Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Phytocompounds from the Medicinal and Dietary Plants: Multi-target Agents for Cervical Cancer Prevention and Therapy

Author(s): Shoaib Shoaib, Najmul Islam and Nabiha Yusuf*

Volume 29, Issue 26, 2022

Published on: 05 April, 2022

Page: [4481 - 4506] Pages: 26

DOI: 10.2174/0929867329666220301114251

Price: $65

Abstract

Cervical cancer is the fourth leading cause of cancer death among women worldwide. Due to cervical cancer's high incidence and mortality, there is an unmet demand for effective diagnostic, therapeutic, and preventive agents. At present, the preferred treatment strategies for advanced metastatic cervical cancer include surgery, radiotherapy, and chemotherapy. However, cervical cancer is gradually developing resistance to chemotherapy, thereby reducing its efficacy. Over the last several decades, phytochemicals, a general term for compounds produced from plants, have gained attention for their role in preventing cervical cancer. This role in cervical cancer prevention has garnered attention on the medicinal properties of fruits and vegetables. Phytochemicals are currently being evaluated for their ability to block proteins involved in carcinogenesis and chemoresistance against cervical cancer. Chemoresistance to cancer drugs like cisplatin, doxorubicin, and 5-fluorouracil has become a significant limitation of drug-based chemotherapy. However, the combination of cisplatin with other phytochemicals has been identified as a promising alternative to subjugate cisplatin resistance. Phytochemicals are promising chemo-preventive and chemotherapeutic agents as they possess antioxidant, anti-inflammatory, and anti-proliferative potential against many cancers, including cervical cancer. Furthermore, the ability of the phytochemicals to modulate cellular signaling pathways through up and down regulation of various proteins has been claimed for their therapeutic potential. Phytochemicals also display a wide range of biological functions, including cell cycle arrest, apoptosis induction, inhibition of invasion, and migration in cervical cancer cells. Numerous studies have revealed the critical role of different signaling proteins and their signaling pathways in the pathogenesis of cervical cancer. Here, we review the ability of several dietary phytochemicals to alter carcinogenesis by modulating various molecular targets.

Keywords: Cervical cancer, carcinogenesis, oxidative stress, chemoresistance, phytochemicals, cytotoxicity, chemotherapeutics, apoptosis.

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Shi, N.; Lu, Q.; Zhang, J.; Li, L.; Zhang, J.; Zhang, F.; Dong, Y.; Zhang, X.; Zhang, Z.; Gao, W. Analysis of risk factors for persistent infection of asymptomatic women with high-risk human papilloma virus. Hum. Vaccin. Immunother., 2017, 13(6), 1-7.
[http://dx.doi.org/10.1080/21645515.2016.1239669] [PMID: 28409676]
[3]
de Sanjose, S.; Quint, W.G.; Alemany, L.; Geraets, D.T.; Klaustermeier, J.E.; Lloveras, B.; Tous, S.; Felix, A.; Bravo, L.E.; Shin, H.R.; Vallejos, C.S.; de Ruiz, P.A.; Lima, M.A.; Guimera, N.; Clavero, O.; Alejo, M.; Llombart-Bosch, A.; Cheng-Yang, C.; Tatti, S.A.; Kasamatsu, E.; Iljazovic, E.; Odida, M.; Prado, R.; Seoud, M.; Grce, M.; Usubutun, A.; Jain, A.; Suarez, G.A.; Lombardi, L.E.; Banjo, A.; Menéndez, C.; Domingo, E.J.; Velasco, J.; Nessa, A.; Chichareon, S.C.; Qiao, Y.L.; Lerma, E.; Garland, S.M.; Sasagawa, T.; Ferrera, A.; Hammouda, D.; Mariani, L.; Pelayo, A.; Steiner, I.; Oliva, E.; Meijer, C.J.; Al-Jassar, W.F.; Cruz, E.; Wright, T.C.; Puras, A.; Llave, C.L.; Tzardi, M.; Agorastos, T.; Garcia-Barriola, V.; Clavel, C.; Ordi, J.; Andújar, M.; Castellsagué, X.; Sánchez, G.I.; Nowakowski, A.M.; Bornstein, J.; Muñoz, N.; Bosch, F.X. Human papillomavirus genotype attribution in invasive cervical cancer: A retrospective cross-sectional worldwide study. Lancet Oncol., 2010, 11(11), 1048-1056.
[http://dx.doi.org/10.1016/S1470-2045(10)70230-8] [PMID: 20952254]
[4]
Fica, A. Cancer of cervix in Chile. Too much vaccine amid a neglected Papanicolau. Rev. Chilena Infectol., 2014, 31(2), 196-203.
[5]
Forman, D.; de Martel, C.; Lacey, C.J.; Soerjomataram, I.; Lortet-Tieulent, J.; Bruni, L.; Vignat, J.; Ferlay, J.; Bray, F.; Plummer, M.; Franceschi, S. Global burden of human papillomavirus and related diseases. Vaccine, 2012, 30(Suppl. 5), F12-F23.
[http://dx.doi.org/10.1016/j.vaccine.2012.07.055] [PMID: 23199955]
[6]
Di Domenico, F.; Foppoli, C.; Coccia, R.; Perluigi, M. Antioxidants in cervical cancer: chemopreventive and chemotherapeutic effects of polyphenols. Biochim. Biophys. Acta, 2012, 1822(5), 737-747.
[http://dx.doi.org/10.1016/j.bbadis.2011.10.005] [PMID: 22019724]
[7]
Zeng, X.T.; Xiong, P.A.; Wang, F.; Li, C.Y.; Yao, J.; Guo, Y. Passive smoking and cervical cancer risk: a meta-analysis based on 3,230 cases and 2,982 controls. Asian Pac. J. Cancer Prev., 2012, 13(6), 2687-2693.
[http://dx.doi.org/10.7314/APJCP.2012.13.6.2687] [PMID: 22938442]
[8]
Jin, Y.M.; Xu, T.M.; Zhao, Y.H.; Wang, Y.C.; Cui, M.H. In vitro and in vivo anti-cancer activity of formononetin on human cervical cancer cell line HeLa. Tumour Biol., 2014, 35(3), 2279-2284.
[http://dx.doi.org/10.1007/s13277-013-1302-1] [PMID: 24272199]
[9]
Hernandez, B.Y.; McDuffie, K.; Franke, A.A.; Killeen, J.; Goodman, M.T. Reports: plasma and dietary phytoestrogens and risk of premalignant lesions of the cervix. Nutr. Cancer, 2004, 49(2), 109-124.
[http://dx.doi.org/10.1207/s15327914nc4902_1] [PMID: 15489203]
[10]
de Martel, C.; Plummer, M.; Vignat, J.; Franceschi, S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int. J. Cancer, 2017, 141(4), 664-670.
[http://dx.doi.org/10.1002/ijc.30716] [PMID: 28369882]
[11]
Burchell, A.N.; Winer, R.L.; de Sanjosé, S.; Franco, E.L. Chapter 6: Epidemiology and transmission dynamics of genital HPV infection. Vaccine, 2006, 24(Suppl. 3), S3-, 52-61.
[http://dx.doi.org/10.1016/j.vaccine.2006.05.031] [PMID: 16950018]
[12]
Reiter, P.L.; Pendergraft, W.F., III; Brewer, N.T. Meta-analysis of human papillomavirus infection concordance. Cancer Epidemiol. Biomarkers Prev., 2010, 19(11), 2916-2931.
[http://dx.doi.org/10.1158/1055-9965.EPI-10-0576] [PMID: 20833971]
[13]
Sabeena, S.; Bhat, P.; Kamath, V.; Arunkumar, G. Possible non-sexual modes of transmission of human papilloma virus. J. Obstet. Gynaecol. Res., 2017, 43(3), 429-435.
[http://dx.doi.org/10.1111/jog.13248] [PMID: 28165175]
[14]
Bravo, I.G.; Félez-Sánchez, M. Papillomaviruses: Viral evolution, cancer and evolutionary medicine. Evol. Med. Public Health, 2015, 2015(1), 32-51.
[http://dx.doi.org/10.1093/emph/eov003] [PMID: 25634317]
[15]
Doorbar, J.; Quint, W.; Banks, L.; Bravo, I.G.; Stoler, M.; Broker, T.R.; Stanley, M.A. The biology and life-cycle of human papillomaviruses. Vaccine, 2012, 30(Suppl. 5), F55-F70.
[http://dx.doi.org/10.1016/j.vaccine.2012.06.083] [PMID: 23199966]
[16]
de Villiers, E.M.; Fauquet, C.; Broker, T.R.; Bernard, H.U.; zur Hausen, H. Classification of papillomaviruses. Virology, 2004, 324(1), 17-27.
[http://dx.doi.org/10.1016/j.virol.2004.03.033] [PMID: 15183049]
[17]
Bernard, H.U.; Burk, R.D.; Chen, Z.; van Doorslaer, K.; zur Hausen, H.; de Villiers, E.M. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology, 2010, 401(1), 70-79.
[http://dx.doi.org/10.1016/j.virol.2010.02.002] [PMID: 20206957]
[18]
Li, Y.; Xu, C. Human papillomavirus-related cancers. In: Infectious agents associated cancers: Epidemiology and molecular biology; Springer: Singapore, 2017; pp. 23-34.
[http://dx.doi.org/10.1007/978-981-10-5765-6_3]
[19]
dos Reis, H.L.B.; Passos, M.R.L.; de Santa Helena, A.A.; Cavalcante, F.S.; Júnior, A.S.; de Carvalho Ferreira, D. Recurrent Oral Squamous Papilloma in a HIV Infected Patient: Case Report; Malla, Nancy, Ed.; 2012, p. 155.
[20]
Hamid, N.A.; Brown, C.; Gaston, K. The regulation of cell proliferation by the papillomavirus early proteins. Cell. Mol. Life Sci., 2009, 66(10), 1700-1717.
[http://dx.doi.org/10.1007/s00018-009-8631-7] [PMID: 19183849]
[21]
Aksoy, P.; Gottschalk, E.Y.; Meneses, P.I. HPV entry into cells. Mutat. Res. Rev. Mutat. Res., 2017, 772, 13-22.
[http://dx.doi.org/10.1016/j.mrrev.2016.09.004] [PMID: 28528686]
[22]
Raff, A.B.; Woodham, A.W.; Raff, L.M.; Skeate, J.G.; Yan, L.; Da Silva, D.M.; Schelhaas, M.; Kast, W.M. The evolving field of human papillomavirus receptor research: a review of binding and entry. J. Virol., 2013, 87(11), 6062-6072.
[http://dx.doi.org/10.1128/JVI.00330-13] [PMID: 23536685]
[23]
Münger, K.; Baldwin, A.; Edwards, K.M.; Hayakawa, H.; Nguyen, C.L.; Owens, M.; Grace, M.; Huh, K. Mechanisms of human papillomavirus-induced oncogenesis. J. Virol., 2004, 78(21), 11451-11460.
[http://dx.doi.org/10.1128/JVI.78.21.11451-11460.2004] [PMID: 15479788]
[24]
Crafton, S.M.; Salani, R. Beyond chemotherapy: An overview and review of targeted therapy in cervical cancer. Clin. Ther., 2016, 38(3), 449-458.
[http://dx.doi.org/10.1016/j.clinthera.2016.02.007] [PMID: 26926322]
[25]
Korfage, I. J.; Essink-Bot, M. L.; Mols, F.; van de Poll-Franse, L.; Kruitwagen, R.; van Ballegooijen, M. Health-related quality of life in cervical cancer survivors: A population-based survey. Int. J. Radiat. Oncol. Biol. Phys., 2009, 73(5), 1501-1509.
[http://dx.doi.org/10.1016/j.ijrobp.2008.06.1905]
[26]
Sak, K. Characteristic features of cytotoxic activity of flavonoids on human cervical cancer cells. Asian Pac. J. Cancer Prev., 2014, 15(19), 8007-8019.
[http://dx.doi.org/10.7314/APJCP.2014.15.19.8007] [PMID: 25338977]
[27]
Cherry, J.J.; Rietz, A.; Malinkevich, A.; Liu, Y.; Xie, M.; Bartolowits, M.; Davisson, V.J.; Baleja, J.D.; Androphy, E.J. Structure based identification and characterization of flavonoids that disrupt human papillomavirus-16 E6 function. PLoS One, 2013, 8(12), e84506.
[http://dx.doi.org/10.1371/journal.pone.0084506] [PMID: 24376816]
[28]
Wheeler, C.M.; Castellsagué, X.; Garland, S.M.; Szarewski, A.; Paavonen, J.; Naud, P.; Salmerón, J.; Chow, S.N.; Apter, D.; Kitchener, H.; Teixeira, J.C.; Skinner, S.R.; Jaisamrarn, U.; Limson, G.; Romanowski, B.; Aoki, F.Y.; Schwarz, T.F.; Poppe, W.A.; Bosch, F.X.; Harper, D.M.; Huh, W.; Hardt, K.; Zahaf, T.; Descamps, D.; Struyf, F.; Dubin, G.; Lehtinen, M. Cross-protective efficacy of HPV-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by non-vaccine oncogenic HPV types: 4-year end-of-study analysis of the randomised, double-blind PATRICIA trial. Lancet Oncol., 2012, 13(1), 100-110.
[http://dx.doi.org/10.1016/S1470-2045(11)70287-X] [PMID: 22075170]
[29]
Petrosky, E.; Bocchini, J.A., Jr; Hariri, S.; Chesson, H.; Curtis, C.R.; Saraiya, M.; Unger, E.R.; Markowitz, L.E. Use of 9-valent human papillomavirus (HPV) vaccine: updated HPV vaccination recommendations of the advisory committee on immunization practices. MMWR Morb. Mortal. Wkly. Rep., 2015, 64(11), 300-304.
[PMID: 25811679]
[30]
Naud, P.S.; Roteli-Martins, C.M.; De Carvalho, N.S.; Teixeira, J.C.; de Borba, P.C.; Sanchez, N.; Zahaf, T.; Catteau, G.; Geeraerts, B.; Descamps, D. Sustained efficacy, immunogenicity, and safety of the HPV-16/18 AS04-adjuvanted vaccine: final analysis of a long-term follow-up study up to 9.4 years post-vaccination. Hum. Vaccin. Immunother., 2014, 10(8), 2147-2162.
[http://dx.doi.org/10.4161/hv.29532] [PMID: 25424918]
[31]
Safaeian, M.; Porras, C.; Pan, Y.; Kreimer, A.; Schiller, J.T.; Gonzalez, P.; Lowy, D.R.; Wacholder, S.; Schiffman, M.; Rodriguez, A.C.; Herrero, R.; Kemp, T.; Shelton, G.; Quint, W.; van Doorn, L.J.; Hildesheim, A.; Pinto, L.A. Durable antibody responses following one dose of the bivalent human papillomavirus L1 virus-like particle vaccine in the Costa Rica Vaccine Trial. Cancer Prev. Res. (Phila.), 2013, 6(11), 1242-1250.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0203] [PMID: 24189371]
[32]
Sankaranarayanan, R.; Prabhu, P.R.; Pawlita, M.; Gheit, T.; Bhatla, N.; Muwonge, R.; Nene, B.M.; Esmy, P.O.; Joshi, S.; Poli, U.R.; Jivarajani, P.; Verma, Y.; Zomawia, E.; Siddiqi, M.; Shastri, S.S.; Jayant, K.; Malvi, S.G.; Lucas, E.; Michel, A.; Butt, J.; Vijayamma, J.M.; Sankaran, S.; Kannan, T.P.; Varghese, R.; Divate, U.; Thomas, S.; Joshi, G.; Willhauck-Fleckenstein, M.; Waterboer, T.; Müller, M.; Sehr, P.; Hingmire, S.; Kriplani, A.; Mishra, G.; Pimple, S.; Jadhav, R.; Sauvaget, C.; Tommasino, M.; Pillai, M.R. Immunogenicity and HPV infection after one, two, and three doses of quadrivalent HPV vaccine in girls in India: A multicentre prospective cohort study. Lancet Oncol., 2016, 17(1), 67-77.
[http://dx.doi.org/10.1016/S1470-2045(15)00414-3] [PMID: 26652797]
[33]
Garcia-Oliveira, P.; Otero, P.; Pereira, A.G.; Chamorro, F.; Carpena, M.; Echave, J.; Fraga-Corral, M.; Simal-Gandara, J.; Prieto, M.A. Status and challenges of plant-anticancer compounds in cancer treatment. Pharmaceuticals (Basel), 2021, 14(2), 157.
[http://dx.doi.org/10.3390/ph14020157] [PMID: 33673021]
[34]
Yadav, N.; Parveen, S.; Banerjee, M. Potential of nano-phytochemicals in cervical cancer therapy. Clin. Chim. Acta, 2020, 505, 60-72.
[http://dx.doi.org/10.1016/j.cca.2020.01.035] [PMID: 32017926]
[35]
Liu, Y.Q.; Wang, X.L.; He, D.H.; Cheng, Y.X. Protection against chemotherapy- and radiotherapy-induced side effects: A review based on the mechanisms and therapeutic opportunities of phytochemicals. Phytomedicine, 2021, 80, 153402.
[http://dx.doi.org/10.1016/j.phymed.2020.153402] [PMID: 33203590]
[36]
Drețcanu, G.; Iuhas, C.I.; Diaconeasa, Z. The involvement of natural polyphenols in the chemoprevention of cervical cancer. Int. J. Mol. Sci., 2021, 22(16), 8812.
[http://dx.doi.org/10.3390/ijms22168812] [PMID: 34445518]
[37]
Eftekhari, A.; Khusro, A.; Ahmadian, E.; Dizaj, S.M.; Dinparast, L.; Bahadori, M.B. Phytochemical and nutra-pharmaceutical attributes of Mentha spp.: A comprehensive review. Arab. J. Chem., 2021, 14(5), 103106.
[http://dx.doi.org/10.1016/j.arabjc.2021.103106]
[38]
Gao, P.; Zheng, J. Oncogenic virus-mediated cell fusion: New insights into initiation and progression of oncogenic viruses--related cancers. Cancer Lett., 2011, 303(1), 1-8.
[http://dx.doi.org/10.1016/j.canlet.2010.12.021] [PMID: 21306823]
[39]
Bosch, F.X.; Burchell, A.N.; Schiffman, M.; Giuliano, A.R.; de Sanjose, S.; Bruni, L.; Tortolero-Luna, G.; Kjaer, S.K.; Muñoz, N. Epidemiology and natural history of human papillomavirus infections and type-specific implications in cervical neoplasia. Vaccine, 2008, 26(Suppl. 10), K1-K16.
[http://dx.doi.org/10.1016/j.vaccine.2008.05.064] [PMID: 18847553]
[40]
Alazawi, W.; Pett, M.; Arch, B.; Scott, L.; Freeman, T.; Stanley, M.A.; Coleman, N. Changes in cervical keratinocyte gene expression associated with integration of human papillomavirus 16. Cancer Res., 2002, 62(23), 6959-6965.
[PMID: 12460913]
[41]
Xu, F.; Cao, M.; Shi, Q.; Chen, H.; Wang, Y.; Li, X. Integration of the full-length HPV16 genome in cervical cancer and Caski and Siha cell lines and the possible ways of HPV integration. Virus Genes, 2015, 50(2), 210-220.
[http://dx.doi.org/10.1007/s11262-014-1164-7] [PMID: 25823917]
[42]
Zanier, K.; Charbonnier, S.; Sidi, A.O.M.H.O.; McEwen, A.G.; Ferrario, M.G.; Poussin-Courmontagne, P.; Cura, V.; Brimer, N.; Babah, K.O.; Ansari, T.; Muller, I.; Stote, R.H.; Cavarelli, J.; Vande Pol, S.; Travé, G. Structural basis for hijacking of cellular LxxLL motifs by papillomavirus E6 oncoproteins. Science, 2013, 339(6120), 694-698.
[http://dx.doi.org/10.1126/science.1229934] [PMID: 23393263]
[43]
Thomas, M.; Banks, L. Inhibition of Bak-induced apoptosis by HPV-18 E6. Oncogene, 1998, 17(23), 2943-2954.
[http://dx.doi.org/10.1038/sj.onc.1202223] [PMID: 9881696]
[44]
Vogt, M.; Butz, K.; Dymalla, S.; Semzow, J.; Hoppe-Seyler, F. Inhibition of Bax activity is crucial for the antiapoptotic function of the human papillomavirus E6 oncoprotein. Oncogene, 2006, 25(29), 4009-4015.
[http://dx.doi.org/10.1038/sj.onc.1209429] [PMID: 16462759]
[45]
Scheffner, M.; Huibregtse, J.M.; Vierstra, R.D.; Howley, P.M. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell, 1993, 75(3), 495-505.
[http://dx.doi.org/10.1016/0092-8674(93)90384-3] [PMID: 8221889]
[46]
Gonzalez, S.L.; Stremlau, M.; He, X.; Basile, J.R.; Münger, K. Degradation of the retinoblastoma tumor suppressor by the human papillomavirus type 16 E7 oncoprotein is important for functional inactivation and is separable from proteasomal degradation of E7. J. Virol., 2001, 75(16), 7583-7591.
[http://dx.doi.org/10.1128/JVI.75.16.7583-7591.2001] [PMID: 11462030]
[47]
Hengstermann, A.; Linares, L.K.; Ciechanover, A.; Whitaker, N.J.; Scheffner, M. Complete switch from Mdm2 to human papillomavirus E6-mediated degradation of p53 in cervical cancer cells. Proc. Natl. Acad. Sci. USA, 2001, 98(3), 1218-1223.
[http://dx.doi.org/10.1073/pnas.98.3.1218] [PMID: 11158620]
[48]
Helt, A.M.; Funk, J.O.; Galloway, D.A. Inactivation of both the retinoblastoma tumor suppressor and p21 by the human papillomavirus type 16 E7 oncoprotein is necessary to inhibit cell cycle arrest in human epithelial cells. J. Virol., 2002, 76(20), 10559-10568.
[http://dx.doi.org/10.1128/JVI.76.20.10559-10568.2002] [PMID: 12239337]
[49]
Moody, C.A.; Laimins, L.A. Human papillomavirus oncoproteins: Pathways to transformation. Nat. Rev. Cancer, 2010, 10(8), 550-560.
[http://dx.doi.org/10.1038/nrc2886] [PMID: 20592731]
[50]
Howie, H.L.; Katzenellenbogen, R.A.; Galloway, D.A. Papillomavirus E6 proteins. Virology, 2009, 384(2), 324-334.
[http://dx.doi.org/10.1016/j.virol.2008.11.017] [PMID: 19081593]
[51]
Zheng, Z.M.; Baker, C.C. Papillomavirus genome structure, expression, and post-transcriptional regulation. Front. Biosci., 2006, 11, 2286.
[52]
Narisawa-Saito, M.; Kiyono, T. Basic mechanisms of high-risk human papillomavirus-induced carcinogenesis: roles of E6 and E7 proteins. Cancer Sci., 2007, 98(10), 1505-1511.
[http://dx.doi.org/10.1111/j.1349-7006.2007.00546.x] [PMID: 17645777]
[53]
Yugawa, T.; Kiyono, T. Molecular mechanisms of cervical carcinogenesis by high-risk human papillomaviruses: novel functions of E6 and E7 oncoproteins. Rev. Med. Virol., 2009, 19(2), 97-113.
[http://dx.doi.org/10.1002/rmv.605] [PMID: 19156753]
[54]
Saavedra, K.P.; Brebi, P.M.; Roa, J.C.S. Epigenetic alterations in preneoplastic and neoplastic lesions of the cervix. Clin. Epigen., 2012, 4(1), 13.
[http://dx.doi.org/10.1186/1868-7083-4-13] [PMID: 22938091]
[55]
Barcellos-Hoff, M.H.; Lyden, D.; Wang, T.C. The evolution of the cancer niche during multistage carcinogenesis. Nat. Rev. Cancer, 2013, 13(7), 511-518.
[http://dx.doi.org/10.1038/nrc3536] [PMID: 23760023]
[56]
Duensing, S.; Münger, K. Mechanisms of genomic instability in human cancer: Insights from studies with human papillomavirus oncoproteins. Int. J. Cancer, 2004, 109(2), 157-162.
[http://dx.doi.org/10.1002/ijc.11691] [PMID: 14750163]
[57]
Maliekal, T.T.; Bajaj, J.; Giri, V.; Subramanyam, D.; Krishna, S. The role of Notch signaling in human cervical cancer: implications for solid tumors. Oncogene, 2008, 27(38), 5110-5114.
[http://dx.doi.org/10.1038/onc.2008.224] [PMID: 18758479]
[58]
Artavanis-Tsakonas, S.; Rand, M.D.; Lake, R.J. Notch signaling: Cell fate control and signal integration in development. Science, 1999, 284(5415), 770-776.
[http://dx.doi.org/10.1126/science.284.5415.770] [PMID: 10221902]
[59]
Naidu, M.S.K.; Suryakar, A.N.; Swami, S.C.; Katkam, R.V.; Kumbar, K.M. Oxidative stress and antioxidant status in cervical cancer patients. Indian J. Clin. Biochem., 2007, 22(2), 140-144.
[http://dx.doi.org/10.1007/BF02913333] [PMID: 23105702]
[60]
Khan, M.A.; Tania, M.; Zhang, D.Z.; Chen, H.C. Antioxidant enzymes and cancer. Chin. J. Cancer Res., 2010, 22, 87-92.
[http://dx.doi.org/10.1007/s11670-010-0087-7]
[61]
Georgescu, S.R.; Mitran, C.I.; Mitran, M.I.; Caruntu, C.; Sarbu, M.I.; Matei, C.; Nicolae, I.; Tocut, S.M.; Popa, M.I.; Tampa, M. New insights in the pathogenesis of HPV infection and the associated carcinogenic processes: The role of chronic inflammation and oxidative stress. J. Immunol. Res., 2018, 2018, 5315816.
[http://dx.doi.org/10.1155/2018/5315816] [PMID: 30225270]
[62]
Prasad, S.; Gupta, S.C.; Tyagi, A.K. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett., 2017, 387, 95-105.
[http://dx.doi.org/10.1016/j.canlet.2016.03.042] [PMID: 27037062]
[63]
Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 2007, 39(1), 44-84.
[http://dx.doi.org/10.1016/j.biocel.2006.07.001] [PMID: 16978905]
[64]
Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem., 2015, 30(1), 11-26.
[http://dx.doi.org/10.1007/s12291-014-0446-0] [PMID: 25646037]
[65]
Halliwell, B. Biochemistry of oxidative stress. Biochem. Soc. Trans., 2007, 35(5), 1147-1150.
[http://dx.doi.org/10.1042/BST0351147]
[66]
Eftekhari, A.; Dizaj, S.M.; Chodari, L.; Sunar, S.; Hasanzadeh, A.; Ahmadian, E.; Hasanzadeh, M. The promising future of nano-antioxidant therapy against environmental pollutants induced-toxicities. Biomed. Pharmacother., 2018, 103, 1018-1027.
[http://dx.doi.org/10.1016/j.biopha.2018.04.126] [PMID: 29710659]
[67]
Foppoli, C.; De Marco, F.; Cini, C.; Perluigi, M. Redox control of viral carcinogenesis: The human papillomavirus paradigm. Biochim. Biophys. Acta, 2015, 1850(8), 1622-1632.
[http://dx.doi.org/10.1016/j.bbagen.2014.12.016] [PMID: 25534611]
[68]
Williams, V.M.; Filippova, M.; Soto, U.; Duerksen-Hughes, P.J. HPV-DNA integration and carcinogenesis: Putative roles for inflammation and oxidative stress. Future Virol., 2011, 6(1), 45-57.
[http://dx.doi.org/10.2217/fvl.10.73] [PMID: 21318095]
[69]
Cairns, R.A.; Harris, I.S.; Mak, T.W. Regulation of cancer cell metabolism. Nat. Rev. Cancer, 2011, 11(2), 85-95.
[http://dx.doi.org/10.1038/nrc2981] [PMID: 21258394]
[70]
De Marco, F. Oxidative stress and HPV carcinogenesis. Viruses, 2013, 5(2), 708-731.
[http://dx.doi.org/10.3390/v5020708] [PMID: 23403708]
[71]
Kalal, B.S.; Fathima, F.; Pai, V.R.; Sanjeev, G.; Krishna, C.M.; Upadhya, D. Inhibition of ERK1/2 or AKT activity equally enhances radiation sensitization in B16F10 Cells. World J. Oncol., 2018, 9(1), 21-28.
[http://dx.doi.org/10.14740/wjon1088w] [PMID: 29581812]
[72]
Kolanjiappan, K.; Manoharan, S.; Kayalvizhi, M. Measurement of erythrocyte lipids, lipid peroxidation, antioxidants and osmotic fragility in cervical cancer patients. Clin. Chim. Acta, 2002, 326(1-2), 143-149.
[http://dx.doi.org/10.1016/S0009-8981(02)00300-5] [PMID: 12417105]
[73]
Manoharan, S.; Kolanjiappan, K.; Kayalvizhi, M.; Sethupathy, S. Lipid peroxidation and antioxidant status in cervical cancer patients. J. Biochem. Mol. Biol. Biophys., 2002, 6(3), 225-227.
[http://dx.doi.org/10.1080/10258140290018685] [PMID: 12186759]
[74]
Morgan, M. J.; Liu, Z.-g. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res., 2011, 21(1), 103.
[75]
Kinnula, V.L.; Crapo, J.D. Superoxide dismutases in malignant cells and human tumors. Free Radic. Biol. Med., 2004, 36(6), 718-744.
[http://dx.doi.org/10.1016/j.freeradbiomed.2003.12.010] [PMID: 14990352]
[76]
Mercurio, F.; Manning, A.M. NF-kappaB as a primary regulator of the stress response. Oncogene, 1999, 18(45), 6163-6171.
[http://dx.doi.org/10.1038/sj.onc.1203174] [PMID: 10557108]
[77]
Zhen, J.; Zhang, L.; Pan, J.; Ma, S.; Yu, X.; Li, X.; Chen, S.; Du, W. AIM2 mediates inflammation-associated renal damage in hepatitis B virus-associated glomerulonephritis by regulating caspase-1, IL-1β, and IL-18. Mediators Inflamm., 2014, 2014, 190860.
[http://dx.doi.org/10.1155/2014/190860] [PMID: 24701032]
[78]
Kontostathi, G.; Zoidakis, J.; Makridakis, M.; Lygirou, V.; Mermelekas, G.; Papadopoulos, T.; Vougas, K.; Vlamis-Gardikas, A.; Drakakis, P.; Loutradis, D.; Vlahou, A.; Anagnou, N.P.; Pappa, K.I. Cervical cancer cell line secretome highlights the roles of transforming growth factor-beta-induced protein ig-h3, peroxiredoxin-2, and NRF2 on cervical carcinogenesis. BioMed Res. Int., 2017, 2017, 4180703.
[http://dx.doi.org/10.1155/2017/4180703] [PMID: 28261610]
[79]
O’Connell, M.A.; Hayes, J.D. The Keap1/Nrf2 pathway in health and disease: from the bench to the clinic. Biochem. Soc. Trans., 2015, 43(4), 687-689.
[http://dx.doi.org/10.1042/BST20150069] [PMID: 26551713]
[80]
Valko, M.; Rhodes, C.J.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact., 2006, 160(1), 1-40.
[http://dx.doi.org/10.1016/j.cbi.2005.12.009] [PMID: 16430879]
[81]
Pourquier, P.; Ueng, L.M.; Fertala, J.; Wang, D.; Park, H.J.; Essigmann, J.M.; Bjornsti, M.A.; Pommier, Y. Induction of reversible complexes between eukaryotic DNA topoisomerase I and DNA-containing oxidative base damages. 7, 8-dihydro-8-oxoguanine and 5-hydroxycytosine. J. Biol. Chem., 1999, 274(13), 8516-8523.
[http://dx.doi.org/10.1074/jbc.274.13.8516] [PMID: 10085084]
[82]
Daroui, P.; Desai, S.D.; Li, T.K.; Liu, A.A.; Liu, L.F. Hydrogen peroxide induces topoisomerase I-mediated DNA damage and cell death. J. Biol. Chem., 2004, 279(15), 14587-14594.
[http://dx.doi.org/10.1074/jbc.M311370200] [PMID: 14688260]
[83]
Waris, G.; Ahsan, H. Reactive oxygen species: Role in the development of cancer and various chronic conditions. J. Carcinog., 2006, 5, 14.
[http://dx.doi.org/10.1186/1477-3163-5-14] [PMID: 16689993]
[84]
Nobili, S.; Lippi, D.; Witort, E.; Donnini, M.; Bausi, L.; Mini, E.; Capaccioli, S. Natural compounds for cancer treatment and prevention. Pharmacol. Res., 2009, 59(6), 365-378.
[http://dx.doi.org/10.1016/j.phrs.2009.01.017] [PMID: 19429468]
[85]
Zheng, H.C. The molecular mechanisms of chemoresistance in cancers. Oncotarget, 2017, 8(35), 59950-59964.
[http://dx.doi.org/10.18632/oncotarget.19048] [PMID: 28938696]
[86]
Longley, D. B.; Johnston, P. G. Molecular mechanisms of drug resistance. J. Pathol., 2005, 205(2), 275-292.
[87]
Brasseur, K.; Gévry, N.; Asselin, E. Chemoresistance and targeted therapies in ovarian and endometrial cancers. Oncotarget, 2017, 8(3), 4008-4042.
[http://dx.doi.org/10.18632/oncotarget.14021] [PMID: 28008141]
[88]
Manil, L.; Couvreur, P.; Mahieu, P. Acute renal toxicity of doxorubicin (adriamycin)-loaded cyanoacrylate nanoparticles. Pharm. Res., 1995, 12(1), 85-87.
[http://dx.doi.org/10.1023/A:1016290704772] [PMID: 7724492]
[89]
Macdonald, J.S. Toxicity of 5-fluorouracil. Oncology (Williston Park), 1999, 13(7)(Suppl. 3), 33-34.
[PMID: 10442356]
[90]
Kilickap, S.; Akgul, E.; Aksoy, S.; Aytemir, K.; Barista, I. Doxorubicin-induced second degree and complete atrioventricular block. Europace, 2005, 7(3), 227-230.
[http://dx.doi.org/10.1016/j.eupc.2004.12.012] [PMID: 15878560]
[91]
McCormick, D.; Chong, H.; Hobbs, C.; Datta, C.; Hall, P.A. Detection of the Ki-67 antigen in fixed and wax-embedded sections with the monoclonal antibody MIB1. Histopathology, 1993, 22(4), 355-360.
[http://dx.doi.org/10.1111/j.1365-2559.1993.tb00135.x] [PMID: 8514278]
[92]
Barnouti, Z.P.; Owtad, P.; Shen, G.; Petocz, P.; Darendeliler, M.A. The biological mechanisms of PCNA and BMP in TMJ adaptive remodeling. Angle Orthod., 2011, 81(1), 91-99.
[http://dx.doi.org/10.2319/091609-522.1] [PMID: 20936960]
[93]
Avila-Carrasco, L.; Majano, P.; Sánchez-Toméro, J.A.; Selgas, R.; López-Cabrera, M.; Aguilera, A.; González Mateo, G. Natural plants compounds as modulators of epithelial-to-mesenchymal transition. Front. Pharmacol., 2019, 10, 715.
[http://dx.doi.org/10.3389/fphar.2019.00715] [PMID: 31417401]
[94]
Mitra, T.; Bhattacharya, R. Phytochemicals modulate cancer aggressiveness: A review depicting the anticancer efficacy of dietary polyphenols and their combinations. J. Cell. Physiol., 2020, 235(11), 7696-7708.
[http://dx.doi.org/10.1002/jcp.29703] [PMID: 32324275]
[95]
Saleem, M. Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett., 2009, 285(2), 109-115.
[http://dx.doi.org/10.1016/j.canlet.2009.04.033] [PMID: 19464787]
[96]
Prasad, N.; Sabarwal, A.; Yadav, U.C.S.; Singh, R.P. Lupeol induces S-phase arrest and mitochondria-mediated apoptosis in cervical cancer cells. J. Biosci., 2018, 43(2), 249-261.
[http://dx.doi.org/10.1007/s12038-018-9743-8] [PMID: 29872014]
[97]
Zhang, Y.; Zhao, Y.; Ran, Y.; Guo, J.; Cui, H.; Liu, S. Alantolactone exhibits selective antitumor effects in HELA human cervical cancer cells by inhibiting cell migration and invasion, G2/M cell cycle arrest, mitochondrial mediated apoptosis and targeting Nf-kB signalling pathway. J. Balkan Union Oncol., 2019, 24(6), 2310-2315.
[PMID: 31983099]
[98]
Farooqui, A.; Khan, F.; Khan, I.; Ansari, I.A. Glycyrrhizin induces reactive oxygen species-dependent apoptosis and cell cycle arrest at G0/G1 in HPV18+ human cervical cancer HeLa cell line. Biomed. Pharmacother., 2018, 97, 752-764.
[http://dx.doi.org/10.1016/j.biopha.2017.10.147] [PMID: 29107932]
[99]
Shilpa, G.; Renjitha, J.; Saranga, R.; Sajin, F.K.; Nair, M.S.; Joy, B.; Sasidhar, B.S.; Priya, S. Epoxyazadiradione purified from the Azadirachtaindica seed induced mitochondrial apoptosis and inhibition of NFκB nuclear translocation in human cervical cancer cells. Phytother. Res., 2017, 31(12), 1892-1902.
[http://dx.doi.org/10.1002/ptr.5932] [PMID: 29044755]
[100]
Su, K.; Wang, C.F.; Zhang, Y.; Cai, Y.J.; Zhang, Y.Y.; Zhao, Q. The inhibitory effects of carnosic acid on cervical cancer cells growth by promoting apoptosis via ROS-regulated signaling pathway. Biomed. Pharmacother., 2016, 82, 180-191.
[http://dx.doi.org/10.1016/j.biopha.2016.04.056] [PMID: 27470354]
[101]
Sikander, M.; Hafeez, B.B.; Malik, S.; Alsayari, A.; Halaweish, F.T.; Yallapu, M.M.; Chauhan, S.C.; Jaggi, M. Cucurbitacin D exhibits potent anti-cancer activity in cervical cancer. Sci. Rep., 2016, 6, 36594.
[http://dx.doi.org/10.1038/srep36594] [PMID: 27824155]
[102]
Jeyamohan, S.; Moorthy, R.K.; Kannan, M.K.; Arockiam, A.J.V. Parthenolide induces apoptosis and autophagy through the suppression of PI3K/Akt signaling pathway in cervical cancer. Biotechnol. Lett., 2016, 38(8), 1251-1260.
[http://dx.doi.org/10.1007/s10529-016-2102-7] [PMID: 27099069]
[103]
Fang, L.; Liu, M.; Cai, L. Hederagenin inhibits proliferation and promotes apoptosis of cervical cancer CaSki cells by blocking STAT3 pathway. Chinese J. Cell. Mol. Immunol., 2019, 35(2), 140-145.
[104]
Guan, D.; Li, C.; Lv, X.; Yang, Y. Pseudolaric acid B inhibits PAX2 expression through Wnt signaling and induces BAX expression, therefore promoting apoptosis in HeLa cervical cancer cells. J. Gynecol. Oncol., 2019, 30(5), e77.
[http://dx.doi.org/10.3802/jgo.2019.30.e77] [PMID: 31328459]
[105]
Wang, Y.L.; Liu, H.F.; Shi, X.J.; Wang, Y. Antiproliferative activity of Farnesol in HeLa cervical cancer cells is mediated via apoptosis induction, loss of mitochon-drial membrane potential (ΛΨm) and PI3K/Aktsignalling pathway. Methods, 2018, 8, 11.
[106]
Zhang, Y.; Li, G.; Ji, C. Inhibition of human cervical cancer cell growth by Salviolone is mediated via autophagy induction, cell migration and cell invasion suppression, G2/M cell cycle arrest and downregulation of Nf-kB/m-TOR/PI3K/AKT pathway. J. BUON, 2018, 23(6), 1739-1744.
[PMID: 30610802]
[107]
Zhao, X.; Song, X.; Zhao, J.; Zhu, W.; Hou, J.; Wang, Y.; Zhang, W. Juglone inhibits proliferation of HPV-positive cervical cancer cells specifically. Biol. Pharm. Bull., 2018, 2018, b18-b00845.
[PMID: 30606896]
[108]
Lian, H.; Hui, Y.; Xiaoping, T.; Wei, T.; Jiyi, X.; Xiaolan, Y. Baicalein suppresses the proliferation of human cervical cancer cells via Notch 1/Hes signaling pathway. J. Cancer Res. Ther., 2019, 15(6), 1216-1220.
[http://dx.doi.org/10.4103/0973-1482.204899] [PMID: 31898650]
[109]
Guo, H.; Zhang, D.; Fu, Q. Inhibition of cervical cancer by promoting IGFBP7 expression using ellagic acid from pomegranate peel. Med. Sci. Monit., 2016, 22, 4881-4886.
[http://dx.doi.org/10.12659/MSM.898658] [PMID: 27941714]
[110]
Souza, R.P.; Bonfim-Mendonça, P.S.; Damke, G.M. Artepillin C induces selective oxidative stress and inhibits migration and invasion in a comprehensive panel of human cervical cancer cell lines. Anti-Cancer Agents Med. Chem., 2018, 18(12), 1750-1760.
[111]
Qian, S.; Li, M. Chamaejasmine induces apoptosis in HeLa cells through the PI3K/Akt signaling pathway. Anticancer Drugs, 2017, 28(1), 40-50.
[http://dx.doi.org/10.1097/CAD.0000000000000424] [PMID: 27557139]
[112]
Chen, D.; Cao, J.; Tian, L.; Liu, F.; Sheng, X. Induction of apoptosis by casticin in cervical cancer cells through reactive oxygen species-mediated mitochondrial signaling pathways. Oncol. Rep., 2011, 26(5), 1287-1294.
[PMID: 21725610]
[113]
Bin, W. H.; Da, L. H.; Xue, Y.; Jing, B. Pterostilbene (3’, 5’-dimethoxy-resveratrol) exerts potent antitumor effects in HeLa human cervical cancer cells via disruption of mitochondrial membrane potential, apoptosis induction and targeting m-TOR/PI3K/Aktsignalling pathway. J. BUON, 2018, 23(5), 1384.
[114]
Yang, Y.M.; Yang, Y.; Dai, W.W.; Li, X.M.; Ma, J.Q.; Tang, L.P. Genistein-induced apoptosis is mediated by endoplasmic reticulum stress in cervical cancer cells. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(15), 3292-3296.
[PMID: 27467006]
[115]
Zhang, L.; Chinnathambi, A.; Alharbi, S.A.; Veeraraghavan, V.P.; Mohan, S.K.; Zhang, G. Punicalagin promotes the apoptosis in human cervical cancer (ME-180) cells through mitochondrial pathway and by inhibiting the NF-kB signaling pathway. Saudi J. Biol. Sci., 2020, [Epub ahead of print].
[116]
Zhang, F.; Thakur, K.; Hu, F.; Zhang, J.G.; Wei, Z.J. 10-Gingerol, a phytochemical derivative from “tongling white ginger”, inhibits cervical cancer: insights into the molecular mechanism and inhibitory targets. J. Agric. Food Chem., 2017, 65(10), 2089-2099.
[http://dx.doi.org/10.1021/acs.jafc.7b00095] [PMID: 28230361]
[117]
Jaudan, A.; Sharma, S.; Malek, S.N.A.; Dixit, A. Induction of apoptosis by pinostrobin in human cervical cancer cells: Possible mechanism of action. PLoS One, 2018, 13(2), e0191523.
[http://dx.doi.org/10.1371/journal.pone.0191523] [PMID: 29420562]
[118]
Zhang, H.; Xie, B.; Zhang, Z.; Sheng, X.; Zhang, S. Tetrandrine suppresses cervical cancer growth by inducing apoptosis in vitro and in vivo. Drug Des. Devel. Ther., 2018, 13, 119-127.
[http://dx.doi.org/10.2147/DDDT.S187776] [PMID: 30587932]
[119]
Pei, Z.; Zeng, J.; Gao, Y.; Li, F.; Li, W.; Zhou, H.; Yang, Y.; Wu, R.; Chen, Y.; Liu, J. Oxymatrine inhibits the proliferation of CaSki cells via downregulating HPV16E7 expression. Oncol. Rep., 2016, 36(1), 291-298.
[http://dx.doi.org/10.3892/or.2016.4800] [PMID: 27176229]
[120]
Han, S.Z.; Liu, H.X.; Yang, L.Q.; Cui, L.D.; Xu, Y. Piperine (PP) enhanced mitomycin-C (MMC) therapy of human cervical cancer through suppressing Bcl-2 signaling pathway via inactivating STAT3/NF-κB. Biomed. Pharmacother., 2017, 96, 1403-1410.
[http://dx.doi.org/10.1016/j.biopha.2017.11.022] [PMID: 29169726]
[121]
Morré, D.J.; Chueh, P.J.; Morré, D.M. Capsaicin inhibits preferentially the NADH oxidase and growth of transformed cells in culture. Proc. Natl. Acad. Sci. USA, 1995, 92(6), 1831-1835.
[http://dx.doi.org/10.1073/pnas.92.6.1831] [PMID: 7892186]
[122]
Chu, S.C.; Yu, C.C.; Hsu, L.S.; Chen, K.S.; Su, M.Y.; Chen, P.N. Berberine reverses epithelial-to-mesenchymal transition and inhibits metastasis and tumor-induced angiogenesis in human cervical cancer cells. Mol. Pharmacol., 2014, 86(6), 609-623.
[http://dx.doi.org/10.1124/mol.114.094037] [PMID: 25217495]
[123]
Mahata, S.; Bharti, A.C.; Shukla, S.; Tyagi, A.; Husain, S.A.; Das, B.C. Berberine modulates AP-1 activity to suppress HPV transcription and downstream signaling to induce growth arrest and apoptosis in cervical cancer cells. Mol. Cancer, 2011, 10(1), 39.
[http://dx.doi.org/10.1186/1476-4598-10-39] [PMID: 21496227]
[124]
Lin, J.P.; Yang, J.S.; Chang, N.W.; Chiu, T.H.; Su, C.C.; Lu, K.W.; Ho, Y.T.; Yeh, C.C.; Mei-Dueyang, ; Lin, H.J.; Chung, J.G. GADD153 mediates berberine-induced apoptosis in human cervical cancer Ca ski cells. Anticancer Res., 2007, 27(5A), 3379-3386.
[PMID: 17970084]
[125]
Zhou, Y.J.; Guo, Y.J.; Yang, X.L.; Ou, Z.L. Anti-cervical cancer role of matrine, oxymatrine and sophora flavescens alkaloid gels and its mechanism. J. Cancer, 2018, 9(8), 1357-1364.
[http://dx.doi.org/10.7150/jca.22427] [PMID: 29721044]
[126]
Dasari, S.; Bakthavachalam, V.; Chinnapaka, S.; Venkatesan, R.; Samy, A.L.P.A.; Munirathinam, G. Neferine, an alkaloid from lotus seed embryo targets HeLa and SiHa cervical cancer cells via pro-oxidant anticancer mechanism. Phytother. Res., 2020, 34(9), 2366-2384.
[http://dx.doi.org/10.1002/ptr.6687] [PMID: 32364634]
[127]
Das, R.; Bhattacharya, K.; Samanta, S.K.; Pal, B.C.; Mandal, C. Improved chemosensitivity in cervical cancer to cisplatin: synergistic activity of mahanine through STAT3 inhibition. Cancer Lett., 2014, 351(1), 81-90.
[http://dx.doi.org/10.1016/j.canlet.2014.05.005] [PMID: 24831030]
[128]
Xu, J.Y.; Meng, Q.H.; Chong, Y.; Jiao, Y.; Zhao, L.; Rosen, E.M.; Fan, S. Sanguinarine inhibits growth of human cervical cancer cells through the induction of apoptosis. Oncol. Rep., 2012, 28(6), 2264-2270.
[http://dx.doi.org/10.3892/or.2012.2024] [PMID: 22965493]
[129]
Khumkhrong, P.; Piboonprai, K.; Chaichompoo, W.; Pimtong, W.; Khongkow, M.; Namdee, K.; Jantimaporn, A.; Japrung, D.; Asawapirom, U.; Suksamrarn, A.; Iempridee, T. Crinamine induces apoptosis and inhibits proliferation, migration, and angiogenesis in cervical cancer SiHa cells. Biomolecules, 2019, 9(9), 494.
[http://dx.doi.org/10.3390/biom9090494] [PMID: 31527550]
[130]
Maneenet, J.; Omar, A.M.; Sun, S.; Kim, M.J.; Daodee, S.; Monthakantirat, O.; Awale, S. Benzylisoquinoline alkaloids from NelumbonuciferaGaertn. petals with antiausterity activities against the HeLa human cervical cancer cell line. In: Zeitschriftfür Naturforschung C; , 2021; 76, pp. (9-10)401-406.
[131]
Palliyaguru, D.L.; Yuan, J.M.; Kensler, T.W.; Fahey, J.W. Isothiocyanates: Translating the power of plants to people. Mol. Nutr. Food Res., 2018, 62(18), e1700965.
[http://dx.doi.org/10.1002/mnfr.201700965] [PMID: 29468815]
[132]
Huong, D.; Shim, J.H.; Choi, K.H.; Shin, J.A.; Choi, E.S.; Kim, H.S.; Lee, S.J.; Kim, S.J.; Cho, N.P.; Cho, S.D. Effect of β-phenylethyl isothiocyanate from cruciferous vegetables on growth inhibition and apoptosis of cervical cancer cells through the induction of death receptors 4 and 5. J. Agric. Food Chem., 2011, 59(15), 8124-8131.
[http://dx.doi.org/10.1021/jf2006358] [PMID: 21702500]
[133]
Shoaib, S.; Tufail, S.; Sherwani, M.A.; Yusuf, N.; Islam, N. Phenethyl isothiocyanate induces apoptosis through ROS generation and caspase-3 activation in cervical cancer cells. Front. Pharmacol., 2021, 12, 673103.
[http://dx.doi.org/10.3389/fphar.2021.673103] [PMID: 34393773]
[134]
Qin, G.; Li, P.; Xue, Z. Effect of allyl isothiocyanate on the viability and apoptosis of the human cervical cancer HeLa cell line in vitro. Oncol. Lett., 2018, 15(6), 8756-8760.
[http://dx.doi.org/10.3892/ol.2018.8428] [PMID: 29805614]
[135]
Zhang, Q.; Yang, D. Allicin suppresses the migration and invasion in cervical cancer cells mainly by inhibiting NRF2. Exp. Ther. Med., 2019, 17(3), 1523-1528.
[PMID: 30783417]
[136]
Sharma, C.; Sadrieh, L.; Priyani, A.; Ahmed, M.; Hassan, A.H.; Hussain, A. Anti-carcinogenic effects of sulforaphane in association with its apoptosis-inducing and anti-inflammatory properties in human cervical cancer cells. Cancer Epidemiol., 2011, 35(3), 272-278.
[http://dx.doi.org/10.1016/j.canep.2010.09.008] [PMID: 20956097]
[137]
Cheng, Y.M.; Tsai, C.C.; Hsu, Y.C. Sulforaphane, a dietary isothiocyanate, induces G2/M arrest in cervical cancer cells through cyclinB1 downregulation and GADD45β/CDC2 association. Int. J. Mol. Sci., 2016, 17(9), 1530.
[http://dx.doi.org/10.3390/ijms17091530]
[138]
Ali Khan, M.; KedhariSundaram, M.; Hamza, A.; Quraishi, U.; Gunasekera, D.; Ramesh, L.; Hussain, A. Sulforaphane reverses the expression of various tumor suppressor genes by targeting DNMT3B and HDAC1 in human cervical cancer cells. Evid. Based Complement. Alternat. Med., 2015, 2015, 412149.
[http://dx.doi.org/10.1155/2015/412149]
[139]
Ansari, I.A.; Ahmad, A.; Imran, M.A.; Saeed, M.; Ahmad, I. Organosulphur compounds induce apoptosis and cell cycle arrest in cervical cancer cells via downregulation of HPV E6 and E7 oncogenes. Anti-Cancer Agents Med. Chem., 2021, 21(3), 393-405.
[http://dx.doi.org/10.2174/1871520620999200818154456]
[140]
Lin, Y.T.; Yang, J.S.; Lin, S.Y.; Tan, T.W.; Ho, C.C.; Hsia, T.C.; Chiu, T.H.; Yu, C.S.; Lu, H.F.; Weng, Y.S.; Chung, J.G. Diallyl disulfide (DADS) induces apoptosis in human cervical cancer Ca Ski cells via reactive oxygen species and Ca2+-dependent mitochondria-dependent pathway. Anticancer Res., 2008, 28(5A), 2791-2799.
[PMID: 19035312]
[141]
Gökalp, F. The effective natural compounds for inhibiting Cervical cancer. Med. Oncol., 2021, 38(2), 12.
[http://dx.doi.org/10.1007/s12032-021-01456-3] [PMID: 33474656]
[142]
Miyoshi, N.; Watanabe, E.; Osawa, T.; Okuhira, M.; Murata, Y.; Ohshima, H.; Nakamura, Y. ATP depletion alters the mode of cell death induced by benzyl isothiocyanate. Biochim. Biophys. Acta, 2008, 1782(10), 566-573.
[http://dx.doi.org/10.1016/j.bbadis.2008.07.002] [PMID: 18675902]
[143]
Chen, Y.; Han, L.; Bai, L.; Tang, H.; Zheng, A. Trichosanthin inhibits the proliferation of cervical cancer cells and downregulates STAT-5/C-myc signaling pathway. Pathol. Res. Pract., 2019, 215(4), 632-638.
[http://dx.doi.org/10.1016/j.prp.2018.12.010] [PMID: 30567634]
[144]
Wei, W.T.; Lin, S.Z.; Liu, D.L.; Wang, Z.H. The distinct mechanisms of the antitumor activity of emodin in different types of cancer (Review). Oncol. Rep., 2013, 30(6), 2555-2562.
[http://dx.doi.org/10.3892/or.2013.2741] [PMID: 24065213]
[145]
Thacker, P.C.; Karunagaran, D. Curcumin and emodin down-regulate TGF-β signaling pathway in human cervical cancer cells. PLoS One, 2015, 10(3), e0120045.
[http://dx.doi.org/10.1371/journal.pone.0120045] [PMID: 25786122]
[146]
Srinivas, G.; Anto, R.J.; Srinivas, P.; Vidhyalakshmi, S.; Senan, V.P.; Karunagaran, D. Emodin induces apoptosis of human cervical cancer cells through poly(ADP-ribose) polymerase cleavage and activation of caspase-9. Eur. J. Pharmacol., 2003, 473(2-3), 117-125.
[http://dx.doi.org/10.1016/S0014-2999(03)01976-9] [PMID: 12892828]
[147]
Dou, H.; Yang, S.; Hu, Y.; Xu, D.; Liu, L.; Li, X. Sesamin induces ER stress-mediated apoptosis and activates autophagy in cervical cancer cells. Life Sci., 2018, 200, 87-93.
[http://dx.doi.org/10.1016/j.lfs.2018.03.003] [PMID: 29505783]
[148]
Zhang, Z.; Liu, X.; Wu, T.; Liu, J.; Zhang, X.; Yang, X.; Goodheart, M.J.; Engelhardt, J.F.; Wang, Y. Selective suppression of cervical cancer Hela cells by 2-O-β-D-glucopyranosyl-L-ascorbic acid isolated from the fruit of Lycium barbarum L. Cell Biol. Toxicol., 2011, 27(2), 107-121.
[http://dx.doi.org/10.1007/s10565-010-9174-2] [PMID: 20717715]
[149]
Hu, C.J.; Zhou, L.; Cai, Y. Dihydroartemisinin induces apoptosis of cervical cancer cells via upregulation of RKIP and downregulation of bcl-2. Cancer Biol. Ther., 2014, 15(3), 279-288.
[http://dx.doi.org/10.4161/cbt.27223] [PMID: 24335512]
[150]
Zhao, J.; Yang, T.; Ji, J.; Li, C.; Li, Z.; Li, L. Garcinol exerts anti-cancer effect in human cervical cancer cells through upregulation of T-cadherin. Biomed. Pharmacother., 2018, 107, 957-966.
[http://dx.doi.org/10.1016/j.biopha.2018.08.060] [PMID: 30257408]
[151]
Chen, X.; Song, L.; Hou, Y.; Li, F. Reactive oxygen species induced by icaritin promote DNA strand breaks and apoptosis in human cervical cancer cells. Oncol. Rep., 2019, 41(2), 765-778.
[PMID: 30431140]
[152]
Lukhele, S.T.; Motadi, L.R. Cannabidiol rather than Cannabis sativa extracts inhibit cell growth and induce apoptosis in cervical cancer cells. BMC Complement. Altern. Med., 2016, 16(1), 335.
[http://dx.doi.org/10.1186/s12906-016-1280-0] [PMID: 27586579]
[153]
Xu, W.; Mi, Y.; He, P.; He, S.; Niu, L. γ-Tocotrienol inhibits proliferation and induces apoptosis via the mitochondrial pathway in human cervical cancer HeLa cells. Molecules, 2017, 22(8), 1299.
[http://dx.doi.org/10.3390/molecules22081299] [PMID: 28777347]
[154]
Srinivas, P.; Gopinath, G.; Banerji, A.; Dinakar, A.; Srinivas, G. Plumbagin induces reactive oxygen species, which mediate apoptosis in human cervical cancer cells. Mol. Carcinogen., 2004, 40(4), 201-211.
[http://dx.doi.org/10.1002/mc.20031]
[155]
Muthusami, S.; Prabakaran, D.S.; An, Z.; Yu, J.R.; Park, W.Y. EGCG suppresses Fused Toes Homolog protein through p53 in cervical cancer cells. Mol. Biol. Rep., 2013, 40(10), 5587-5596.
[http://dx.doi.org/10.1007/s11033-013-2660-x] [PMID: 24065519]
[156]
Tudoran, O.; Soritau, O.; Balacescu, O.; Balacescu, L.; Braicu, C.; Rus, M.; Gherman, C.; Virag, P.; Irimie, F.; Berindan-Neagoe, I. Early transcriptional pattern of angiogenesis induced by EGCG treatment in cervical tumour cells. J. Cell. Mol. Med., 2012, 16(3), 520-530.
[http://dx.doi.org/10.1111/j.1582-4934.2011.01346.x] [PMID: 21609393]
[157]
Khatoon, E.; Banik, K.; Harsha, C.; Sailo, B.L.; Thakur, K.K.; Khwairakpam, A.D.; Kunnumakkara, A.B. Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives. In: Seminars in Cancer Biology; Academic Press, 2020.
[http://dx.doi.org/10.1016/j.semcancer.2020.06.014]
[158]
Iqbal, J.; Abbasi, B.A.; Ahmad, R.; Batool, R.; Mahmood, T.; Ali, B.; Khalil, A.T.; Kanwal, S.; Afzal Shah, S.; Alam, M.M.; Bashir, S.; Badshah, H.; Munir, A. Potential phytochemicals in the fight against skin cancer: Current landscape and future perspectives. Biomed. Pharmacother., 2019, 109, 1381-1393.
[http://dx.doi.org/10.1016/j.biopha.2018.10.107] [PMID: 30551389]
[159]
Shu, L.; Cheung, K.L.; Khor, T.O.; Chen, C.; Kong, A.N. Phytochemicals: cancer chemoprevention and suppression of tumor onset and metastasis. Cancer Metastasis Rev., 2010, 29(3), 483-502.
[http://dx.doi.org/10.1007/s10555-010-9239-y] [PMID: 20798979]
[160]
Kim, B.; Park, J.E.; Im, E.; Cho, Y.; Lee, J.; Lee, H.J.; Sim, D.Y.; Park, W.Y.; Shim, B.S.; Kim, S.H. Recent advances in nanotechnology with nano-phytochemicals: Molecular mechanisms and clinical implications in cancer progression. Int. J. Mol. Sci., 2021, 22(7), 3571.
[http://dx.doi.org/10.3390/ijms22073571] [PMID: 33808235]
[161]
Kawamoto, T.; Fuchs, A.; Fautz, R.; Morita, O. Threshold of Toxicological Concern (TTC) for Botanical Extracts (Botanical-TTC) derived from a meta-analysis of repeated-dose toxicity studies. Toxicol. Lett., 2019, 316, 1-9.
[http://dx.doi.org/10.1016/j.toxlet.2019.08.006] [PMID: 31415786]
[162]
Sarabia-Sánchez, M.Á.; Alvarado-Ortiz, E.; Toledo-Guzman, M.E.; García-Carrancá, A.; Ortiz-Sánchez, E. ALDHHIGH population is regulated by the AKT/β-Catenin pathway in a cervical cancer model. Front. Oncol., 2020, 10, 1039.
[http://dx.doi.org/10.3389/fonc.2020.01039] [PMID: 32766133]
[163]
Xie, Q.; Liang, J.; Rao, Q.; Xie, X.; Li, R.; Liu, Y.; Zhou, H.; Han, J.; Yao, T.; Lin, Z. Aldehyde dehydrogenase 1 expression predicts chemoresistance and poor clinical outcomes in patients with locally advanced cervical cancer treated with neoadjuvant chemotherapy prior to radical hysterectomy. Ann. Surg. Oncol., 2016, 23(1), 163-170.
[http://dx.doi.org/10.1245/s10434-015-4555-7] [PMID: 25916979]
[164]
He, Y.; Xiao, M.; Fu, H.; Chen, L.; Qi, L.; Liu, D.; Guo, P.; Chen, L.; Luo, Y.; Xiao, H.; Zhang, N.; Guo, H. cPLA2α reversibly regulates different subsets of cancer stem cells transformation in cervical cancer. Stem Cells, 2020, 38(4), 487-503.
[http://dx.doi.org/10.1002/stem.3157] [PMID: 32100928]
[165]
Jia, Q.P.; Yan, C.Y.; Zheng, X.R.; Pan, X.; Cao, X.; Cao, L. Upregulation of MTA1 expression by human papillomavirus infection promotes CDDP resistance in cervical cancer cells via modulation of NF-κB/APOBEC3B cascade. Cancer Chemother. Pharmacol., 2019, 83(4), 625-637.
[http://dx.doi.org/10.1007/s00280-018-03766-2] [PMID: 30631898]
[166]
Fang, X.; Zhong, G.; Wang, Y.; Lin, Z.; Lin, R.; Yao, T. Low GAS5 expression may predict poor survival and cisplatin resistance in cervical cancer. Cell Death Dis., 2020, 11(7), 531.
[http://dx.doi.org/10.1038/s41419-020-2735-2] [PMID: 32661236]
[167]
Peng, X.; Gong, F.; Chen, Y.; Jiang, Y.; Liu, J.; Yu, M.; Zhang, S.; Wang, M.; Xiao, G.; Liao, H. Autophagy promotes paclitaxel resistance of cervical cancer cells: involvement of Warburg effect activated hypoxia-induced factor 1-α-mediated signaling. Cell Death Dis., 2014, 5(8), e1367-e1367.
[http://dx.doi.org/10.1038/cddis.2014.297] [PMID: 25118927]
[168]
Wagner, W.; Kania, K.D.; Blauz, A.; Ciszewski, W.M. The lactate receptor (HCAR1/GPR81) contributes to doxorubicin chemoresistance via ABCB1 transporter up-regulation in human cervical cancer HeLa cells. J. Physiol. Pharmacol., 2017, 68(4), 555-564.
[PMID: 29151072]
[169]
Yan, C.M.; Zhao, Y.L.; Cai, H.Y.; Miao, G.Y.; Ma, W. Blockage of PTPRJ promotes cell growth and resistance to 5-FU through activation of JAK1/STAT3 in the cervical carcinoma cell line C33A. Oncol. Rep., 2015, 33(4), 1737-1744.
[http://dx.doi.org/10.3892/or.2015.3769] [PMID: 25634668]
[170]
Chen, Q.; Cao, H.Z.; Zheng, P.S. LGR5 promotes the proliferation and tumor formation of cervical cancer cells through the Wnt/β-catenin signaling pathway. Oncotarget, 2014, 5(19), 9092-9105.
[http://dx.doi.org/10.18632/oncotarget.2377] [PMID: 25193857]
[171]
Cao, H.Z.; Liu, X.F.; Yang, W.T.; Chen, Q.; Zheng, P.S. LGR5 promotes cancer stem cell traits and chemoresistance in cervical cancer. Cell Death Dis., 2017, 8(9), e3039-e3039.
[http://dx.doi.org/10.1038/cddis.2017.393] [PMID: 28880275]
[172]
Li, H.; Li, M.; Pang, Y.; Liu, F.; Sheng, D.; Cheng, X. Fructose‑1,6‑bisphosphatase‑1 decrease may promote carcinogenesis and chemoresistance in cervical cancer. Mol. Med. Rep., 2017, 16(6), 8563-8571.
[http://dx.doi.org/10.3892/mmr.2017.7665] [PMID: 28990097]
[173]
Jung, J.; Kim, S.; An, H.T.; Ko, J. α-Actinin-4 regulates cancer stem cell properties and chemoresistance in cervical cancer. Carcinogenesis, 2020, 41(7), 940-949.
[http://dx.doi.org/10.1093/carcin/bgz168] [PMID: 31584624]
[174]
He, Y.; Han, S.B.; Geng, Y.N.; Yang, S.L.; Wu, Y.M. Quantitative analysis of proteins related to chemoresistance to paclitaxel and carboplatin in human SiHa cervical cancer cells via iTRAQ. J. Gynecol. Oncol., 2020, 31(3), e28.
[http://dx.doi.org/10.3802/jgo.2020.31.e28] [PMID: 31912682]
[175]
Zhao, Z.; Ji, M.; Wang, Q.; He, N.; Li, Y. miR-16-5p/PDK4 mediated metabolic reprogramming is involved in chemo-resistance of cervical cancer. Mol. Ther. Oncolytics, 2020, 17, P509-P517.
[http://dx.doi.org/10.1016/j.omto.2020.05.008]
[176]
Hugo de Almeida, V.; Guimarães, I.D.S.; Almendra, L.R.; Rondon, A.M.R.; Tilli, T.M.; de Melo, A.C.; Sternberg, C.; Monteiro, R.Q. Positive crosstalk between EGFR and the TF-PAR2 pathway mediates resistance to cisplatin and poor survival in cervical cancer. Oncotarget, 2018, 9(55), 30594-30609.
[http://dx.doi.org/10.18632/oncotarget.25748] [PMID: 30093972]
[177]
Luo, C.; Fan, W.; Jiang, Y.; Zhou, S.; Cheng, W. Glucose-related protein 78 expression and its effects on cisplatin-resistance in cervical cancer. Med. Sci. Monit., 2018, 24, 2197-2209.
[http://dx.doi.org/10.12659/MSM.906413] [PMID: 29650944]
[178]
Chen, H.; Zhang, W.; Cheng, X.; Guo, L.; Xie, S.; Ma, Y.; Guo, N.; Shi, M. β2-AR activation induces chemoresistance by modulating p53 acetylation through upregulating Sirt1 in cervical cancer cells. Cancer Sci., 2017, 108(7), 1310-1317.
[http://dx.doi.org/10.1111/cas.13275] [PMID: 28498637]
[179]
Ali, A.Y.; Kim, J.Y.; Pelletier, J.F.; Vanderhyden, B.C.; Bachvarov, D.R.; Tsang, B.K. Akt confers cisplatin chemoresistance in human gynecological carcinoma cells by modulating PPM1D stability. Mol. Carcinog., 2015, 54(11), 1301-1314.
[http://dx.doi.org/10.1002/mc.22205] [PMID: 25154814]
[180]
Ji, H.; Li, B.; Zhang, S.; He, Z.; Zhou, Y.; Ouyang, L. Crk-like adapter protein is overexpressed in cervical carcinoma, facilitates proliferation, invasion and chemoresistance, and regulates Src and Akt signaling. Oncol. Lett., 2016, 12(5), 3811-3817.
[http://dx.doi.org/10.3892/ol.2016.5160] [PMID: 27895735]
[181]
Shu, X.R.; Wu, J.; Sun, H.; Chi, L.Q.; Wang, J.H. PAK4 confers the malignance of cervical cancers and contributes to the cisplatin-resistance in cervical cancer cells via PI3K/AKT pathway. Diagn. Pathol., 2015, 10(1), 177.
[http://dx.doi.org/10.1186/s13000-015-0404-z] [PMID: 26411419]
[182]
Zhang, J.; Zhang, Y.; Liu, S.; Zhang, Q.; Wang, Y.; Tong, L.; Chen, X.; Ji, Y.; Shang, Q.; Xu, B.; Chu, M.; Wei, L. Metadherin confers chemoresistance of cervical cancer cells by inducing autophagy and activating ERK/NF-κB pathway. Tumour Biol., 2013, 34(4), 2433-2440.
[http://dx.doi.org/10.1007/s13277-013-0794-z] [PMID: 23595222]
[183]
Liu, W.; Gao, Q.; Chen, K.; Xue, X.; Li, M.; Chen, Q.; Zhu, G.; Gao, Y. Hiwi facilitates chemoresistance as a cancer stem cell marker in cervical cancer. Oncol. Rep., 2014, 32(5), 1853-1860.
[http://dx.doi.org/10.3892/or.2014.3401] [PMID: 25119492]
[184]
Jin, Y.Z.; Pei, C.Z.; Wen, L.Y. FLNA is a predictor of chemoresistance and poor survival in cervical cancer. Biomarkers Med., 2016, 10(7), 711-719.
[http://dx.doi.org/10.2217/bmm-2016-0056] [PMID: 27347840]
[185]
Pérez-Rojas, J.M.; González-Macías, R.; González-Cortes, J.; Jurado, R.; Pedraza-Chaverri, J.; García-López, P. Synergic effect of α-mangostin on the cytotoxicity of cisplatin in a cervical cancer model. Oxid. Med. Cell. Longev., 2016, 2016, 7981397.
[http://dx.doi.org/10.1155/2016/7981397] [PMID: 28053694]
[186]
Pal, D.; Sur, S.; Roy, R.; Mandal, S.; Kumar Panda, C. Epigallocatechin gallate in combination with eugenol or amarogentin shows synergistic chemotherapeutic potential in cervical cancer cell line. J. Cell. Physiol., 2018, 234(1), 825-836.
[http://dx.doi.org/10.1002/jcp.26900] [PMID: 30078217]
[187]
Li, L.; Hou, Y.; Yu, J.; Lu, Y.; Chang, L.; Jiang, M.; Wu, X. Synergism of ursolic acid and cisplatin promotes apoptosis and enhances growth inhibition of cervical cancer cells via suppressing NF-κB p65. Oncotarget, 2017, 8(57), 97416-97427.
[http://dx.doi.org/10.18632/oncotarget.22133] [PMID: 29228621]
[188]
He, F.; Wang, Q.; Zheng, X.L.; Yan, J.Q.; Yang, L.; Sun, H.; Hu, L.N.; Lin, Y.; Wang, X. Wogonin potentiates cisplatin-induced cancer cell apoptosis through accumulation of intracellular reactive oxygen species. Oncol. Rep., 2012, 28(2), 601-605.
[http://dx.doi.org/10.3892/or.2012.1841] [PMID: 22665077]
[189]
Lin, M.T.; Lin, C.L.; Lin, T.Y.; Cheng, C.W.; Yang, S.F.; Lin, C.L.; Wu, C.C.; Hsieh, Y.H.; Tsai, J.P. Synergistic effect of fisetin combined with sorafenib in human cervical cancer HeLa cells through activation of death receptor-5 mediated caspase-8/caspase-3 and the mitochondria-dependent apoptotic pathway. Tumour Biol., 2016, 37(5), 6987-6996.
[http://dx.doi.org/10.1007/s13277-015-4526-4] [PMID: 26662956]
[190]
Koraneekit, A.; Limpaiboon, T.; Sangka, A.; Boonsiri, P.; Daduang, S.; Daduang, J. Synergistic effects of cisplatin-caffeic acid induces apoptosis in human cervical cancer cells via the mitochondrial pathways. Oncol. Lett., 2018, 15(5), 7397-7402.
[http://dx.doi.org/10.3892/ol.2018.8256] [PMID: 29731891]
[191]
Chakrabarty, S.; Nag, D.; Ganguli, A.; Das, A.; Ghosh Dastidar, D.; Chakrabarti, G. Theaflavin and epigallocatechin-3-gallate synergistically induce apoptosis through inhibition of PI3K/Akt signaling upon depolymerizing microtubules in HeLa cells. J. Cell. Biochem., 2019, 120(4), 5987-6003.
[http://dx.doi.org/10.1002/jcb.27886] [PMID: 30390323]
[192]
Seber, S.; Sirin, D.Y.; Yetisyigit, T.; Bilgen, T. Piperlongumine increases the apoptotic effect of doxorubicin and paclitaxel in a cervical cancer cell line. Niger. J. Clin. Pract., 2020, 23(3), 386-391.
[PMID: 32134040]
[193]
Eum, D.Y.; Byun, J.Y.; Yoon, C.H.; Seo, W.D.; Park, K.H.; Lee, J.H.; Chung, H.Y.; An, S.; Suh, Y.; Kim, M.J.; Lee, S.J. Triterpenoid pristimerin synergizes with taxol to induce cervical cancer cell death through reactive oxygen species-mediated mitochondrial dysfunction. Anticancer Drugs, 2011, 22(8), 763-773.
[http://dx.doi.org/10.1097/CAD.0b013e328347181a] [PMID: 21642840]
[194]
Fathy, M.; Fawzy, M.A.; Hintzsche, H.; Nikaido, T.; Dandekar, T.; Othman, E.M. Eugenol exerts apoptotic effect and modulates the sensitivity of HeLa cells to cisplatin and radiation. Molecules, 2019, 24(21), 3979.
[http://dx.doi.org/10.3390/molecules24213979] [PMID: 31684176]
[195]
Leekha, A.; Gurjar, B.S.; Tyagi, A.; Rizvi, M.A.; Verma, A.K. Vitamin C in synergism with cisplatin induces cell death in cervical cancer cells through altered redox cycling and p53 upregulation. J. Cancer Res. Clin. Oncol., 2016, 142(12), 2503-2514.
[http://dx.doi.org/10.1007/s00432-016-2235-z] [PMID: 27613187]
[196]
Yi, J.L.; Shi, S.; Shen, Y.L.; Wang, L.; Chen, H.Y.; Zhu, J.; Ding, Y. Myricetin and methyl eugenol combination enhances the anticancer activity, cell cycle arrest and apoptosis induction of cis-platin against HeLa cervical cancer cell lines. Int. J. Clin. Exp. Pathol., 2015, 8(2), 1116-1127.
[PMID: 25972998]
[197]
Allegra, M.; D’Anneo, A.; Frazzitta, A.; Restivo, I.; Livrea, M.A.; Attanzio, A.; Tesoriere, L. The phytochemical indicaxanthin synergistically enhances cisplatin-induced apoptosis in hela cells via oxidative stress-dependent p53/p21waf1 axis. Biomolecules, 2020, 10(7), 994.
[http://dx.doi.org/10.3390/biom10070994] [PMID: 32630700]
[198]
Wang, X.; Govind, S.; Sajankila, S.P.; Mi, L.; Roy, R.; Chung, F.L. Phenethyl isothiocyanate sensitizes human cervical cancer cells to apoptosis induced by cisplatin. Mol. Nutr. Food Res., 2011, 55(10), 1572-1581.
[http://dx.doi.org/10.1002/mnfr.201000560] [PMID: 21595016]
[199]
Xu, Y.; Xin, Y.; Diao, Y.; Lu, C.; Fu, J.; Luo, L.; Yin, Z. Synergistic effects of apigenin and paclitaxel on apoptosis of cancer cells. PLoS One, 2011, 6(12), e29169.
[http://dx.doi.org/10.1371/journal.pone.0029169] [PMID: 22216199]
[200]
Jakubowicz-Gil, J.; Paduch, R.; Piersiak, T.; Głowniak, K.; Gawron, A.; Kandefer-Szerszeń, M. The effect of quercetin on pro-apoptotic activity of cisplatin in HeLa cells. Biochem. Pharmacol., 2005, 69(9), 1343-1350.
[http://dx.doi.org/10.1016/j.bcp.2005.01.022] [PMID: 15826605]
[201]
Lo, Y.L.; Wang, W. Formononetin potentiates epirubicin-induced apoptosis via ROS production in HeLa cells in vitro. Chem. Biol. Interact., 2013, 205(3), 188-197.
[http://dx.doi.org/10.1016/j.cbi.2013.07.003] [PMID: 23867903]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy