Generic placeholder image

Current Reviews in Clinical and Experimental Pharmacology

Editor-in-Chief

ISSN (Print): 2772-4328
ISSN (Online): 2772-4336

Review Article

Antibiotics with Antiviral and Anti-Inflammatory Potential Against Covid-19: A Review

Author(s): Banafshe Abadi, Mehran Ilaghi, Yasamin Shahsavani, Mahsa Faramarzpour, Mohammad Bagher Oghazian and Hamid-Reza Rahimi*

Volume 18, Issue 1, 2023

Published on: 01 February, 2022

Page: [51 - 63] Pages: 13

DOI: 10.2174/2772432817666220106162013

Price: $65

Abstract

In Covid-19 cases, elderly patients in long-term care facilities, children younger than five years with moderate symptoms, and patients admitted to ICU or with comorbidities are at a high risk of coinfection, as suggested by the evidence. Thus, in these patients, antibiotic therapy based on empirical evidence is necessary. Finding appropriate antimicrobial agents, especially with antiviral and anti-inflammatory properties, is a promising approach to target the virus and its complications, hyper-inflammation, and microorganisms resulting in co-infection. Moreover, indiscriminate use of antibiotics can be accompanied by Clostridioides difficile colitis, the emergence of resistant microorganisms, and adverse drug reactions, particularly kidney damage and QT prolongation. Therefore, rational administration of efficient antibiotics is an important issue. The main objective of the present review is to provide a summary of antibiotics with possible antiviral activity against SARS-CoV-2 and anti-immunomodulatory effects to guide scientists for further research. Besides, the findings can help health professionals in the rational prescription of antibiotics in Covid-19 patients with a high risk of co-infection.

Keywords: COVID-19, antibiotics, SARS-CoV-2, pneumonia, co-infection, antimicrobial resistance.

Graphical Abstract

[1]
Pal M, Berhanu G, Desalegn C, Kandi V. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2): An update. Cureus 2020; 12(3): e7423.
[http://dx.doi.org/10.7759/cureus.7423] [PMID: 32337143]
[2]
Worldometer. Coronavirus Cases. Worldometer 2020; 1-22 Avai lable from: https://www.worldometers.info/coronavirus/.
[3]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[4]
Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020; 323(11): 1061-9.
[http://dx.doi.org/10.1001/jama.2020.1585] [PMID: 32031570]
[5]
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020; 395(10223): 507-13.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[6]
Chen X, Liao B, Cheng L, et al. The microbial coinfection in COVID-19. Appl Microbiol Biotechnol 2020; 104(18): 7777-85.
[http://dx.doi.org/10.1007/s00253-020-10814-6] [PMID: 32780290]
[7]
Langford BJ, So M, Raybardhan S, et al. Bacterial co-infection and secondary infection in patients with COVID-19: A living rapid review and meta-analysis. Clin Microbiol Infect 2020; 26(12): 1622-9.
[http://dx.doi.org/10.1016/j.cmi.2020.07.016] [PMID: 32711058]
[8]
Health Services A. COVID-19 Scientific Advisory Group Rapid Evidence Report. 2020; 32: 15-20.
[9]
Bui T, Preuss CV. Cephalosporins. StatPearls Publishing 2020. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31855361 Accessed 16 September 2020.
[10]
Bush K, Bradford PA. β-lactams and β-lactamase inhibitors: An overview. Cold Spring Harb Perspect Med 2016; 6(8): a025247.
[http://dx.doi.org/10.1101/cshperspect.a025247] [PMID: 27329032]
[11]
Zhou N, Pan T, Zhang J, et al. Glycopeptide antibiotics potently inhibit cathepsin l in the late endosome/lysosome and block the entry of ebola virus, middle east respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus (SARS-CoV). J Biol Chem 2016; 291(17): 9218-32.
[http://dx.doi.org/10.1074/jbc.M116.716100] [PMID: 26953343]
[12]
Shruti K, Vinod J, Mallikarjunachari U, Uddhavesh S, Asheet Kumar N, Hemant D. Drug repurposing studies targeting SARS-nCoV2: An ensemble docking approach on drug target 3C-like protease (3CLpro). chemRxiv 2020 Preprint.
[http://dx.doi.org/10.26434/chemrxiv.12228831.v1]
[13]
Durojaiye AB, Clarke JRD, Stamatiades GA, Wang C. Repurposing cefuroxime for treatment of COVID-19: A scoping review of in silico studies. J Biomol Struct Dyn 2021; 39(12): 4547-54.
[PMID: 32538276]
[14]
Alméciga-díaz CJ, Pimentel-vera LN, Caro A, Mosquera A, Andrés C, Moreno C. Virtual screening of potential inhibitors for SARS-CoV-2 main protease. 2020; 43: 1-18.
[http://dx.doi.org/10.20944/preprints202004.0146.v1]
[15]
Al-Khafaji K, AL-Duhaidahawi D, Taskin Tok T. Using integrated computational approaches to identify safe and rapid treatment for SARS-CoV-2. J Biomol Struct Dyn 2021; 39(9): 3387-95.
[http://dx.doi.org/10.1080/07391102.2020.1764392]
[16]
Pani A, Lauriola M, Romandini A, Scaglione F. Macrolides and viral infections: Focus on azithromycin in COVID-19 pathology. Int J Antimicrob Agents 2020; 56(2): 106053.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106053] [PMID: 32534189]
[17]
Azuma A. Macrolide antibiotics: 25 years of use and the future treatment of common diseases. Community Acquir Infect 2014; 1(1): 6.
[http://dx.doi.org/10.4103/2225-6482.141746]
[18]
Lebel M. Pharmacokinetic properties of clarithromycin: A comparison with erythromycin and azithromycin. Can J Infect Dis 1993; 4(3): 148-52.
[http://dx.doi.org/10.1155/1993/168061] [PMID: 22346438]
[19]
Kanoh S, Rubin BK. Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clin Microbiol Rev 2010; 23(3): 590-615.
[http://dx.doi.org/10.1128/CMR.00078-09] [PMID: 20610825]
[20]
Zhang W, Zhao Y, Zhang F, et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clin Immunol 2020; 214: 108393.
[http://dx.doi.org/10.1016/j.clim.2020.108393] [PMID: 32222466]
[21]
Azuma A, Yamaya M, Kadota J, Mikasa K, Kudoh S. Use of macrolides in the 2009 H1N1 virus infection outbreak: A survey of general practices in Japan. Respir Investig 2013; 51(4): 257-9.
[http://dx.doi.org/10.1016/j.resinv.2013.04.002] [PMID: 24238234]
[22]
Arikata M, Itoh Y, Shichinohe S, et al. Efficacy of clarithromycin against H5N1 and H7N9 avian influenza a virus infection in cynomolgus monkeys. Antiviral Res 2019; 171: 104591.
[http://dx.doi.org/10.1016/j.antiviral.2019.104591] [PMID: 31421167]
[23]
Wang J, Nikrad MP, Travanty EA, et al. Innate immune response of human alveolar macrophages during influenza A infection. PLoS One 2012; 7(3): e29879.
[http://dx.doi.org/10.1371/journal.pone.0029879] [PMID: 22396727]
[24]
Parnham MJ. Immunomodulatory effects of antimicrobials in the therapy of respiratory tract infections. Curr Opin Infect Dis 2005; 18(2): 125-31.
[http://dx.doi.org/10.1097/01.qco.0000160901.71813.fe] [PMID: 15735416]
[25]
Shinahara W, Takahashi E, Sawabuchi T, et al. Immunomodulator clarithromycin enhances mucosal and systemic immune responses and reduces re-infection rate in pediatric patients with influenza treated with antiviral neuraminidase inhibitors: A retrospective analysis. PLoS One 2013; 8(7): e70060.
[http://dx.doi.org/10.1371/journal.pone.0070060] [PMID: 23875018]
[26]
Deretic V, Timmins GS. Azithromycin and ciprofloxacin have a chloroquine-like effect on respiratory epithelial cells. bioRxiv 2020.
[27]
Mercuro NJ, Yen CF, Shim DJ, et al. Risk of QT interval prolongation associated with use of hydroxychloroquine with or without concomitant azithromycin among hospitalized patients testing positive for coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020; 5(9): 1036-41.
[http://dx.doi.org/10.1001/jamacardio.2020.1834] [PMID: 32936252]
[28]
Gbinigie K, Frie K. What is the evidence for using macrolide antibiotics to treat COVID-19. 2020; 2020. Available from: https: //www.cebm.net/covid-19/what-is-the-evidence-for-use-of- macrolide-antobiotics-for-treatmetnof-covid-19/.
[29]
Choi BJ, Koo Y, Kim TY, et al. Risk of QT prolongation through drug interactions between hydroxychloroquine and concomitant drugs prescribed in real world practice. Sci Rep 2021; 11(1): 6918.
[http://dx.doi.org/10.1038/s41598-021-86321-z] [PMID: 33767276]
[30]
Chorin E, Wadhwani L, Magnani S, Dai M, Shulman E, Nadeau-Routhier C. QT interval prolongation and torsade de pointes in patients with COVID-19 treated with hydroxychloroquine/ azithromycin. Hear Rhythm 2020 [Ahead of print].
[http://dx.doi.org/10.1101/2020.04.27.20074583]
[31]
Chi G, Memar Montazerin S, Lee JJ, et al. Effect of azithromycin and hydroxychloroquine in patients hospitalized with COVID-19: Network meta-analysis of randomized controlled trials. J Med Virol 2021; 93(12): 6737-49.
[http://dx.doi.org/10.1002/jmv.27259] [PMID: 34370328]
[32]
Damle B, Vourvahis M, Wang E, Leaney J, Corrigan B. Clinical pharmacology perspectives on the antiviral activity of azithromycin and use in COVID-19. Clin Pharmacol Ther 2020; 108(2): 201-11.
[http://dx.doi.org/10.1002/cpt.1857] [PMID: 32302411]
[33]
Liu P, Allaudeen H, Chandra R, et al. Comparative pharmacokinetics of azithromycin in serum and white blood cells of healthy subjects receiving a single-dose extended-release regimen versus a 3-day immediate-release regimen. Antimicrob Agents Chemother 2007; 51(1): 103-9.
[http://dx.doi.org/10.1128/AAC.00852-06] [PMID: 17060516]
[34]
Matzneller P, Krasniqi S, Kinzig M, et al. Blood, tissue, and intracellular concentrations of azithromycin during and after end of therapy. Antimicrob Agents Chemother 2013; 57(4): 1736-42.
[http://dx.doi.org/10.1128/AAC.02011-12] [PMID: 23357769]
[35]
Duška F, Waldauf P, Halačová M, Zvoníček V, Bala J, Beneš J. Azithromycin added to Hydroxychloroquine for Patients Admitted to Intensive Care due to Coronavirus Disease 2019 (COVID-19) – Protocol of Randomized Controlled Trial AZIQUINE-ICU. Res Sq 2020; 2019: 1-20.
[36]
Munić V, Kelnerić Z, Mikac L, Eraković Haber V. Differences in assessment of macrolide interaction with human MDR1 (ABCB1, P-gp) using rhodamine-123 efflux, ATPase activity and cellular accumulation assays. Eur J Pharm Sci 2010; 41(1): 86-95.
[http://dx.doi.org/10.1016/j.ejps.2010.05.016] [PMID: 20621639]
[37]
Seral C, Van Bambeke F, Tulkens PM. Quantitative analysis of gentamicin, azithromycin, telithromycin, ciprofloxacin, moxifloxacin, and oritavancin (LY333328) activities against intracellular Staphylococcus aureus in mouse J774 macrophages. Antimicrob Agents Chemother 2003; 47(7): 2283-92.
[http://dx.doi.org/10.1128/AAC.47.7.2283-2292.2003] [PMID: 12821480]
[38]
El-Tahtawy A, Glue P, Andrews EN, Mardekian J, Amsden GW, Knirsch CA. The effect of azithromycin on ivermectin pharmacokinetics--a population pharmacokinetic model analysis. PLoS Negl Trop Dis 2008; 2(5): e236.
[http://dx.doi.org/10.1371/journal.pntd.0000236] [PMID: 18478051]
[39]
Nazir S, Adnan K, Gul R, Ali G, Saleha S, Khan A. The effect of gender and ABCB1 gene polymorphism on the pharmacokinetics of azithromycin in healthy male and female Pakistani subjects. Can J Physiol Pharmacol 2020; 98(8): 506-10.
[http://dx.doi.org/10.1139/cjpp-2019-0569] [PMID: 32125889]
[40]
Sugie M, Asakura E, Zhao YL, et al. Possible involvement of the drug transporters P glycoprotein and multidrug resistance-associated protein Mrp2 in disposition of azithromycin. Antimicrob Agents Chemother 2004; 48(3): 809-14.
[http://dx.doi.org/10.1128/AAC.48.3.809-814.2004] [PMID: 14982769]
[41]
He XJ, Zhao LM, Qiu F, Sun YX, Li-Ling J. Influence of ABCB1 gene polymorphisms on the pharmacokinetics of azithromycin among healthy Chinese Han ethnic subjects. Pharmacol Rep 2009; 61(5): 843-50.
[http://dx.doi.org/10.1016/S1734-1140(09)70140-9] [PMID: 19904007]
[42]
Scherrmann JM. Intracellular ABCB1 as a possible mechanism to explain the synergistic effect of hydroxychloroquine-azithromycin combination in COVID-19 therapy. AAPS J 2020; 22(4): 86.
[http://dx.doi.org/10.1208/s12248-020-00465-w] [PMID: 32533263]
[43]
Davidson RJ. In vitro activity and pharmacodynamic/pharmacokinetic parameters of clarithromycin and azithromycin: Why they matter in the treatment of respiratory tract infections. Infect Drug Resist 2019; 12: 585-96.
[http://dx.doi.org/10.2147/IDR.S187226] [PMID: 30881064]
[44]
Liu D, Li X, Zhang Y, et al. Chloroquine and hydroxychloroquine are associated with reduced cardiovascular risk: A systematic review and meta-analysis. Drug Des Devel Ther 2018; 12: 1685-95.
[http://dx.doi.org/10.2147/DDDT.S166893] [PMID: 29928112]
[47]
Whitman MS, Tunkel AR. Azithromycin and clarithromycin: Overview and comparison with erythromycin. Infect Control Hosp Epidemiol 1992; 13(6): 357-68.
[http://dx.doi.org/10.2307/30147135] [PMID: 1320067]
[48]
Abisheganaden JA, Avila PC, Kishiyama JL, et al. Effect of clarithromycin on experimental rhinovirus-16 colds: A randomized, double-blind, controlled trial. Am J Med 2000; 108(6): 453-9.
[http://dx.doi.org/10.1016/S0002-9343(00)00329-6] [PMID: 10781777]
[49]
Desaki M, Takizawa H, Ohtoshi T, et al. Erythromycin suppresses nuclear factor-kappaB and activator protein-1 activation in human bronchial epithelial cells. Biochem Biophys Res Commun 2000; 267(1): 124-8.
[http://dx.doi.org/10.1006/bbrc.1999.1917] [PMID: 10623585]
[50]
Vázquez-Laslop N, Mankin AS. How macrolide antibiotics work. Trends Biochem Sci 2018; 43(9): 668-84.
[http://dx.doi.org/10.1016/j.tibs.2018.06.011] [PMID: 30054232]
[51]
Stebbing J, Phelan A, Griffin I, et al. COVID-19: Combining antiviral and anti-inflammatory treatments. Lancet Infect Dis 2020; 20(4): 400-2.
[http://dx.doi.org/10.1016/S1473-3099(20)30132-8] [PMID: 32113509]
[52]
Min JY, Jang YJ. Macrolide therapy in respiratory viral infections. Mediators Inflamm 2012; 2012: 649570.
[http://dx.doi.org/10.1155/2012/649570] [PMID: 22719178]
[53]
Grayson ML, Crowe SM, McCarthy JS, Mills J, Mouton JW, Norrby SR. Kucers’ the use of antibiotics sixth edition: A clinical review of antibacterial. Antifungal and Antiviral Drugs 2010; 3223.
[54]
Millán-Oñate J, Millan W, Mendoza LA, et al. Successful recovery of COVID-19 pneumonia in a patient from Colombia after receiving chloroquine and clarithromycin. Ann Clin Microbiol Antimicrob 2020; 19(1): 16.
[http://dx.doi.org/10.1186/s12941-020-00358-y] [PMID: 32331519]
[55]
Mansilla E, Martínez RR, Marín GH, Filho IZ, Rivas E, Rivas J. Macrolide-clarithromycin task-force for the treatment and prophylaxis of Covid-19 as a single agent. Pharmacol &amp. Pharm 2020; 11(06): 85-104.
[56]
Zakeri B, Wright GD. Chemical biology of tetracycline antibiotics. Biochem Cell Biol 2008; 86(2): 124-36.
[57]
Phillips JM, Gallagher T, Weiss SR. Neurovirulent Murine Coronavirus JHM.SD Uses Cellular Zinc Metalloproteases for Virus Entry and Cell-Cell Fusion. J Virol 2017; 91(8): e01564-16.
[http://dx.doi.org/10.1128/JVI.01564-16] [PMID: 28148786]
[58]
Humar A, McGilvray I, Phillips MJ, Levy GA. Severe acute respiratory syndrome and the liver. Hepatology 2004; 39(2): 291-4.
[http://dx.doi.org/10.1002/hep.20069] [PMID: 14767979]
[59]
Henehan M, Montuno M, De Benedetto A. Doxycycline as an anti-inflammatory agent: Updates in dermatology. J Eur Acad Dermatol Venereol 2017; 31(11): 1800-8.
[http://dx.doi.org/10.1111/jdv.14345] [PMID: 28516469]
[60]
Sandler C, Nurmi K, Lindstedt KA, et al. Chemically modified tetracyclines induce apoptosis in cultured mast cells. Int Immunopharmacol 2005; 5(11): 1611-21.
[http://dx.doi.org/10.1016/j.intimp.2005.04.013] [PMID: 16039551]
[61]
Sandler C, Ekokoski E, Lindstedt KA, et al. Chemically modified tetracycline (CMT)-3 inhibits histamine release and cytokine production in mast cells: Possible involvement of protein kinase C. Inflamm Res 2005; 54(7): 304-12.
[http://dx.doi.org/10.1007/s00011-005-1358-5] [PMID: 16134060]
[62]
Nagarakanti S, Bishburg E. Is minocycline an antiviral agent? A review of current literature. Basic Clin Pharmacol Toxicol 2016; 118(1): 4-8.
[http://dx.doi.org/10.1111/bcpt.12444] [PMID: 26177421]
[63]
Sodhi M, Etminan M. Therapeutic potential for tetracyclines in the treatment of COVID-19. Pharmacotherapy 2020; 40(5): 487-8.
[http://dx.doi.org/10.1002/phar.2395] [PMID: 32267566]
[64]
Cunha BA, Sibley CM, Ristuccia AM. Doxycycline. Ther Drug Monit 1982; 4(2): 115-35.
[http://dx.doi.org/10.1097/00007691-198206000-00001] [PMID: 7048645]
[65]
Krakauer T, Buckley M. Doxycycline is anti-inflammatory and inhibits staphylococcal exotoxin-induced cytokines and chemokines. Antimicrob Agents Chemother 2003; 47(11): 3630-3.
[http://dx.doi.org/10.1128/AAC.47.11.3630-3633.2003] [PMID: 14576133]
[66]
Smith SM, Fahey T, Smucny J, Becker LA. Antibiotics for acute bronchitis. Cochrane Database Syst Rev 2017; 6(6): CD000245.
[http://dx.doi.org/10.1002/14651858.CD000245.pub4] [PMID: 28626858]
[67]
Valentín S, Morales A, Sánchez JL, Rivera A. Safety and efficacy of doxycycline in the treatment of rosacea. Clin Cosmet Investig Dermatol 2009; 2: 129-40.
[PMID: 21436975]
[68]
Najar MS, Saldanha CL, Banday KA. Approach to urinary tract infections. Indian J Nephrol 2009; 19(4): 129-39.
[http://dx.doi.org/10.4103/0971-4065.59333] [PMID: 20535247]
[69]
Bonzano C, Borroni D, Lancia A, Bonzano E. Doxycycline: From ocular rosacea to COVID-19 anosmia. New insight into the coronavirus outbreak. Front Med (Lausanne) 2020; 7: 200.
[http://dx.doi.org/10.3389/fmed.2020.00200] [PMID: 32574320]
[70]
Patel AR, Patra F, Shah NP, Shukla D. Biological control of mycotoxins by probiotic lactic acid bacteria. Dynamism dairy Ind Consum demands 2017; 2015(February): 2-4.
[71]
Malek AE, Granwehr BP, Kontoyiannis DP. Doxycycline as a potential partner of COVID-19 therapies. IDCases 2020; 21: e00864.
[http://dx.doi.org/10.1016/j.idcr.2020.e00864] [PMID: 32566483]
[72]
Rothan HA, Bahrani H, Mohamed Z, et al. A combination of doxycycline and ribavirin alleviated chikungunya infection. PLoS One 2015; 10(5): e0126360.
[http://dx.doi.org/10.1371/journal.pone.0126360] [PMID: 25970853]
[73]
Li Y, Wu Z, Liu K, et al. Doxycycline enhances adsorption and inhibits early-stage replication of porcine reproductive and respiratory syndrome virus in vitro. FEMS Microbiol Lett 2017; 364(17): 170.
[http://dx.doi.org/10.1093/femsle/fnx170] [PMID: 28903466]
[74]
Driggin E, Madhavan MV, Bikdeli B, et al. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. J Am Coll Cardiol 2020; 75(18): 2352-71.
[http://dx.doi.org/10.1016/j.jacc.2020.03.031] [PMID: 32201335]
[75]
Gendrot M, Javelle E, Clerc A, Savini H, Pradines B, Pradines B. Chloroquine as a prophylactic agent against COVID-19? Int J Antimicrob Agents 2020; 55(6): 105980.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105980] [PMID: 32294495]
[76]
Yates PA, Leone AM, Reichel E. A proposed randomized double blind placebo controlled study evaluating doxycycline for the prevention of COVID-19 infection and disease in healthcare workers with ongoing high risk exposure to COVID-19. medRxiv 2020.
[http://dx.doi.org/10.1101/2020.05.11.20098525]
[77]
Garrido-Mesa N, Zarzuelo A, Gálvez J. Minocycline: Far beyond an antibiotic. Br J Pharmacol 2013; 169(2): 337-52.
[http://dx.doi.org/10.1111/bph.12139] [PMID: 23441623]
[78]
fda, cder. MINOCIN ® (minocycline hydrochloride) Pellet-Filled Capsules only.
[79]
Szeto GL, Brice AK, Yang HC, Barber SA, Siliciano RF, Clements JE. Minocycline attenuates HIV infection and reactivation by suppressing cellular activation in human CD4+ T cells. J Infect Dis 2010; 201(8): 1132-40.
[http://dx.doi.org/10.1086/651277] [PMID: 20205570]
[80]
Enose-Akahata Y, Matsuura E, Tanaka Y, Oh U, Jacobson S. Minocycline modulates antigen-specific CTL activity through inactivation of mononuclear phagocytes in patients with HTLV-I associated neurologic disease. Retrovirology 2012; 9: 16.
[http://dx.doi.org/10.1186/1742-4690-9-16] [PMID: 22335964]
[81]
Lemaître M, Guétard D, Hénin Y, Montagnier L, Zerial A. Protective activity of tetracycline analogs against the cytopathic effect of the human immunodeficiency viruses in CEM cells. Res Virol 1990; 141(1): 5-16.
[http://dx.doi.org/10.1016/0923-2516(90)90052-K] [PMID: 2326552]
[82]
Josset L, Zeng H, Kelly SM, Tumpey TM, Katze MG. Transcriptomic characterization of the novel avian-origin influenza A (H7N9) virus: Specific host response and responses intermediate between avian (H5N1 and H7N7) and human (H3N2) viruses and implications for treatment options. MBio 2014; 5(1): e01102-13.
[http://dx.doi.org/10.1128/mBio.01102-13] [PMID: 24496798]
[83]
Taneja NK, Tyagi JS. Resazurin reduction assays for screening of anti-tubercular compounds against dormant and actively growing Mycobacterium tuberculosis, Mycobacterium bovis BCG and Mycobacterium smegmatis. J Antimicrob Chemother 2007; 60(2): 288-93.
[http://dx.doi.org/10.1093/jac/dkm207] [PMID: 17586560]
[84]
Klein NC, Cunha BA. Tetracyclines. Med Clin North Am 1995; 79(4): 789-801.
[http://dx.doi.org/10.1016/S0025-7125(16)30039-6] [PMID: 7791423]
[85]
Diana G, Strollo R, Diana D, Strollo M, Galassi AR, Crea F. Cardiac safety and potential efficacy: Two reasons for considering minocycline in place of azithromycin in COVID-19 management. Eur Hear J Cardiovasc Pharmacother 2021; 7(3): e53-4.
[86]
Krause KM, Serio AW, Kane TR, Connolly LE. Aminoglycosides: An overview. Cold Spring Harb Perspect Med 2016; 6(6): 1-18.
[http://dx.doi.org/10.1101/cshperspect.a027029] [PMID: 27252397]
[87]
Serio AW, Keepers T, Andrews L, Krause KM. Aminoglycoside revival: Review of a historically important class of antimicrobials undergoing rejuvenation. Ecosal Plus 2018; 8(1)
[http://dx.doi.org/10.1128/ecosalplus.ESP-0002-2018] [PMID: 30447062]
[88]
Houghton JL, Green KD, Chen W, Garneau-Tsodikova S. The future of aminoglycosides: The end or renaissance? ChemBioChem 2010; 11(7): 880-902.
[http://dx.doi.org/10.1002/cbic.200900779] [PMID: 20397253]
[89]
Matsuda K, Yasuda N, Tsutsumi H, Takaya T. Studies on antiviral agents. V. Synthesis and in vitro antiviral activity of new aminoglycoside derivatives having palmitoyl group. J Antibiot (Tokyo) 1987; 40(6): 843-54.
[http://dx.doi.org/10.7164/antibiotics.40.843] [PMID: 3038817]
[90]
Ennifar E, Aslam MW, Strasser P, Hoffmann G, Dumas P, van Delft FL. Structure-guided discovery of a novel aminoglycoside conjugate targeting HIV-1 RNA viral genome. ACS Chem Biol 2013; 8(11): 2509-17.
[http://dx.doi.org/10.1021/cb400498n] [PMID: 24015986]
[91]
Lapidot A, Berchanski A, Borkow G. Insight into the mechanisms of aminoglycoside derivatives interaction with HIV-1 entry steps and viral gene transcription. FEBS J 2008; 275(21): 5236-57.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06657.x] [PMID: 18803669]
[92]
Kim H, Lee MK, Ko J, et al. Aminoglycoside antibiotics bind to the influenza A virus RNA promoter. Mol Biosyst 2012; 8(11): 2857-9.
[http://dx.doi.org/10.1039/c2mb25333j] [PMID: 22990985]
[93]
Zhang XG, Mason PW, Dubovi EJ, et al. Antiviral activity of geneticin against dengue virus. Antiviral Res 2009; 83(1): 21-7.
[http://dx.doi.org/10.1016/j.antiviral.2009.02.204] [PMID: 19501253]
[94]
Birk AV, Dubovi EJ, Zhang X, Szeto HH. Antiviral activity of geneticin against bovine viral diarrhoea virus. Antivir Chem Chemother 2008; 19(1): 33-40.
[http://dx.doi.org/10.1177/095632020801900105] [PMID: 18610556]
[95]
Gopinath S, Kim MV, Rakib T, et al. Topical application of aminoglycoside antibiotics enhances host resistance to viral infections in a microbiota-independent manner. Nat Microbiol 2018; 3(5): 611-21.
[http://dx.doi.org/10.1038/s41564-018-0138-2] [PMID: 29632368]
[96]
Cohen JI. New activities for old antibiotics. Nat Microbiol 2018; 3(5): 531-2.
[http://dx.doi.org/10.1038/s41564-018-0152-4] [PMID: 29693655]
[97]
Venkataraman N, Cole AL, Ruchala P, Waring AJ, Lehrer RI, Stuchlik O. Reawakening retrocyclins: Ancestral human defensins active against HIV-1. PLoS Biol 2009; 7(4): 0720-9.
[98]
Davidson RN, den Boer M, Ritmeijer K. Paromomycin. Trans R Soc Trop Med Hyg 2009; 103(7): 653-60.
[http://dx.doi.org/10.1016/j.trstmh.2008.09.008] [PMID: 18947845]
[99]
Tariq A, Mateen RM, Afzal MS, Saleem M. Paromomycin: A potential dual targeted drug effectively inhibits both spike (S1) and main protease of COVID-19. Int J Infect Dis 2020; 98: 166-75.
[http://dx.doi.org/10.1016/j.ijid.2020.06.063] [PMID: 32579907]
[100]
Milan S, Vladimir P, Snezana P, Miroslav A, Slobodan P, Sanja G. Drug repurposing for candidate SARS-CoV-2 main protease inhibitors by a novel in silico method. chemRxiv 2020.
[http://dx.doi.org/10.26434/chemrxiv.12248561.v1]
[101]
Uma S, Neha J, Prativa M, Subodh Kumar M, Brijesh R, Amit K. Potential Drugs targeting Nsp16 Protein May corroborates a promising approach to combat SARSCoV-2 virus. chemRxiv 2020.
[http://dx.doi.org/10.26434/chemrxiv.12279671.v1]
[102]
Karampela I, Dalamaga M. Could respiratory fluoroquinolones, levofloxacin and moxifloxacin, prove to be beneficial as an adjunct treatment in COVID-19? Arch Med Res 2020; 51(7): 741-2.
[http://dx.doi.org/10.1016/j.arcmed.2020.06.004] [PMID: 32546446]
[103]
Elshaboury RH, Dilworth TJ, Rotschafer JC. Pharmacodynamics of fluoroquinolones. Antibiotic Pharmacodynamics. Springer 2016; pp. 177-98.
[http://dx.doi.org/10.1007/978-1-4939-3323-5_8]
[104]
Cowling T, Farrah K. Fluoroquinolones for the treatment of respiratory tract infections: A review of clinical effectiveness, cost-effectiveness, and guidelines.Guidel 2019; pp. 1-36.
[105]
Metlay JP, Waterer GW, Long AC, et al. Diagnosis and treatment of adults with community-acquired pneumonia. Am J Respir Crit Care Med 2019; 200(7): e45-67.
[http://dx.doi.org/10.1164/rccm.201908-1581ST] [PMID: 31573350]
[106]
De Sarro A, De Sarro G. Adverse reactions to fluoroquinolones. an overview on mechanistic aspects. Curr Med Chem 2001; 8(4): 371-84.
[http://dx.doi.org/10.2174/0929867013373435] [PMID: 11172695]
[107]
Briasoulis A, Agarwal V, Pierce WJ. QT prolongation and torsade de pointes induced by fluoroquinolones: Infrequent side effects from commonly used medications. Cardiology 2011; 120(2): 103-10.
[http://dx.doi.org/10.1159/000334441] [PMID: 22156660]
[108]
Dalhoff A. Immunomodulatory activities of fluoroquinolones. Infection 2005; 33(2) (Suppl. 2): 55-70.
[http://dx.doi.org/10.1007/s15010-005-8209-8] [PMID: 16518713]
[109]
Marciniec K, Beberok A, Pęcak P, Boryczka S, Wrześniok D. Ciprofloxacin and moxifloxacin could interact with SARS-CoV-2 protease: Preliminary in silico analysis. Pharmacol Rep 2020; 72(6): 1553-61.
[http://dx.doi.org/10.1007/s43440-020-00169-0] [PMID: 33063271]
[110]
Sharma PC, Jain A, Jain S, Pahwa R, Yar MS. Ciprofloxacin: Review on developments in synthetic, analytical, and medicinal aspects. J Enzyme Inhib Med Chem 2010; 25(4): 577-89.
[http://dx.doi.org/10.3109/14756360903373350] [PMID: 20235755]
[111]
Dalhoff A. Antiviral, antifungal, and antiparasitic activities of fluoroquinolones optimized for treatment of bacterial infections: A puzzling paradox or a logical consequence of their mode of action? Eur J Clin Microbiol Infect Dis 2015; 34(4): 661-8.
[http://dx.doi.org/10.1007/s10096-014-2296-3] [PMID: 25515946]
[112]
Samant LR, Javle VRK. Comparative Docking analysis of rational drugs against COVID-19 Main Protease. ChemRxiv 2020.
[http://dx.doi.org/10.26434/chemrxiv.12136002.v1]
[113]
Miravitlles M, Anzueto A. Moxifl oxacin : A respiratory fl uoroquinolone. Expert Opin Pharmacother 2008; 1755-72.
[114]
Qin X, Qiu S, Yuan Y, Zong Y, Tuo Z, Li J. Clinical characteristics and treatment of patients infected with COVID-19 in Shishou, China. China 2020.
[115]
Zhang Z, Li X, Zhang W, Shi ZL, Zheng Z, Wang T. Clinical features and treatment of 2019-nCov pneumonia patients in Wuhan: Report of a couple cases. Virol Sin 2020; 35(3): 330-6.
[http://dx.doi.org/10.1007/s12250-020-00203-8] [PMID: 32034637]
[116]
Zhang J, Zhou L, Yang Y, Peng W, Wang W, Chen X. Therapeutic and triage strategies for 2019 novel coronavirus disease in fever clinics. Lancet Respir Med 2020; 8(3): e11-2.
[http://dx.doi.org/10.1016/S2213-2600(20)30071-0] [PMID: 32061335]
[117]
Dayer MR. Old drugs for newly emerging viral disease, Covid-19: Bioinformatic prospective. 2020.
[118]
Bao Z, Gu B, Liu J, et al. Successful treatment of patients severely ill with COVID-19. Int J Tuberc Lung Dis 2020; 24(6): 650-3.
[http://dx.doi.org/10.5588/ijtld.20.0232] [PMID: 32553001]
[119]
Zha L, Li S, Pan L, et al. Corticosteroid treatment of patients with coronavirus disease 2019 (COVID-19). Med J Aust 2020; 212(9): 416-20.
[http://dx.doi.org/10.5694/mja2.50577] [PMID: 32266987]
[120]
Fish DN. Levofloxacin: Update and perspectives on one of the original ‘respiratory quinolones’. Expert Rev Anti Infect Ther 2003; 1(3): 371-87.
[http://dx.doi.org/10.1586/14787210.1.3.371] [PMID: 15482135]
[121]
Enoki Y, Ishima Y, Tanaka R, et al. Pleiotropic effects of levofloxacin, fluoroquinolone antibiotics, against influenza virus-induced lung injury. PLoS One 2015; 10(6): e0130248.
[http://dx.doi.org/10.1371/journal.pone.0130248] [PMID: 26086073]
[122]
Sun Q, Xu X, Xie J, Li J, Huang X. Evolution of computed tomography manifestations in five patients who recovered from coronavirus disease 2019 (COVID-19) pneumonia. Korean J Radiol 2020; 21(5): 614-9.
[http://dx.doi.org/10.3348/kjr.2020.0157] [PMID: 32174054]
[123]
De Luca JF, Holmes NE, Trubiano JA. Adverse reactions to vancomycin and cross-reactivity with other antibiotics. Curr Opin Allergy Clin Immunol 2020; 20(4): 352-61.
[http://dx.doi.org/10.1097/ACI.0000000000000665] [PMID: 32590503]
[124]
Yongwei Zhao Y T. Understanding the glycopeptide antibiotic crosslinking cascade – in vitro approaches revealing the details of a complex biosynthesis pathway. ChemBioChem 2021; 22(1): 43-51.
[125]
Balzarini J, Pannecouque C, De Clercq E, et al. Antiretroviral activity of semisynthetic derivatives of glycopeptide antibiotics. J Med Chem 2003; 46(13): 2755-64.
[http://dx.doi.org/10.1021/jm0300882] [PMID: 12801238]
[126]
National Institute of Diabetes and Digestive and Kidney Diseases. Glycopeptide Antibiotics. National Institute of Diabetes and Digestive and Kidney Diseases 2012. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31643291 Accessed 10 February 2021.
[127]
Ceccarelli G, Alessandri F, d’Ettorre G, et al. Is teicoplanin a complementary treatment option for COVID-19? The question remains. Int J Antimicrob Agents 2020; 56(2): 106029.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106029] [PMID: 32454071]
[128]
Colson P, Raoult D. Fighting viruses with antibiotics: An overlooked path. Int J Antimicrob Agents 2016; 48(4): 349-52.
[http://dx.doi.org/10.1016/j.ijantimicag.2016.07.004] [PMID: 27546219]
[129]
Zhang J, Ma X, Yu F, Liu J, Zou F, Pan T. Teicoplanin potently blocks the cell entry of 2019nCoV. 2020.
[http://dx.doi.org/10.1101/2020.02.05.935387]
[130]
Kim SH, Kang CI, Huh K, et al. Evaluating the optimal dose of teicoplanin with therapeutic drug monitoring: Not too high for adverse event, not too low for treatment efficacy. Eur J Clin Microbiol Infect Dis 2019; 38(11): 2113-20.
[http://dx.doi.org/10.1007/s10096-019-03652-6] [PMID: 31372903]
[131]
Liu SuNan, Li W. Respective analysis of teicoplanin in the treatment of bacterial pneumonia secondary to COVID-19. Respective Anal teicoplanin Treat Bact pneumonia Second to COVID-19 2021.
[132]
Sanchez MR. Miscellaneous treatments: Thalidomide, potassium iodide, levamisole, clofazimine, colchicine, and D-penicillamine. Clin Dermatol 2000; 18(1): 131-45.
[http://dx.doi.org/10.1016/S0738-081X(99)00103-0] [PMID: 10701095]
[133]
Ceccarelli G, Alessandri F, Oliva A, et al. The role of teicoplanin in the treatment of SARS-CoV-2 infection: A retrospective study in critically ill COVID-19 patients (Tei-COVID study). J Med Virol 2021; 93(7): 4319-25.
[http://dx.doi.org/10.1002/jmv.26925] [PMID: 33675235]
[134]
Gironi LC, Damiani G, Zavattaro E, et al. Tetracyclines in COVID-19 patients quarantined at home: Literature evidence supporting real-world data from a multicenter observational study targeting inflammatory and infectious dermatoses. Dermatol Ther 2021; 34(1): e14694.
[http://dx.doi.org/10.1111/dth.14694] [PMID: 33354849]
[135]
Singh H, Chauhan P, Singh J. Concomitant use of dexamethasone and tetracyclines: A potential therapeutic option for the management of severe COVID-19 infection? 2021; 14(3): 315-22.
[136]
Xi W-N, Jin D, Sun K, Yu R-Y, Yao X-B, Zou B-S. Treatment with arbidol and moxifloxacin in ordinary and severe adult patients infected with COVID-19. medRxiv 2020.
[http://dx.doi.org/10.1101/2020.05.30.20117598]
[137]
Rawson TM, Moore LSP, Castro-Sanchez E, et al. COVID-19 and the potential long-term impact on antimicrobial resistance. J Antimicrob Chemother 2020; 75(7): 1681-4.
[http://dx.doi.org/10.1093/jac/dkaa194] [PMID: 32433765]
[138]
Clinical management of COVID-19. Available from: https://www.who.int/publications/i/item/clinical-management-of-covid-19 Accessed 28 July 2020.
[139]
Getahun H, Smith I, Trivedi K, Paulin S, Balkhy HH. Tackling antimicrobial resistance in the COVID-19 pandemic. Bull World Health Organ 2020; 98(7): 442-442A.
[http://dx.doi.org/10.2471/BLT.20.268573] [PMID: 32742026]
[140]
Caselli E. Hygiene: Microbial strategies to reduce pathogens and drug resistance in clinical settings. Microb Biotechnol 2017; 10(5): 1079-83.
[http://dx.doi.org/10.1111/1751-7915.12755] [PMID: 28677216]
[141]
Kampf G. Biocidal agents used for disinfection can enhance antibiotic resistance in gram-negative species. Antibiotics (Basel) 2018; 7(4): E110.
[http://dx.doi.org/10.3390/antibiotics7040110] [PMID: 30558235]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy