Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Stimuli-responsive Polymeric Nanosystems for Therapeutic Applications

Author(s): Mayank Handa, Ajit Singh, Swaran Jeet Singh Flora and Rahul Shukla*

Volume 28, Issue 11, 2022

Published on: 15 February, 2022

Page: [910 - 921] Pages: 12

DOI: 10.2174/1381612827666211208150210

Price: $65

Abstract

Background: Recent studies have been reported emerging polymeric nanoparticles as a promising particulate carrier system for controlled and targeted drug delivery. Stimuli-responsive nanocarriers have shown characteristics, such as high drug uptake at specific sites or targeted cells with an advantage of no drug leakage. These stimuli-responsive polymeric systems are used to functionalize nanocarriers, such as dendrimers, metallic nanoparticles, polymeric nanoparticles, liposomal nanoparticles, and quantum dots.

Objective: The study reviews the potential of smart stimuli-responsive carriers for therapeutic application and their behavior in external or internal stimuli, like pH, temperature, redox, light, and magnetic field. These stimuli- responsive drug delivery systems exhibit different drug release patterns in in vitro and in vivo studies. Stimuli- responsive nanocarriers are useful for both hydrophilic and hydrophobic drugs and release them on applied stimulus. This review highlights the recent development in the physical properties of polymeric materials and their application in stimuli-responsive specific drug delivery.

Conclusion: The stimuli (smart, intelligent, programmable) drug delivery systems provide site-specific drug delivery with potential therapy for cancer, neurodegenerative, and lifestyle disorders. The stimuli-responsive- based nanocarriers are developing at a fast pace, and there is a huge demand for biocompatible and biodegradable responsive polymers for effective and safe delivery.

Keywords: pH-responsive, polymeric nanoparticles, drug delivery, temperature responsive, cancer, neurodegeneration.

[1]
Shukla R, Singh A, Pardhi V, et al. Dendrimer-based nanoparticulate delivery system for cancer therapy. In: Kesharwani P, Paknikar KM,and Gajbhiye V, Eds. Polymeric Nanoparticles as a Promising Tool for Anti-cancer Therapeutics. Amsterdam: Elsevier, 2019; 233-255.
[http://dx.doi.org/10.1016/B978-0-12-816963-6.00011-X]
[2]
Shukla R, Thok K, Kakade S, Handa M, Beg S. Clinical translation status of nanoformulations. Nanoformulation Strategies for Cancer Treatment. Elsevier 2021; pp. 303-38.
[http://dx.doi.org/10.1016/B978-0-12-821095-6.00012-4]
[3]
Shukla R, Handa M, Lokesh SB, Ruwali M, Kohli K, Kesharwani P. Conclusion and future prospective of polymeric nanoparticles for cancer therapy. Polymeric Nanoparticles as a Promising Tool for Anti-cancer Therapeutics. Academic Press 2019; pp. 389-408.
[http://dx.doi.org/10.1016/B978-0-12-816963-6.00018-2]
[4]
Saadati R, Dadashzadeh S, Abbasian Z, Soleimanjahi H. Accelerated blood clearance of PEGylated PLGA nanoparticles following repeated injections: Effects of polymer dose, PEG coating, and encapsulated anticancer drug. Pharm Res 2013; 30(4): 985-95.
[http://dx.doi.org/10.1007/s11095-012-0934-y] [PMID: 23184228]
[5]
Belfiore L, Saunders DN, Ranson M, Thurecht KJ, Storm G, Vine KL. Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: Challenges and opportunities. J Control Release 2018; 277: 1-13.
[http://dx.doi.org/10.1016/j.jconrel.2018.02.040] [PMID: 29501721]
[6]
Moradi Kashkooli F, Soltani M, Souri M. Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies. J Control Release 2020; 327: 316-49.
[http://dx.doi.org/10.1016/j.jconrel.2020.08.012] [PMID: 32800878]
[7]
Canaparo R, Foglietta F, Giuntini F, Della Pepa C, Dosio F, Serpe L. Recent developments in antibacterial therapy: Focus on stimuli-responsive drug-delivery systems and therapeutic nanoparticles. Molecules 2019; 24(10): 1991.
[http://dx.doi.org/10.3390/molecules24101991] [PMID: 31137622]
[8]
Feng A, Yuan J. Smart nanocontainers: Progress on novel stimuli-responsive polymer vesicles. Macromol Rapid Commun 2014; 35(8): 767-79.
[http://dx.doi.org/10.1002/marc.201300866] [PMID: 24522966]
[9]
Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater 2013; 12(11): 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[10]
Rapoport N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci 2007; 32(8-9): 962-90.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.05.009]
[11]
Chenthamara D, Subramaniam S, Ramakrishnan SG, et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res 2019; 23(1): 20.
[http://dx.doi.org/10.1186/s40824-019-0166-x] [PMID: 31832232]
[12]
Liu X, Yang Y, Urban MW. Stimuli-responsive polymeric nanoparticles. Macromol Rapid Commun 2017; 38(13): 1700030.
[http://dx.doi.org/10.1002/marc.201700030] [PMID: 28497535]
[13]
Shukla RA, Handa MA, Pardhi VP. Introduction to pharmaceutical product development. Pharmaceutical Drug Product Development and Process Optimization. 1st ed.. Apple Academic Press 2020; pp. 1-32.
[http://dx.doi.org/10.1201/9780367821678-1]
[14]
Kennedy JF, Knill CJ, Thorley M. Natural polymers for healing wounds. Recent Advances in Environmentally Compatible Polymers. 2001; pp. 97-104.
[http://dx.doi.org/10.1533/9781845693749.2.97]
[15]
Medusheva EO, Filatov VN, Ryl’tsev VV, et al. New medical materials with an integral lasting effect based on fibre-forming polymers. Fibre Chem 2007; 39(4): 268-71.
[http://dx.doi.org/10.1007/s10692-007-0059-y]
[16]
Fu L, Zhang J, Yang G. Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym 2013; 92(2): 1432-42.
[http://dx.doi.org/10.1016/j.carbpol.2012.10.071] [PMID: 23399174]
[17]
Li H, Yang J, Hu X, Liang J, Fan Y, Zhang X. Superabsorbent polysaccharide hydrogels based on pullulan derivate as antibacterial release wound dressing. J Biomed Mater Res A 2011; 98(1): 31-9.
[http://dx.doi.org/10.1002/jbm.a.33045] [PMID: 21523902]
[18]
Xia G, Liu Y, Tian M, et al. Nanoparticles/thermosensitive hydrogel reinforced with chitin whiskers as a wound dressing for treating chronic wounds. J Mater Chem B Mater Biol Med 2017; 5(17): 3172-85.
[http://dx.doi.org/10.1039/C7TB00479F] [PMID: 32263715]
[19]
Valle KZM, Saucedo Acuña RA, Ríos Arana JV, et al. Natural film based on pectin and allantoin for wound healing: Obtaining, characterization, and rat model. BioMed Res Int 2020; 2020: 6897497.
[http://dx.doi.org/10.1155/2020/6897497] [PMID: 33123582]
[20]
Tummalapalli M, Berthet M, Verrier B, Deopura BL, Alam MS, Gupta B. Composite wound dressings of pectin and gelatin with aloe vera and curcumin as bioactive agents. Int J Biol Macromol 2016; 82: 104-13.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.10.087] [PMID: 26529192]
[21]
Giusto G, Vercelli C, Comino F, Caramello V, Tursi M, Gandini M. A new, easy-to-make pectin-honey hydrogel enhances wound healing in rats. BMC Complement Altern Med 2017; 17(1): 266.
[http://dx.doi.org/10.1186/s12906-017-1769-1] [PMID: 28511700]
[22]
Chee BS, Nugent M. Electrospun natural polysaccharide for biomedical application. In: Hasnain MS, Nayak AK, Eds. Natural Polysaccharides in Drug Delivery and Biomedical Applications. Amsterdam: Elsevier, 2019; pp. 589-615.
[http://dx.doi.org/10.1016/B978-0-12-817055-7.00026-1]
[23]
Uppal R, Ramaswamy GN, Arnold C, Goodband R, Wang Y. Hyaluronic acid nanofiber wound dressing--production, characterization, and in vivo behavior. J Biomed Mater Res B Appl Biomater 2011; 97(1): 20-9.
[http://dx.doi.org/10.1002/jbm.b.31776] [PMID: 21290571]
[24]
Graça MFP, Miguel SP, Cabral CSD, Correia IJ. Hyaluronic acid-Based wound dressings: A review. Carbohydr Polym 2020; 241: 116364.
[http://dx.doi.org/10.1016/j.carbpol.2020.116364] [PMID: 32507198]
[25]
Kempf M, Miyamura Y, Liu PY, et al. A denatured collagen microfiber scaffold seeded with human fibroblasts and keratinocytes for skin grafting. Biomaterials 2011; 32(21): 4782-92.
[http://dx.doi.org/10.1016/j.biomaterials.2011.03.023] [PMID: 21477857]
[26]
Neuman MG, Nanau RM, Oruña-Sanchez L, Coto G. Hyaluronic acid and wound healing. J Pharm Pharm Sci 2015; 18(1): 53-60.
[http://dx.doi.org/10.18433/J3K89D] [PMID: 25877441]
[27]
Rath G, Hussain T, Chauhan G, Garg T, Goyal AK. Collagen nanofiber containing silver nanoparticles for improved wound-healing applications. J Drug Target 2016; 24(6): 520-9.
[http://dx.doi.org/10.3109/1061186X.2015.1095922] [PMID: 26487102]
[28]
Ulubayram K, Aksu E, Gurhan SID, Serbetci K, Hasirci N. Cytotoxicity evaluation of gelatin sponges prepared with different cross-linking agents. J Biomater Sci Polym Ed 2002; 13(11): 1203-19.
[http://dx.doi.org/10.1163/156856202320892966] [PMID: 12518800]
[29]
Ju HW, Lee OJ, Lee JM, et al. Wound healing effect of electrospun silk fibroin nanomatrix in burn-model. Int J Biol Macromol 2016; 85: 29-39.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.055] [PMID: 26718866]
[30]
Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel) 2011; 3(3): 1377-97.
[http://dx.doi.org/10.3390/polym3031377] [PMID: 22577513]
[31]
Wang X, Cheng R, Zhong Z. Facile fabrication of robust, hyaluronic acid-surfaced and disulfide-crosslinked PLGA nanoparticles for tumor-targeted and reduction-triggered release of docetaxel. Acta Biomater 2021; 125: 280-9.
[http://dx.doi.org/10.1016/j.actbio.2021.02.044] [PMID: 33677162]
[32]
Garcia-Orue I, Gainza G, Gutierrez FB, et al. Novel nanofibrous dressings containing rhEGF and Aloe vera for wound healing applications. Int J Pharm 2017; 523(2): 556-66.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.006] [PMID: 27825864]
[33]
Chu Y, Yu D, Wang P, Xu J, Li D, Ding M. Nanotechnology promotes the full-thickness diabetic wound healing effect of recombinant human epidermal growth factor in diabetic rats. Wound Repair Regen 2010; 18(5): 499-505.
[http://dx.doi.org/10.1111/j.1524-475X.2010.00612.x] [PMID: 20840519]
[34]
Santos Assunção L, Quênia Muniz Bezerra P, Stahl Hermes Poletto V, et al. Combination of carotenoids from Spirulina and PLA/PLGA or PHB: New options to obtain bioactive nanoparticles. Food Chem 2021; 346: 128742.
[http://dx.doi.org/10.1016/j.foodchem.2020.128742] [PMID: 33373823]
[35]
Aoki S, Kinoshita M, Miyazaki H, et al. Application of poly-L-lactic acid nanosheet as a material for wound dressing. Plast Reconstr Surg 2013; 131(2): 236-40.
[http://dx.doi.org/10.1097/PRS.0b013e3182789c79] [PMID: 23357985]
[36]
Nguyen TTT, Ghosh C, Hwang SG, Tran LD, Park JS. Characteristics of curcumin-loaded poly (Lactic Acid) nanofibers for wound healing. J Mater Sci 2013; 48(20): 7125-33.
[http://dx.doi.org/10.1007/s10853-013-7527-y]
[37]
Gautam S, Sharma C, Purohit SD, et al. Gelatin-polycaprolactone-nanohydroxyapatite electrospun nanocomposite scaffold for bone tissue engineering. Mater Sci Eng C 2021; 119: 111588.
[http://dx.doi.org/10.1016/j.msec.2020.111588] [PMID: 33321633]
[38]
Kim BJ, Cheong H, Choi ES, et al. Accelerated skin wound healing using electrospun nanofibrous mats blended with mussel adhesive protein and polycaprolactone. J Biomed Mater Res A 2017; 105(1): 218-25.
[http://dx.doi.org/10.1002/jbm.a.35903] [PMID: 27648732]
[39]
Kanitkar M, Jaiswal A, Deshpande R, Bellare J, Kale VP. Enhanced growth of endothelial precursor cells on PCG-matrix facilitates accelerated, fibrosis-free, wound healing: A diabetic mouse model. PLoS One 2013; 8(7): e69960.
[http://dx.doi.org/10.1371/journal.pone.0069960] [PMID: 23922871]
[40]
Levengood SL, Erickson AE, Chang FC, Zhang M. Chitosan-poly(caprolactone) nanofibers for skin repair. J Mater Chem B Mater Biol Med 2017; 5(9): 1822-33.
[http://dx.doi.org/10.1039/C6TB03223K] [PMID: 28529754]
[41]
Karimi M, Sahandi Zangabad P, Ghasemi A, et al. Temperature-responsive smart nanocarriers for delivery of therapeutic agents: Applications and recent advances. ACS Appl Mater Interfaces 2016; 8(33): 21107-33.
[http://dx.doi.org/10.1021/acsami.6b00371] [PMID: 27349465]
[42]
Bellotti E, Schilling AL, Little SR, Decuzzi P. Injectable thermoresponsive hydrogels as drug delivery system for the treatment of central nervous system disorders: A review. J Control Release 2021; 329: 16-35.
[http://dx.doi.org/10.1016/j.jconrel.2020.11.049] [PMID: 33259851]
[43]
Baniasadi M, Yarali E, Foyouzat A, Baghani M. Crack self-healing of thermo-responsive shape memory polymers with application to control valves, filtration, and drug delivery capsule. Eur J Mech A, Solids 2021; 85: 104093.
[http://dx.doi.org/10.1016/j.euromechsol.2020.104093]
[44]
Borys N, Dewhirst MW. Drug development of lyso-thermosensitive liposomal doxorubicin: Combining hyperthermia and thermosensitive drug delivery. Adv Drug Deliv Rev 2021; 178: 113985.
[http://dx.doi.org/10.1016/j.addr.2021.113985] [PMID: 34555486]
[45]
Al-Ahmady Z, Kostarelos K. Chemical components for the design of temperature-responsive vesicles as cancer therapeutics. Chem Rev 2016; 116(6): 3883-918.
[http://dx.doi.org/10.1021/acs.chemrev.5b00578] [PMID: 26934630]
[46]
Ren CD, Kurisawa M, Chung JE, Ying JY. Liposomal delivery of horseradish peroxidase for thermally triggered injectable hyaluronic acid-tyramine hydrogel scaffolds. J Mater Chem B Mater Biol Med 2015; 3(23): 4663-70.
[http://dx.doi.org/10.1039/C4TB01832J] [PMID: 32262481]
[47]
Bikram M, West JL. Thermo-responsive systems for controlled drug delivery. Expert Opin Drug Deliv 2008; 5(10): 1077-91.
[http://dx.doi.org/10.1517/17425247.5.10.1077] [PMID: 18817514]
[48]
Lin YJ, Huang CC, Wan WL, Chiang CH, Chang Y, Sung HW. Recent advances in CO2 bubble-generating carrier systems for localized controlled release. Biomaterials 2017; 133: 154-64.
[http://dx.doi.org/10.1016/j.biomaterials.2017.04.018] [PMID: 28437626]
[49]
El-Habashy SE, Eltaher HM, Gaballah A, Zaki EI, Mehanna RA, El-Kamel AH. Hybrid bioactive hydroxyapatite/polycaprolactone nanoparticles for enhanced osteogenesis. Mater Sci Eng C 2021; 119: 111599.
[http://dx.doi.org/10.1016/j.msec.2020.111599] [PMID: 33321643]
[50]
Grapa CM, Mocan T, Gonciar D, et al. Epidermal growth factor receptor and its role in pancreatic cancer treatment mediated by nanoparticles. Int J Nanomedicine 2019; 14: 9693-706.
[http://dx.doi.org/10.2147/IJN.S226628] [PMID: 31849462]
[51]
MacEwan SR, Chilkoti A. Applications of elastin-like polypeptides in drug delivery. J Control Release 2014; 190: 314-30.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.028] [PMID: 24979207]
[52]
Majumder J, Minko T. Multifunctional and stimuli-responsive nanocarriers for targeted therapeutic delivery. Expert Opin Drug Deliv 2020. [Ahead of Print]
[PMID: 32969740]
[53]
Cheng HW, Tsao HY, Chiang CS, Chen SY. Advances in magnetic nanoparticle-mediated cancer immune-theranostics. Adv Healthc Mater 2021; 10(1): e2001451.
[http://dx.doi.org/10.1002/adhm.202001451] [PMID: 33135398]
[54]
Dobson J. Magnetic nanoparticles for drug delivery. Drug Dev Res 2006; 67(1): 55-60.
[http://dx.doi.org/10.1002/ddr.20067]
[55]
Ramírez-Acosta CM, Cifuentes J, Castellanos MC, et al. Ph-responsive, cell-penetrating, core/shell magnetite/silver nanoparticles for the delivery of plasmids: Preparation, characterization, and preliminary in vitro evaluation. Pharmaceutics 2020; 12(6): 561.
[http://dx.doi.org/10.3390/pharmaceutics12060561] [PMID: 32560390]
[56]
Lungu II, Rădulescu M, Mogoşanu GD, Grumezescu AM. pH sensitive core-shell magnetic nanoparticles for targeted drug delivery in cancer therapy. Rom J Morphol Embryol 2016; 57(1): 23-32.
[PMID: 27151685]
[57]
Coppens E, Desmaële D, Naret T, et al. Gemcitabine lipid prodrug nanoparticles: Switching the lipid moiety and changing the fate in the bloodstream. Int J Pharm 2021; 609: 121076.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121076]
[58]
Qin J, Asempah I, Laurent S, Fornara A, Muller RN, Muhammed M. Injectable superparamagnetic ferrogels for controlled release of hydrophobic drugs. Adv Mater 2009; 21(13): 1354-7.
[http://dx.doi.org/10.1002/adma.200800764]
[59]
Schillinger U, Brill T, Rudolph C, et al. Advances in magnetofection—magnetically guided nucleic acid delivery. J Magn Magn Mater 2005; 293(1): 501-8.
[http://dx.doi.org/10.1016/j.jmmm.2005.01.032]
[60]
Arsianti M, Lim M, Lou SN, Goon IY, Marquis CP, Amal R. Bi-functional gold-coated magnetite composites with improved biocompatibility. J Colloid Interface Sci 2011; 354(2): 536-45.
[http://dx.doi.org/10.1016/j.jcis.2010.10.061] [PMID: 21131002]
[61]
Xiang SD, Selomulya C, Ho J, Apostolopoulos V, Plebanski M. Delivery of DNA vaccines: An overview on the use of biodegradable polymeric and magnetic nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2010; 2(3): 205-18.
[http://dx.doi.org/10.1002/wnan.88] [PMID: 20391461]
[62]
Gupta A, Ahmad A, Singh H, et al. Nanocarrier composed of magnetite core coated with three polymeric shells mediates LCS-1 delivery for synthetic lethal therapy of BLM-defective colorectal cancer cells. Biomacromolecules 2018; 19(3): 803-15.
[http://dx.doi.org/10.1021/acs.biomac.7b01607] [PMID: 29451980]
[63]
Chorny M, Hood E, Levy RJ, Muzykantov VR. Endothelial delivery of antioxidant enzymes loaded into non-polymeric magnetic nanoparticles. J Control Release 2010; 146(1): 144-51.
[http://dx.doi.org/10.1016/j.jconrel.2010.05.003] [PMID: 20483366]
[64]
Sonmez M, Georgescu M, Alexandrescu L, et al. Synthesis and applications of Fe3O4/SiO2 core-shell materials. Curr Pharm Des 2015; 21(37): 5324-35.
[http://dx.doi.org/10.2174/1381612821666150917094031] [PMID: 26377652]
[65]
Li S, Xia Y, Qiu Y, Chen X, Shi S. Preparation and property of starch nanoparticles reinforced aldehyde–hydrazide covalently crosslinked PNIPAM hydrogels. J Appl Polym Sci 2018; 135(5): 45761.
[http://dx.doi.org/10.1002/app.45761]
[66]
Kobayashi T. Cancer hyperthermia using magnetic nanoparticles. Biotechnol J 2011; 6(11): 1342-7.
[http://dx.doi.org/10.1002/biot.201100045] [PMID: 22069094]
[67]
Liu G, Hong RY, Guo L, Liu GH, Feng B, Li YG. Exothermic effect of dextran-coated Fe3O4 magnetic fluid and its compatibility with blood. Colloids Surf A Physicochem Eng Asp 2011; 380(1-3): 327-33.
[http://dx.doi.org/10.1016/j.colsurfa.2011.03.006]
[68]
Chowdhury SM, Abou-Elkacem L, Lee T, Dahl J, Lutz AM. Ultrasound and microbubble mediated therapeutic delivery: Underlying mechanisms and future outlook. J Control Release 2020; 326: 75-90.
[http://dx.doi.org/10.1016/j.jconrel.2020.06.008] [PMID: 32554041]
[69]
Pitt WG, Singh RN, Perez KX, Husseini GA, Jack DR. Phase transitions of perfluorocarbon nanoemulsion induced with ultrasound: A mathematical model. Ultrason Sonochem 2014; 21(2): 879-91.
[http://dx.doi.org/10.1016/j.ultsonch.2013.08.005] [PMID: 24035720]
[70]
Koda R, Koido J, Hosaka N, et al. Evaluation of active control of bubble liposomes in a bifurcated flow under various ultrasound conditions. Advanced Biomedical Engineering 2014; 3(0): 21-8.
[http://dx.doi.org/10.14326/abe.3.21]
[71]
Holland CK, Shekhar H, Lafond M. Lipid-shelled microbubbles for ultrasound-triggered release of bioactive gases to treat stroke and cardiovascular disease. IEEE International Ultrasonics Symposium (IUS) 2019; 2037-9.
[http://dx.doi.org/10.1109/ULTSYM.2019.8926290]
[72]
Chappell JC, Price RJ. Targeted therapeutic applications of acoustically active microspheres in the microcirculation. Microcirculation 2006; 13(1): 57-70.
[http://dx.doi.org/10.1080/10739680500383381] [PMID: 16393947]
[73]
Lyon PC, Griffiths LF, Lee J, et al. Clinical trial protocol for TARDOX: A phase I study to investigate the feasibility of targeted release of lyso-thermosensitive liposomal doxorubicin (ThermoDox®) using focused ultrasound in patients with liver tumours. J Ther Ultrasound 2017; 5(1): 28.
[http://dx.doi.org/10.1186/s40349-017-0104-0] [PMID: 29118984]
[74]
Linsley CS, Wu BM. Recent advances in light-responsive on-demand drug-delivery systems. Ther Deliv 2017; 8(2): 89-107.
[http://dx.doi.org/10.4155/tde-2016-0060] [PMID: 28088880]
[75]
Wankar J, Kotla NG, Gera S, Rasala S, Pandit A, Rochev YA. Recent advances in host-guest self-assembled cyclodextrin carriers: Implications for responsive drug delivery and biomedical engineering. Adv Funct Mater 2020; 30(44): 1909049.
[http://dx.doi.org/10.1002/adfm.201909049]
[76]
Tong R, Hemmati HD, Langer R, Kohane DS. Photoswitchable nanoparticles for triggered tissue penetration and drug delivery. J Am Chem Soc 2012; 134(21): 8848-55.
[http://dx.doi.org/10.1021/ja211888a] [PMID: 22385538]
[77]
Itoh H, Tahara A, Naka K, Chujo Y. Photochemical assembly of gold nanoparticles utilizing the photodimerization of thymine. Langmuir 2004; 20(5): 1972-6.
[http://dx.doi.org/10.1021/la0359777] [PMID: 15801470]
[78]
You J, Zhang R, Zhang G, et al. Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: A platform for near-infrared light-trigged drug release. J Control Release 2012; 158(2): 319-28.
[http://dx.doi.org/10.1016/j.jconrel.2011.10.028] [PMID: 22063003]
[79]
Rengan AK, Jagtap M, De A, Banerjee R, Srivastava R. Multifunctional gold coated thermo-sensitive liposomes for multimodal imaging and photo-thermal therapy of breast cancer cells. Nanoscale 2014; 6(2): 916-23.
[http://dx.doi.org/10.1039/C3NR04448C] [PMID: 24281647]
[80]
Zhao Y, Tavares AC, Gauthier MA. Nano-engineered electro-responsive drug delivery systems. J Mater Chem B Mater Biol Med 2016; 4(18): 3019-30.
[http://dx.doi.org/10.1039/C6TB00049E] [PMID: 32263041]
[81]
Luo C, Yang Q, Lin X, Qi C, Li G. Preparation and drug release property of tanshinone IIA loaded chitosan-montmorillonite microspheres. Int J Biol Macromol 2019; 125: 721-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.072] [PMID: 30552926]
[82]
Tian B, Liu Y, Liu J. Smart stimuli-responsive drug delivery systems based on cyclodextrin: A review. Carbohydr Polym 2021; 251: 116871.
[http://dx.doi.org/10.1016/j.carbpol.2020.116871] [PMID: 33142550]
[83]
Cao L, Yang J, Gong C, Wang M. Self-assembly and electrochromic property of electroactive tetraaniline-b-PEG deblock copolymer. Sci China Chem 2017; 60(1): 99-104.
[http://dx.doi.org/10.1007/s11426-016-0310-4]
[84]
Manouras T, Vamvakaki M. Field responsive materials: Photo-, electro-, magnetic-and ultrasound-sensitive polymers. Polym Chem 2017; 8(1): 74-96.
[http://dx.doi.org/10.1039/C6PY01455K]
[85]
Xu L, Yang Y, Mao Y, Li Z. Self-powerbility in electrical stimulation drug delivery system. Adv Mater Technol 2021; 28: 2100055.
[http://dx.doi.org/10.1002/admt.202100055]
[86]
Deng Z, Zhen Z, Hu X, Wu S, Xu Z, Chu PK. Hollow chitosan-silica nanospheres as pH-sensitive targeted delivery carriers in breast cancer therapy. Biomaterials 2011; 32(21): 4976-86.
[http://dx.doi.org/10.1016/j.biomaterials.2011.03.050] [PMID: 21486679]
[87]
Min KH, Kim JH, Bae SM, et al. Tumoral acidic pH-responsive MPEG-poly(β-amino ester) polymeric micelles for cancer targeting therapy. J Control Release 2010; 144(2): 259-66.
[http://dx.doi.org/10.1016/j.jconrel.2010.02.024] [PMID: 20188131]
[88]
Li X, Wang M, Liu C, Jing X, Huang Y. TAT-modified mixed micelles as biodegradable targeting and delivering system for cancer therapeutics. J Appl Polym Sci 2013; 130(6): 4598-607.
[http://dx.doi.org/10.1002/app.39744]
[89]
Mavrogiorgis D, Bilalis P, Karatzas A, Skoulas D, Fotinogiannopoulou G, Iatrou H. Controlled polymerization of histidine and synthesis of well-defined stimuli responsive polymers. Elucidation of the structure–aggregation relationship of this highly multifunctional material. Polym Chem 2014; 5(21): 6256-78.
[http://dx.doi.org/10.1039/C4PY00687A]
[90]
Jazani AM, Oh JK. Development and disassembly of single and multiple acid-cleavable block copolymer nanoassemblies for drug delivery. Polym Chem 2020; 11(17): 2934-54.
[http://dx.doi.org/10.1039/D0PY00234H]
[91]
Abbasian M, Roudi MM, Mahmoodzadeh F, Eskandani M, Jaymand M. Chitosan-grafted-poly(methacrylic acid)/graphene oxide nanocomposite as a pH-responsive de novo cancer chemotherapy nanosystem. Int J Biol Macromol 2018; 118(Pt B): 1871-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.036] [PMID: 30017982]
[92]
Navarro G, Sawant RR, Biswas S, Essex S, Tros de Ilarduya C, Torchilin VP. P-glycoprotein silencing with siRNA delivered by DOPE-modified PEI overcomes doxorubicin resistance in breast cancer cells. Nanomedicine (Lond) 2012; 7(1): 65-78.
[http://dx.doi.org/10.2217/nnm.11.93] [PMID: 22191778]
[93]
Chu KS, Finniss MC, Schorzman AN, et al. Particle replication in nonwetting templates nanoparticles with tumor selective alkyl silyl ether docetaxel prodrug reduces toxicity. Nano Lett 2014; 14(3): 1472-6.
[http://dx.doi.org/10.1021/nl4046558] [PMID: 24552251]
[94]
Wilson DS, Dalmasso G, Wang L, Sitaraman SV, Merlin D, Murthy N. Orally delivered thioketal nanoparticles loaded with TNF-α-siRNA target inflammation and inhibit gene expression in the intestines. Nat Mater 2010; 9(11): 923-8.
[http://dx.doi.org/10.1038/nmat2859] [PMID: 20935658]
[95]
Vernooij EA, Kettenes-van den Bosch JJ, Underberg WJ, Crommelin DJ. Chemical hydrolysis of DOTAP and DOPE in a liposomal environment. J Control Release 2002; 79(1-3): 299-303.
[http://dx.doi.org/10.1016/S0168-3659(01)00534-X] [PMID: 11853940]
[96]
Phillips DJ, Gibson MI. Redox-sensitive materials for drug delivery: Targeting the correct intracellular environment, tuning release rates, and appropriate predictive systems. Antioxid Redox Signal 2014; 21(5): 786-803.
[http://dx.doi.org/10.1089/ars.2013.5728] [PMID: 24219144]
[97]
Cheng R, Feng F, Meng F, Deng C, Feijen J, Zhong Z. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J Control Release 2011; 152(1): 2-12.
[http://dx.doi.org/10.1016/j.jconrel.2011.01.030] [PMID: 21295087]
[98]
Senter PD, Sievers EL. The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nat Biotechnol 2012; 30(7): 631-7.
[http://dx.doi.org/10.1038/nbt.2289] [PMID: 22781692]
[99]
Cai H, Wang X, Zhang H, et al. Enzyme-sensitive biodegradable and multifunctional polymeric conjugate as theranostic nanomedicine. Appl Mater Today 2018; 11: 207-18.
[http://dx.doi.org/10.1016/j.apmt.2018.02.003]
[100]
Lee DJ, Kessel E, Lehto T, et al. Systemic delivery of folate-PEG siRNA lipopolyplexes with enhanced intracellular stability for in vivo gene silencing in leukemia. Bioconjug Chem 2017; 28(9): 2393-409.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00383] [PMID: 28772071]
[101]
Jiang T, Olson ES, Nguyen QT, Roy M, Jennings PA, Tsien RY. Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc Natl Acad Sci USA 2004; 101(51): 17867-72.
[http://dx.doi.org/10.1073/pnas.0408191101] [PMID: 15601762]
[102]
Seki T, Abe K, Egawa Y, Miki R, Juni K, Seki T. A pseudopolyrotaxane for glucose-responsive insulin release: The effect of binding ability and spatial arrangement of phenylboronic acid group. Mol Pharm 2016; 13(11): 3807-15.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00599] [PMID: 27715064]
[103]
Wang B, Ma R, Liu G, et al. Glucose-responsive micelles from self-assembly of poly(ethylene glycol)-b-poly(acrylic acid-co-acrylamidophenylboronic acid) and the controlled release of insulin. Langmuir 2009; 25(21): 12522-8.
[http://dx.doi.org/10.1021/la901776a] [PMID: 19810675]
[104]
Zhou M, Wen K, Bi Y, et al. The application of stimuli-responsive nanocarriers for targeted drug delivery. Curr Top Med Chem 2017; 17(20): 2319-34.
[http://dx.doi.org/10.2174/1568026617666170224121008] [PMID: 28240179]
[105]
Yoon S, Kim WJ, Yoo HS. Dual-responsive breakdown of nanostructures with high doxorubicin payload for apoptotic anticancer therapy. Small 2013; 9(2): 284-93.
[http://dx.doi.org/10.1002/smll.201200997] [PMID: 22930531]
[106]
Naziris N, Pippa N, Pispas S, Demetzos C. Stimuli-responsive drug delivery nanosystems: From bench to clinic. Current Nanomedicine 2016; 6(3): 166-85.
[http://dx.doi.org/10.2174/2468187306666160712232449]
[107]
Lyon PC. Targeted release from lyso-thermosensitive liposomal doxorubicin (ThermoDox®) using focused ultrasound in patients with liver tumours (Doctoral dissertation, University of Oxford).
[108]
Rudge S, Peterson C, Vessely C, Koda J, Stevens S, Catterall L. Adsorption and desorption of chemotherapeutic drugs from a magnetically targeted carrier (MTC). J Control Release 2001; 74(1-3): 335-40.
[http://dx.doi.org/10.1016/S0168-3659(01)00344-3] [PMID: 11489515]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy