportunities and urgent need. J. Nanobiotechnology, 2020, 18(1), 125.
[http://dx.doi.org/10.1186/s12951-020-00685-4] [PMID: 32891146]
[48]
Zhong, H.; Zhu, Z.; Lin, J.; Cheung, C.F.; Lu, V.L.; Yan, F.; Chan, C.Y.; Li, G. Reusable and recyclable graphene masks with outstanding superhydrophobic and photothermal performances. ACS Nano, 2020, 14(5), 6213-6221.
[http://dx.doi.org/10.1021/acsnano.0c02250] [PMID: 32329600]
[49]
Palmieri, V.; Papi, M. Can graphene take part in the fight against COVID-19? Nano Today, 2020, 33, 100883.
[http://dx.doi.org/10.1016/j.nantod.2020.100883] [PMID: 32382315]
[50]
Shanmugam, A.; Muralidharan, N.; Velmurugan, D.; Gromiha, M.M. Therapeutic targets and computational approaches on drug development for COVID-19. Curr. Top. Med. Chem., 2020, 20(24), 2210-2220.
[http://dx.doi.org/10.2174/1568026620666200710105507] [PMID: 32648845]
[51]
Sabbah, D.A.; Hajjo, R.; Bardaweel, S.K.; Zhong, H.A. An updated review on betacoronavirus viral entry inhibitors: Learning from past discoveries to advance COVID-19 drug discovery. Curr. Top. Med. Chem., 2021, 21(7), 571-596.
[http://dx.doi.org/10.2174/1568026621666210119111409] [PMID: 33463470]
[52]
Lai, C.C.; Shih, T.P.; Ko, W.C.; Tang, H.J.; Hsueh, P.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents, 2020, 55(3), 105924.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105924] [PMID: 32081636]
[53]
Ahmed, S.; Mahtarin, R.; Islam, M.S.; Das, S.; Al Mamun, A.; Ahmed, S.S.; Ali, M.A. Remdesivir analogs against SARS-CoV-2 RNA-dependent RNA polymerase. J. Biomol. Struct. Dyn., 2021, 1-14.
[http://dx.doi.org/10.1080/07391102.2021.1955743] [PMID: 34315339]
[54]
Sharma, V.; Sharma, A.; Bharate, S.B. Natural products in mitigation of SARS CoV infections. Curr. Med. Chem., 2021, 28(22), 4454-4483.
[http://dx.doi.org/10.2174/0929867327666201027153940] [PMID: 33109028]
[55]
Hartini, Y.; Saputra, B.; Wahono, B.; Auw, Z.; Indayani, F.; Adelya, L.; Namba, G.; Hariono, M. Biflavonoid as potential 3-chymotrypsin-like protease (3CLpro) inhibitor of SARS-coronavirus. Results Chem., 2021, 3, 100087.
[http://dx.doi.org/10.1016/j.rechem.2020.100087] [PMID: 33520632]
[56]
Farzin, L.; Sadjadi, S.; Sheini, A.; Mohagheghpour, E. A nano-scale genosensor for early detection of COVID-19 by voltammetric determination of RNA-dependent RNA polymerase (RdRP) sequence of SARS-CoV-2 virus. Mikrochim. Acta, 2021, 188(4), 121.
[http://dx.doi.org/10.1007/s00604-021-04773-6] [PMID: 33694010]
[57]
Hu, C.J.; Chang, W.S.; Fang, Z.S.; Chen, Y.T.; Wang, W.L.; Tsai, H.H.; Chueh, L.L.; Takano, T.; Hohdatsu, T.; Chen, H.W. Nanoparticulate vacuolar ATPase blocker exhibits potent host-targeted antiviral activity against feline coronavirus. Sci. Rep., 2017, 7(1), 13043.
[http://dx.doi.org/10.1038/s41598-017-13316-0] [PMID: 29026122]
[58]
Abou-El-Naga, I.F.; El Kerdany, E.D.; Mady, R.F.; Shalaby, T.I.; Zaytoun, E.M. The effect of lopinavir/ritonavir and lopinavir/ritonavir loaded PLGA nanoparticles on experimental toxoplasmosis. Parasitol. Int., 2017, 66(6), 735-747.
[http://dx.doi.org/10.1016/j.parint.2017.08.007] [PMID: 28838776]
[59]
Refaat, H.; Mady, F.M.; Sarhan, H.A.; Rateb, H.S.; Alaaeldin, E. Optimization and evaluation of propolis liposomes as a promising therapeutic approach for COVID-19. Int. J. Pharm., 2021, 592, 120028.
[http://dx.doi.org/10.1016/j.ijpharm.2020.120028] [PMID: 33166584]
[60]
Cao, P.; Wu, S.; Wu, T.; Deng, Y.; Zhang, Q.; Wang, K.; Zhang, Y. The important role of polysaccharides from a traditional Chinese medicine-lung cleansing and detoxifying decoction against the COVID-19 pandemic. Carbohydr. Polym., 2020, 240, 116346.
[http://dx.doi.org/10.1016/j.carbpol.2020.116346] [PMID: 32475597]
[61]
Chen, X.; Han, W.; Wang, G.; Zhao, X. Application prospect of polysaccharides in the development of anti-novel coronavirus drugs and vaccines. Int. J. Biol. Macromol., 2020, 164, 331-343.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.106] [PMID: 32679328]
[62]
Otto, D.P.; de Villiers, M.M. Layer-By-Layer nanocoating of antiviral polysaccharides on surfaces to prevent coronavirus infections. Molecules, 2020, 25(15), 3415.
[http://dx.doi.org/10.3390/molecules25153415] [PMID: 32731428]
[63]
Chen, Y.; Yao, F.; Ming, K.; Wang, D.; Hu, Y.; Liu, J. Polysaccharides from traditional chinese medicines: Extraction, purification, modification, and biological activity. Molecules, 2016, 21(12), 1705.
[http://dx.doi.org/10.3390/molecules21121705] [PMID: 27983593]
[64]
Jiang, X.; Li, Z.; Young, D.J.; Liu, M.; Wu, C.; Wu, Y.L.; Loh, X.J. Toward the prevention of coronavirus infection: What role can polymers play? Mater Today Adv., 2021, 10, 100140.
[http://dx.doi.org/10.1016/j.mtadv.2021.100140] [PMID: 33778467]
[65]
Lee, C. Carrageenans as broad-spectrum microbicides: Current status and challenges. Mar. Drugs, 2020, 18(9), 435.
[http://dx.doi.org/10.3390/md18090435] [PMID: 32825645]
[66]
Souza, P.R.; de Oliveira, A.C.; Vilsinski, B.H.; Kipper, M.J.; Martins, A.F. Polysaccharide-based materials created by physical processes: From preparation to biomedical applications. Pharmaceutics, 2021, 13(5), 621.
[http://dx.doi.org/10.3390/pharmaceutics13050621] [PMID: 33925380]
[67]
Upadhyay, S.K.; Dan, S.; Girdhar, M.; Rastogi, K. Recent advancement in SARS-CoV-2 diagnosis, treatment, and vaccine formulation: A new paradigm of nanotechnology in strategic combating of COVID-19 pandemic. Curr. Pharmacol. Rep., 2021, 3(1), 1-14.
[http://dx.doi.org/10.1007/s40495-021-00250-z] [PMID: 33552875]
[68]
Chavda, V.P.; Vora, L.K.; Pandya, A.K.; Patravale, V.B. Intranasal vaccines for SARS-CoV-2: From challenges to potential in COVID-19 management. Drug Discov. Today, 2021, 26(11), 2619-2636.
[http://dx.doi.org/10.1016/j.drudis.2021.07.021] [PMID: 34332100]
[69]
Moitra, P.; Alafeef, M.; Dighe, K.; Frieman, M.B.; Pan, D. Selective naked-eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles. ACS Nano, 2020, 14(6), 7617-7627.
[http://dx.doi.org/10.1021/acsnano.0c03822] [PMID: 32437124]
[70]
Mesias, V.S.D.; Zhu, H.; Tang, X.; Dai, X.; Guo, Y.; Liu, W.; Huang, J. Effective ACE2 peptide-nanoparticle conjugation and its binding with the SARS-Cov-2 RBD quantified by dynamic light scattering. Chem. Commun. (Camb.), 2021, 57(57), 6979-6982.
[http://dx.doi.org/10.1039/D1CC02267A] [PMID: 34190246]
[71]
Ramezani, Z.; Dayer, M.R.; Noorizadeh, S.; Thompson, M. Deactivation of SARS-CoV-2 via shielding of spike glycoprotein using carbon quantum dots: Bioinformatic perspective. COVID, 2021, 1(1), 120-129.
[http://dx.doi.org/10.3390/covid1010011]
[72]
Garg, P.; Sangam, S.; Kochhar, D.; Pahari, S.; Kar, C.; Mukherjee, M. Exploring the role of triazole functionalized heteroatom co-doped carbon quantum dots against human coronaviruses. Nano Today, 2020, 35, 101001.
[http://dx.doi.org/10.1016/j.nantod.2020.101001] [PMID: 33052202]
[73]
Pandey, A.; Nikam, A.N.; Mutalik, S.P.; Fernandes, G.; Shreya, A.B.; Padya, B.S.; Raychaudhuri, R.; Kulkarni, S.; Prassl, R.; Subramanian, S.; Korde, A.; Mutalik, S. Architectured therapeutic and diagnostic nanoplatforms for combating SARS-CoV-2: Role of inorganic, organic, and radioactive materials. ACS Biomater. Sci. Eng., 2021, 7(1), 31-54.
[http://dx.doi.org/10.1021/acsbiomaterials.0c01243] [PMID: 33371667]
[74]
El-Atab, N.; Mishra, R.B.; Hussain, M.M. Toward nanotechnology-enabled face masks against SARS-CoV-2 and pandemic respiratory diseases. Nanotechnology, 2021, 33(6), 062006.
[http://dx.doi.org/10.1088/1361-6528/ac3578] [PMID: 34727530]
[75]
El-Atab, N.; Qaiser, N.; Badghaish, H.; Shaikh, S.F.; Hussain, M.M. Flexible nanoporous template for the design and de- velopment of reusable anti-COVID-19 hydrophobic face masks. ACS Nano, 2020, 14(6), 7659-7665.
[http://dx.doi.org/10.1021/acsnano.0c03976] [PMID: 32432461]
[76]
Ali, M.A.; Hu, C.; Jahan, S.; Yuan, B.; Saleh, M.S.; Ju, E.; Gao, S.J.; Panat, R. Sensing of COVID-19 antibodies in seconds via aerosol jet nanoprinted reduced-graphene-oxide-coated 3D electrodes. Adv. Mater., 2021, 33(7), e2006647.
[http://dx.doi.org/10.1002/adma.202006647] [PMID: 33349975]
[77]
Gazzi, A.; Fusco, L.; Orecchioni, M.; Ferrari, S.; Franzoni, G.; Yan, J.S.; Rieckher, M.; Peng, G.; Lucherelli, M.A.; Vacchi, I.A.; Chau, N.D.Q.; Criado, A.; Istif, A.; Mancino, D.; Dominguez, A.; Eckert, H.; Vázquez, E.; Ros, T.D.; Nicolussi, P.; Palermo, V.; Schumacher, B.; Cuniberti, G.; Mai, Y.; Clementi, C.; Pasquali, M.; Feng, X.; Kostarelos, K.; Yilmazer, A.; Bedognetti, D.; Fadeel, B.; Prato, M.; Bianco, A.; Delogu, L.G. Graphene, other carbon nanomaterials and the immune system: Toward nanoimmunity-by-design. J. Phy. Mat., 2020, 3(3), 034009.
[http://dx.doi.org/10.1088/2515-7639/ab9317]
[78]
Jiang, Z.; Feng, B.; Xu, J.; Qing, T.; Zhang, P.; Qing, Z. Graphene biosensors for bacterial and viral pathogens. Biosens. Bioelectron., 2020, 166, 112471.
[http://dx.doi.org/10.1016/j.bios.2020.112471] [PMID: 32777726]
[79]
Cordaro, A.; Neri, G.; Sciortino, M.T.; Scala, A.; Piperno, A. Graphene-based strategies in liquid biopsy and in viral diseases diagnosis. Nanomaterials (Basel), 2020, 10(6), 1014.
[http://dx.doi.org/10.3390/nano10061014] [PMID: 32466536]

© 2024 Bentham Science Publishers | Privacy Policy