Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Review Article

Cucurbitacins: Nature’s Wonder Molecules

Author(s): Sonal H. Kanani* and Devang J. Pandya

Volume 8, Issue 3, 2022

Published on: 15 March, 2022

Article ID: e070122200086 Pages: 9

DOI: 10.2174/2215083808666220107104220

Price: $65

conference banner
Abstract

Over the past decades, several natural constituents belonging to different classes have been isolated from plants for medicinal purposes. Cucurbitacins is one such type of natural compound. Cucurbitacin is a class of biochemical compounds that some plants, notably members of the pumpkin and gourd family, Cucurbitaceae produce and function as a defense against herbivores. They and their derivatives have been found in many plant families (including Brassicaceae, Cucurbitaceae, Scrophulariaceae, Begoniaceae, Elaeocarpaceae, Datiscaceae, Desfontainiaceae, Polemoniaceae, Primulaceae, Rubiaceae, Sterculiaceae, Rosaceae, and Thymelaeaceae), in some mushrooms (including Russula and Hebeloma) and even in some marine mollusks. They have been isolated from various plant species, chiefly belonging to the Cucurbitaceae family, which comprises around 130 genera and 800 species. Cucurbitacins are a group of tetracyclic triterpenoid substances that are highly oxygenated and contain a cucurbitane skeleton characterized by 9β-methyl−19-norlanosta- 5-ene. Cucurbitacins can be categorized into twelve main groups according to variations in their side-chains. Cucurbitacins A, B, C, D, E, F, I, J, K, L, O, P, Q, R, S, and their glycosides are mainly found in Cucurbitaceae family members. These plants have been used as folk medicines in some countries because of their broad spectrum of crucial pharmacological activities such as anti- inflammatory, anti-cancer, anti-diabetic, and anti-atherosclerotic effects. The present review explores the possibility of a correlation between the chemistry of various Cucurbitacins and the uses of the plants which contain them, thereby opening avenues for further phytochemical, ethnomedicinal, and modern pharmacological research on these important molecules.

Keywords: Luffa echinata, Trichosanthes cucumerina, Cucurbitacin, Cucurbitaceae, Triterpenoids, antidiabetic.

Graphical Abstract

[1]
Sharifi-Rad M, Nazaruk J, Polito L, et al. Matricaria genus as a source of antimicrobial agents: From farm to pharmacy and food applications. Microbiol Res 2018; 215: 76-88.
[http://dx.doi.org/10.1016/j.micres.2018.06.010] [PMID: 30172312]
[2]
Sharifi-Rad J, Sharifi-Rad M, Salehi B, et al. In vitro and in vivo assessment of free radical scavenging and antioxidant activities of Veronica persica Poir. Cell Mol Biol 2018; 64(8): 57-64.
[http://dx.doi.org/10.14715/cmb/2018.64.8.9] [PMID: 29981684]
[3]
Mishra AP, Saklani S, Salehi B, et al. Satyrium nepalense, a high altitude medicinal orchid of Indian Himalayan region: Chemical profile and biological activities of tuber extracts. Cell Mol Biol 2018; 64(8): 35-43.
[http://dx.doi.org/10.14715/cmb/2018.64.8.6] [PMID: 29981681]
[4]
Sharifi-Rad M, Fokou PVT, Sharopov F, et al. Antiulcer agents: From plant extracts to phytochemicals in healing promotion. Molecules 2018; 23(7): 1751.
[http://dx.doi.org/10.3390/molecules23071751] [PMID: 30018251]
[5]
Denev P, Kratchanova M, Ciz M, et al. Antioxidant, antimicrobial and neutrophil-modulating activities of herb extracts. Acta Biochim Pol 2014; 61(2): 359-67.
[http://dx.doi.org/10.18388/abp.2014_1907] [PMID: 24945135]
[6]
Selamoglu Z. The natural products, and healthy life. J Tradit Med Clin Naturop 2018; 7: e146.
[7]
Selamoğlu Z. Polyphenolic compounds in human health with pharmacological properties. J Tradit Med Clin Naturop 2017; 6: e138.
[http://dx.doi.org/10.4172/2573-4555.1000e138]
[8]
Shah BN, Seth AK, Desai RV. Phytophannacological profile of Lagenaria siceraria, a review. Asian J Plant Sci 2010; 9: 152-7.
[http://dx.doi.org/10.3923/ajps.2010.152.157]
[9]
Andolfo G, Di Donato A, Darrudi R, Errico A, Aiese Cigliano R, Ercolano MR. Draft of zucchini (Cucurbita pepo L.) proteome: A resource for genetic and genomic studies. Front Genet 2017; 8: 181.
[http://dx.doi.org/10.3389/fgene.2017.00181] [PMID: 29209358]
[10]
Biodiversity. Available from: https://indiabiodiversity.org
[11]
Liyanage R, Nadeeshani Harshani. Comparative analysis of nutritional and bioactive properties of aerial parts of snake gourd (Trichosanthes cucumerina linn.). 2016; 7.
[12]
Peters RR, Saleh TF, Lora M, et al. Anti-inflammatory effects of the products from Wilbrandia ebracteata on carrageenan-induced pleurisy in mice. Life Sci 1999; 64(26): 2429-37.
[http://dx.doi.org/10.1016/S0024-3205(99)00200-3] [PMID: 10403502]
[13]
Hussain AI, Rathore HA, Sattar MZ, Chatha SA, Sarker SD, Gilani AH. Citrullus colocynthis (L.) Schrad (bitter apple fruit): A review of its phytochemistry, pharmacology, traditional uses and nutritional potential. J Ethnopharmacol 2014; 155(1): 54-66.
[http://dx.doi.org/10.1016/j.jep.2014.06.011] [PMID: 24936768]
[15]
Park Su Mi, Jeon Sang Kyu. Anti-tumor effects of the ethanolic extract of Trichosanthes kirilowii seeds in colorectal cancer Chin Med 2019; 14: 43.
[16]
Mshelia H Stephen, Karumi Yagana. Therapeutic effect of Momordica balsamina leaf extract on ethanol-induced gastric ulcer in Wistar rats. Ann Res Hosp 2017; 1: 3.
[17]
Venturini CL, Macho A, Arunachalam K, et al. Vitexin inhibits inflammation in murine ovalbumin-induced allergic asthma. Biomed Pharmacother 2018; 97: 143-51.
[http://dx.doi.org/10.1016/j.biopha.2017.10.073] [PMID: 29091859]
[18]
Mir SA, Mukherjee S, Makar S, Pal G. Cucurbitacins a vibrant triterpenoid: A review on its anticancer property. PharmaTutor 2019; 7(2): 43-54.
[http://dx.doi.org/10.29161/PT.v7.i2.2019.43]
[19]
Garg S, Kaul Sunil c. Cucurbitacin B and cancer intervention: Chemistry, biology, and mechanisms. Int J Oncol 2018; 52: 19-37.
[PMID: 29138804]
[20]
Hatam NAR, Whiting DA, Yousif NJ. Cucurbitacin glycosides from Citrullus colocynthis. Phytochemistry 1989; 28: 1268-71.
[http://dx.doi.org/10.1016/0031-9422(89)80230-4]
[21]
Clericuzio M, Mella M, Vita-Finzi P, Zema M, Vidari G. Cucurbitane triterpenoids from Leucopaxillus gentianeus. J Nat Prod 2004; 67(11): 1823-8.
[http://dx.doi.org/10.1021/np049883o] [PMID: 15568769]
[22]
Beutler JA, McCall KL, Herbert K, et al. Novel cytotoxic diterpenes from Casearia arborea. J Nat Prod 2000; 63: 657-61.
[23]
Oberlies NH, Burgess JP, Navarro HA, et al. Bioactive constituents of the roots of Licania intrapetiolaris. J Nat Prod 2001; 64(4): 497-501.
[http://dx.doi.org/10.1021/np0005006] [PMID: 11325234]
[24]
Wu KJ, Grandori C, Amacker M, et al. Direct activation of TERT transcription by c-MYC. Nat Genet 1999; 21(2): 220-4.
[http://dx.doi.org/10.1038/6010] [PMID: 9988278]
[25]
Dantas INF, Gadelha GCM, Chaves DC, et al. Studies on the cytotoxicity of cucurbitacins isolated from Cayaponia racemosa (Cucurbitaceae). Z Naturforsch C J Biosci 2006; 61(9-10): 643-6.
[http://dx.doi.org/10.1515/znc-2006-9-1005] [PMID: 17137107]
[26]
Clericuzio M, Tabasso S, Bianco MA, et al. Cucurbitane triterpenes from the fruiting bodies and cultivated mycelia of Leucopaxillus gentianeus. J Nat Prod 2006; 69(12): 1796-9.
[http://dx.doi.org/10.1021/np060213n] [PMID: 17190463]
[27]
Tannin-Spitz T, Grossman S, Dovrat S, Gottlieb HE, Bergman M. Growth inhibitory activity of cucurbitacin glucosides isolated from Citrullus colocynthis on human breast cancer cells. Biochem Pharmacol 2007; 73(1): 56-67.
[http://dx.doi.org/10.1016/j.bcp.2006.09.012] [PMID: 17049494]
[28]
Haritunians T, Gueller S, Zhang L, et al. Cucurbitacin B induces differentiation, cell cycle arrest, and actin cytoskeletal alterations in myeloid leukemia cells. Leuk Res 2008; 32(9): 1366-73.
[http://dx.doi.org/10.1016/j.leukres.2008.01.019] [PMID: 18405967]
[29]
Chen C, Qiang S, Lou L, Zhao W. Cucurbitane-type triterpenoids from the stems of Cucumis melo. J Nat Prod 2009; 72(5): 824-9.
[http://dx.doi.org/10.1021/np800692t] [PMID: 19348465]
[30]
Kumar SS, Veeru P, Kumar A, et al. In vivo lethal and cytotoxicity assessment of trichosanthes cucumerina. Int Res J Pharm 2013; 4(4): 185-8.
[31]
Dat NT, Jin X, Hong YS, Lee JJ. An isoaurone and other constituents from Trichosanthes kirilowii seeds inhibit hypoxia-inducible factor-1 and nuclear factor-kappaB. J Nat Prod 2010; 73: 1167-9.
[32]
Ayyad SEN, Abdel-Lateff A, Basaif SA, Shier T. Cucurbitacins-type triterpene with potent activity on mouse embryonic fibroblast from Cucumis prophetarum, cucurbitaceae. Pharmacognosy Res 2011; 3(3): 189-93.
[http://dx.doi.org/10.4103/0974-8490.85006] [PMID: 22022168]
[33]
Dakeng S, Duangmano S, Jiratchariyakul W, U-Pratya Y, Bögler O, Patmasiriwat P. Inhibition of Wnt signaling by cucurbitacin B in breast cancer cells: reduction of Wnt-associated proteins and reduced translocation of galectin-3-mediated β-catenin to the nucleus. J Cell Biochem 2012; 113(1): 49-60.
[http://dx.doi.org/10.1002/jcb.23326] [PMID: 21866566]
[34]
Duangmano S, Sae-Lim P, Suksamrarn A, Domann FE, Patmasiriwat P. Cucurbitacin B inhibits human breast cancer cell proliferation through disruption of microtubule polymerization and nucleophosmin/B23 translocation. BMC Complement Altern Med 2012; 12: 185.
[http://dx.doi.org/10.1186/1472-6882-12-185] [PMID: 23062075]
[35]
Lang KL, Silva IT, Zimmermann LA, et al. Synthesis and cytotoxic activity evaluation of dihydrocucurbitacin B and cucurbitacin B derivatives. Bioorg Med Chem 2012; 20(9): 3016-30.
[http://dx.doi.org/10.1016/j.bmc.2012.03.001] [PMID: 22472043]
[36]
Promkan M, Dakeng S, Chakrabarty S, Bögler O, Patmasiriwat P. The effectiveness of cucurbitacin B in BRCA1 defective breast cancer cells. PLoS One 2013; 8(2): e55732.
[http://dx.doi.org/10.1371/journal.pone.0055732] [PMID: 23393598]
[37]
Yesilada E, Tanaka S, Sezik E, Tabata M. Isolation of an anti-inflammatory principle from the fruit juice of Ecballium elaterium. J Nat Prod 1988; 51(3): 504-8.
[http://dx.doi.org/10.1021/np50057a008] [PMID: 3404148]
[38]
Ma J, Zi Jiang Y, Shi H, et al. Cucurbitacin B inhibits the translational expression of hypoxia-inducible factor-1α. Eur J Pharmacol 2014; 723: 46-54.
[http://dx.doi.org/10.1016/j.ejphar.2013.12.005] [PMID: 24333213]
[39]
Zhang M, Bian ZG, Zhang Y, et al. Cucurbitacin B inhibits proliferation and induces apoptosis via STAT3 pathway inhibition in A549 lung cancer cells. Mol Med Rep 2014; 10(6): 2905-11.
[http://dx.doi.org/10.3892/mmr.2014.2581] [PMID: 25242136]
[40]
El Naggar MB, Chalupová M, Pražanová G, et al. Hepatoprotective and proapoptotic effect of Ecballium elaterium on CCl4-induced hepatotoxicity in rats. Asian Pac J Trop Med 2015; 8(7): 526-31.
[http://dx.doi.org/10.1016/j.apjtm.2015.06.012] [PMID: 26276282]
[41]
Li K, Yu Y, Sun S, et al. Functional characterization of anticancer activity in the aqueous extract of Helicteres angustifolia L. roots. PLoS One 2016; 11(3): e0152017.
[http://dx.doi.org/10.1371/journal.pone.0152017] [PMID: 27010955]
[42]
Sinha S, Khan S, Shukla S, et al. Cucurbitacin B inhibits breast cancer metastasis and angiogenesis through VEGF-mediated suppression of FAK/ MMP-9 signaling axis. Int J Biochem Cell Biol 2016; 77(Pt A): 41-56.
[43]
Silva IT, Geller FC, Persich L, et al. Cytotoxic effects of natural and semisynthetic cucurbitacins on lung cancer cell line A549. Invest New Drugs 2016; 34(2): 139-48.
[http://dx.doi.org/10.1007/s10637-015-0317-4] [PMID: 26780083]
[44]
Shukla S, Sinha S, Khan S, et al. Cucurbitacin B inhibits the stemness and metastatic abilities of NSCLC via downregulation of canonical Wnt/β-catenin signaling axis. Sci Rep 2016; 6: 21860.
[http://dx.doi.org/10.1038/srep21860] [PMID: 26905250]
[45]
Touihri-Barakati I, Kallech-Ziri O, Ayadi W, et al. Cucurbitacin B purified from Ecballium elaterium (L.) A. Rich from Tunisia inhibits α5β1 integrin-mediated adhesion, migration, proliferation of human glioblastoma cell line and angiogenesis. Eur J Pharmacol 2017; 797: 153-61.
[http://dx.doi.org/10.1016/j.ejphar.2017.01.006] [PMID: 28108377]
[46]
Dogar Richa, Yadav SK. A Survey on Therapeutic Utility of Luffa echinata roxb. Indian J Drugs 2018; 6(1): 62-7.
[47]
Iglesias MA, Ye JM, Frangioudakis G, et al. AICAR administration causes an apparent enhancement of muscle and liver insulin action in insulin-resistant high-fat-fed rats. Diabetes 2002; 51(10): 2886-94.
[http://dx.doi.org/10.2337/diabetes.51.10.2886] [PMID: 12351423]
[48]
Escandell JM, Kaler P, Recio MC, et al. Activated kRas protects colon cancer cells from cucurbitacin-induced apoptosis: The role of p53 and p21. Biochem Pharmacol 2008; 76(2): 198-207.
[http://dx.doi.org/10.1016/j.bcp.2008.05.004] [PMID: 18561895]
[49]
Jayaprakasam B, Seeram NP, Nair MG. Anticancer and antiinflammatory activities of cucurbitacins from Cucurbita andreana. Cancer Lett 2003; 189(1): 11-6.
[http://dx.doi.org/10.1016/S0304-3835(02)00497-4] [PMID: 12445672]
[50]
Park CS, Lim H, Han KJ, et al. Inhibition of nitric oxide generation by 23,24-dihydrocucurbitacin D in mouse peritoneal macrophages. J Pharmacol Exp Ther 2004; 309(2): 705-10.
[http://dx.doi.org/10.1124/jpet.103.063693] [PMID: 14752064]
[51]
Yuan G, Wahlqvist ML, He G, Yang M, Li D. Natural products and anti-inflammatory activity. Asia Pac J Clin Nutr 2006; 15(2): 143-52.
[PMID: 16672197]
[52]
Kee HC, Hongtao X. Methods of inducing apoptosis in cancer treatment by using Cucurbitacins. US Patent US2008/0207578A1, 2008.
[53]
Liu T, Zhang M, Zhang H, Sun C, Deng Y. Inhibitory effects of cucurbitacin B on laryngeal squamous cell carcinoma. Eur Arch Otorhinolaryngol 2008; 265(10): 1225-32.
[http://dx.doi.org/10.1007/s00405-008-0625-9] [PMID: 18309509]
[54]
Turkson J, Jove R. STAT proteins: Novel molecular targets for cancer drug discovery. Oncogene 2000; 19(56): 6613-26.
[http://dx.doi.org/10.1038/sj.onc.1204086] [PMID: 11426647]
[55]
Bowman T, Garcia R, Turkson J, Jove R. STATs in oncogenesis. Oncogene 2000; 19(21): 2474-88.
[http://dx.doi.org/10.1038/sj.onc.1203527] [PMID: 10851046]
[56]
Dong Y, Lu B, Zhang X, et al. Cucurbitacin E, a tetracyclic triterpenes compound from Chinese medicine, inhibits tumor angiogenesis through VEGFR2-mediated Jak2-STAT3 signaling pathway. Carcinogenesis 2010; 31(12): 2097-104.
[http://dx.doi.org/10.1093/carcin/bgq167] [PMID: 20732905]
[57]
Blaskovich MA, Sun J, Cantor A, Turkson J, Jove R, Sebti SM. Discovery of JSI-124 (cucurbitacin I), a selective Janus kinase/signal transducer and activator of transcription 3 signaling pathway inhibitor with potent antitumor activity against human and murine cancer cells in mice. Cancer Res 2003; 63(6): 1270-9.
[PMID: 12649187]
[58]
Sun J, Blaskovich MA, Jove R, et al. Cucurbitacin Q: A selective STAT3 activation inhibitor with potent antitumor activity. Oncogene 2005; 24(20): 3236-45.
[http://dx.doi.org/10.1038/sj.onc.1208470] [PMID: 15735720]
[59]
Wang X, Tanaka M, Peixoto HS, Wink M. Cucurbitacins: Elucidation of their interactions with the cytoskeleton. PeerJ 2017; 5(5): e3357.
[http://dx.doi.org/10.7717/peerj.3357] [PMID: 28584704]
[60]
Duncan KL, Duncan MD, Alley MC, Sausville EA. Cucurbitacin E-induced disruption of the actin and vimentin cytoskeleton in prostate carcinoma cells. Biochem Pharmacol 1996; 52(10): 1553-60.
[http://dx.doi.org/10.1016/S0006-2952(96)00557-6] [PMID: 8937470]
[61]
Higashio H. Value-adding technologies to commodities in vegetable production. Res J Food Agric 2002; 25: 8-22.
[62]
Rehm S. Bitter principles of the Cucurbitaceae. VII. The distribution of bitter principles in this plant family. J Sci Food Agric 1957; 8: 679-86.
[http://dx.doi.org/10.1002/jsfa.2740081203]
[63]
Duangmano S, Dakeng S, Jiratchariyakul W, Suksamrarn A, Smith DR, Patmasiriwat P. Antiproliferative effects of cucurbitacin B in breast cancer cells: Down-regulation of the c-Myc/hTERT/telomerase pathway and obstruction of the cell cycle. Int J Mol Sci 2010; 11(12): 5323-38.
[http://dx.doi.org/10.3390/ijms11125323] [PMID: 21614210]
[64]
Esterbauer H. Cytotoxicity and genotoxicity of lipid-oxidation products. Am J Clin Nutr 1993; 57(5)(Suppl.): 779S-85S.
[http://dx.doi.org/10.1093/ajcn/57.5.779S] [PMID: 8475896]
[65]
Tannin-Spitz T, Bergman M, Grossman S. Cucurbitacin glucosides: Antioxidant and free-radical scavenging activities. Biochem Biophys Res Commun 2007; 364(1): 181-6.
[http://dx.doi.org/10.1016/j.bbrc.2007.09.075] [PMID: 17942079]
[66]
Saba AB, Oridupa AO. Search for a novel antioxidant, anti-inflammatory/analgesic, or anti-proliferative drug: Cucurbitacins hold the ace. J Med Plants Res 2010; 4: 2821-6.
[67]
Tan MJ, Ye JM, Turner N, et al. Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway. Chem Biol 2008; 15(3): 263-73.
[http://dx.doi.org/10.1016/j.chembiol.2008.01.013] [PMID: 18355726]
[68]
Harinantenaina L, Tanaka M, Takaoka S, et al. Momordica charantia constituents and antidiabetic screening of the isolated major compounds. Chem Pharm Bull (Tokyo) 2006; 54(7): 1017-21.
[http://dx.doi.org/10.1248/cpb.54.1017] [PMID: 16819222]
[69]
Zhu ZJ, Zhong ZC, Luo ZY, Xiao ZY. Studies on the active constituents of Momordica charantia L. Yao Xue Xue Bao 1990; 25(12): 898-903.
[PMID: 2104468]
[70]
Ye JM, Ruderman NB, Kraegen EW. AMP-activated protein kinase and malonyl-CoA: targets for treating insulin resistance? Drug Discov Today Ther Strateg 2005; 2: 157-63.
[http://dx.doi.org/10.1016/j.ddstr.2005.05.019]
[71]
Guerrero-Analco J, Medina-Campos O, Brindis F, et al. Antidiabetic properties of selected Mexican copalchis of the Rubiaceae family. Phytochemistry 2007; 68(15): 2087-95.
[http://dx.doi.org/10.1016/j.phytochem.2007.05.006] [PMID: 17575991]
[72]
Balkema-Boomstra AG, Zijlstra S, Verstappen FW, et al. Role of cucurbitacin C in resistance to spider mite (Tetranychus urticae) in cucumber (Cucumis sativus L.). J Chem Ecol 2003; 29(1): 225-35.
[http://dx.doi.org/10.1023/A:1021945101308] [PMID: 12647864]
[73]
Chen RJ, Jinn TR, Chen YC, Chung TY, Yang WH, Tzen JT. Active ingredients in Chinese medicines promoting blood circulation as Na+/K+ -ATPase inhibitors. Acta Pharmacol Sin 2011; 32(2): 141-51.
[http://dx.doi.org/10.1038/aps.2010.197] [PMID: 21293466]
[74]
Noguchi N, Komuro E, Niki E, Wilson RL. The action of curcumin as an antioxidant against lipid peroxidation. J Jpn Oil Chem Soc 1994; 43: 1045-51.
[http://dx.doi.org/10.5650/jos1956.43.1045]
[75]
Lavie D, Glotter E. The cucurbitanes, a group of tetracyclic triterpenes. Fortschr Chem Org Naturst 1971; 29: 307-62.
[http://dx.doi.org/10.1007/978-3-7091-3259-3_5] [PMID: 4949442]
[76]
Shohat B, Beemer AM, Gitter S, Lavie D. Antifertility activity of dihydroelatericin A in the female mouse. Experientia 1972; 28(10): 1203-5.
[http://dx.doi.org/10.1007/BF01946171] [PMID: 5087040]
[77]
Behle RW. Consumption of residue containing cucurbitacin feeding stimulant and reduced rates of carbaryl insecticide by western corn rootworm (Coleoptera: Chrysomelidae). J Econ Entomol 2001; 94(6): 1428-33.
[http://dx.doi.org/10.1603/0022-0493-94.6.1428] [PMID: 11777045]
[78]
Subbiah Method of isolating Cucurbitacin. US1999/5,925,356, 2011.
[79]
Metcalf RL, Metcalf RA, Rhodes AM. Cucurbitacins as kairomones for diabroticite beetles. Proc Natl Acad Sci USA 1980; 77(7): 3769-72.
[http://dx.doi.org/10.1073/pnas.77.7.3769] [PMID: 16592849]
[80]
Escandell JM, Recio MC, Máñez S, et al. Dihydrocucurbitacin B inhibits delayed type hypersensitivity reactions by suppressing lymphocyte proliferation. J Pharmacol Exp Ther 2007; 322(3): 1261-8.
[http://dx.doi.org/10.1124/jpet.107.122671] [PMID: 17562851]
[81]
Martin PA, Blackburn M, Schroder RF, Matsuo K, Li BW. Stabilization of cucurbitacin E-glycoside, a feeding stimulant for diabroticite beetles, extracted from bitter Hawkesbury watermelon. J Insect Sci 2002; 2: 19.
[PMID: 15455053]
[82]
Martin PA, Blackburn M. Inhibition of seed germination by extracts of bitter Hawkesbury watermelon containing cucurbitacin, a feeding stimulant for corn rootworm (Coleoptera: Chrysomelidae). J Econ Entomol 2003; 96(2): 441-5.
[http://dx.doi.org/10.1093/jee/96.2.441] [PMID: 14994812]
[83]
Modi Anuj, Kumar Vimal. Luffa echinata Roxb.-A review on its ethnomedicinal phytochemical and pharmacological perspective S7-S12.2014;
[84]
Lv Q, Shen C, Li X, et al. Mucoadhesive buccal films containing phospholipid-bile salts-mixed micelles as an effective carrier for Cucurbitacin B delivery. Drug Deliv 2015; 22(3): 351-8.
[http://dx.doi.org/10.3109/10717544.2013.876459] [PMID: 24467528]
[85]
[86]
Silva IT, Carvalho A, Lang KL, et al. In vitro and in vivo antitumor activity of a novel semisynthetic derivative of cucurbitacin B. PLoS One 2015; 10(2): e0117794.
[http://dx.doi.org/10.1371/journal.pone.0117794] [PMID: 25674792]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy