Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

The Potential of Oxidative Stress Related Genes as Prognostic Biomarkers in Head and Neck Squamous Cell Carcinoma

Author(s): Xin Wang and Gang Zhou*

Volume 25, Issue 11, 2022

Published on: 14 February, 2022

Page: [1952 - 1965] Pages: 14

DOI: 10.2174/1386207325666211207154436

Price: $65

Abstract

Background: The occurrence of oxidative stress is an important hallmark of tumorigenesis and the development of cancers, including head and neck squamous cell carcinoma (HNSCC). The purpose of this study was to identify a robust oxidative stress-related prognostic model in HNSCC.

Methods: Oxidative stress genes related to the prognosis of HNSCC were identified through multiple bioinformatics methods.

Results: The expression profile of differential genes related to oxidative stress and functional enrichment analysis were obtained from the HNSCC cohort of The Cancer Genome Atlas (TCGAHNSC). Then, the HNSCC prognostic risk model was constructed of thirteen screened genes through univariate Cox analysis, the least absolute shrinkage and selection operator (LASSO) Cox regression, and multivariate Cox analysis. Kaplan–Meier curve indicated that the low-risk group had a better survival outcome than the high-risk group. The clinical utility of the risk model was validated in the GSE41613 dataset. The risk score was an independent prognostic indicator in the training and validation sets. In addition, the risk score was in a positive correlation with tumor stage, lymph node infiltration, and the status of the primary site. Gene set enrichment analysis (GSEA) illustrated that many biological processes associated with immunity were significantly enriched in the low-risk group of the training cohort.

Conclusion: The oxidative stress-related risk signature was a promising predictor for the prognosis of HNSCC patients, which might assist in making individualized therapy programs.

Keywords: Head and neck squamous cell carcinoma, oxidative stress, prognostic biomarkers, overall survival, risk model, bioinformatics.

Graphical Abstract

[1]
Liu, C.; Yu, Z.; Huang, S.; Zhao, Q.; Sun, Z.; Fletcher, C.; Jiang, Y.; Zhang, D. Combined identification of three miRNAs in serum as ef-fective diagnostic biomarkers for HNSCC. EBioMedicine, 2019, 50, 135-143.
[http://dx.doi.org/10.1016/j.ebiom.2019.11.016] [PMID: 31780396]
[2]
Hayes, T.F.; Benaich, N.; Goldie, S.J.; Sipilä, K.; Ames-Draycott, A.; Cai, W.; Yin, G.; Watt, F.M. Integrative genomic and functional anal-ysis of human oral squamous cell carcinoma cell lines reveals synergistic effects of FAT1 and CASP8 inactivation. Cancer Lett., 2016, 383(1), 106-114.
[http://dx.doi.org/10.1016/j.canlet.2016.09.014] [PMID: 27693639]
[3]
Jou, A.; Hess, J. Epidemiology and molecular biology of head and neck cancer. Oncol. Res. Treat., 2017, 40(6), 328-332.
[http://dx.doi.org/10.1159/000477127] [PMID: 28531899]
[4]
Dequanter, D.; Dok, R.; Nuyts, S. Basal oxidative stress ratio of head and neck squamous cell carcinomas correlates with nodal metastatic spread in patients under therapy. OncoTargets Ther., 2017, 10, 259-263.
[http://dx.doi.org/10.2147/OTT.S118980] [PMID: 28123307]
[5]
Klaunig, J.E. Oxidative stress and cancer. Curr. Pharm. Des., 2018, 24(40), 4771-4778.
[http://dx.doi.org/10.2174/1381612825666190215121712] [PMID: 30767733]
[6]
Zhu, J.; Xiong, Y.; Zhang, Y.; Wen, J.; Cai, N.; Cheng, K.; Liang, H.; Zhang, W. The molecular mechanisms of regulating oxidative stress-induced ferroptosis and therapeutic strategy in tumors. Oxid. Med. Cell. Longev., 2020, 2020, 8810785-8810798.
[http://dx.doi.org/10.1155/2020/8810785] [PMID: 33425217]
[7]
Ma, Z.; Zhang, H.; Lian, M.; Yue, C.; Dong, G.; Jin, Y.; Li, R.; Wan, H.; Wang, R.; Wang, Y.; Zhai, J.; Ma, H.; Feng, L.; Han, J.; Liu, S.; Guo, Y.; Li, J.; Liu, Y.; Fang, J.; Liu, H. SLC7A11, a component of cysteine/glutamate transporter, is a novel biomarker for the diagnosis and prognosis in laryngeal squamous cell carcinoma. Oncol. Rep., 2017, 38(5), 3019-3029.
[http://dx.doi.org/10.3892/or.2017.5976] [PMID: 29048627]
[8]
Zhang, Z.; Lin, E.; Zhuang, H.; Xie, L.; Feng, X.; Liu, J.; Yu, Y. Construction of a novel gene-based model for prognosis prediction of clear cell renal cell carcinoma. Cancer Cell Int., 2020, 20, 27-44.
[http://dx.doi.org/10.1186/s12935-020-1113-6] [PMID: 32002016]
[9]
Lin, Q.G.; Liu, W.; Mo, Y.Z.; Han, J.; Guo, Z.X.; Zheng, W.; Wang, J.W.; Zou, X.B.; Li, A.H.; Han, F. Development of prognostic index based on autophagy-related genes analysis in breast cancer. Aging (Albany NY), 2020, 12(2), 1366-1376.
[http://dx.doi.org/10.18632/aging.102687] [PMID: 31967976]
[10]
Shen, C.; Liu, J.; Wang, J.; Zhong, X.; Dong, D.; Yang, X.; Wang, Y. Development and validation of a prognostic immune-associated gene signature in clear cell renal cell carcinoma. Int. Immunopharmacol., 2020, 81, 106274-106280.
[http://dx.doi.org/10.1016/j.intimp.2020.106274] [PMID: 32044664]
[11]
Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; Mesirov, J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA, 2005, 102(43), 15545-15550.
[http://dx.doi.org/10.1073/pnas.0506580102] [PMID: 16199517]
[12]
Qiu, H.; Hu, X.; He, C.; Yu, B.; Li, Y.; Li, J. Identification and validation of an individualized prognostic signature of bladder cancer based on seven immune related genes. Front. Genet., 2020, 11, 12-23.
[http://dx.doi.org/10.3389/fgene.2020.00012] [PMID: 32117435]
[13]
Liang, J.Y.; Wang, D.S.; Lin, H.C.; Chen, X.X.; Yang, H.; Zheng, Y.; Li, Y.H. A novel ferroptosis-related gene signature for overall surviv-al prediction in patients with hepatocellular carcinoma. Int. J. Biol. Sci., 2020, 16(13), 2430-2441.
[http://dx.doi.org/10.7150/ijbs.45050] [PMID: 32760210]
[14]
Zhu, Z.; Zhou, J.; Xiong, X.; Liu, D.; Zheng, Y.; Ding, X.; Du, Y.; Gu, N.; Wu, Y.; Song, X. Prognostic value of serum liver enzymes in oral and oropharynx squamous cell carcinomas. J. Oral Pathol. Med., 2019, 48(1), 36-42.
[http://dx.doi.org/10.1111/jop.12803] [PMID: 30447114]
[15]
Chandrakiran, C.; Jogy, T.; Patil, S.B. Serum adenosine deaminase levels and human papillomavirus as prognostic and predictive factors for laryngeal and pharyngeal carcinomas. Indian J. Otolaryngol. Head Neck Surg., 2019, 71(Suppl. 1), 522-527.
[http://dx.doi.org/10.1007/s12070-018-1378-4] [PMID: 31742014]
[16]
Kelgandre, D.C.; Pathak, J.; Patel, S.; Ingale, P.; Swain, N. Adenosine deaminase - a novel diagnostic and prognostic biomarker for oral squamous cell carcinoma. Asian Pac. J. Cancer Prev., 2016, 17(4), 1865-1868.
[http://dx.doi.org/10.7314/APJCP.2016.17.4.1865] [PMID: 27221867]
[17]
Ko, S.Y.; Lin, S.C.; Chang, K.W.; Wong, Y.K.; Liu, C.J.; Chi, C.W.; Liu, T.Y. Increased expression of amyloid precursor protein in oral squamous cell carcinoma. Int. J. Cancer, 2004, 111(5), 727-732.
[http://dx.doi.org/10.1002/ijc.20328] [PMID: 15252842]
[18]
Lee, C.H.; Yen, C.Y.; Liu, S.Y.; Chen, C.K.; Chiang, C.F.; Shiah, S.G.; Chen, P.H.; Shieh, Y.S. Axl is a prognostic marker in oral squa-mous cell carcinoma. Ann. Surg. Oncol., 2012, 19(3), S500-S508.
[http://dx.doi.org/10.1245/s10434-011-1985-8] [PMID: 21842265]
[19]
Wu, D.W.; Chuang, C.Y.; Lin, W.L.; Sung, W.W.; Cheng, Y.W.; Lee, H. Paxillin promotes tumor progression and predicts survival and relapse in oral cavity squamous cell carcinoma by microRNA-218 targeting. Carcinogenesis, 2014, 35(8), 1823-1829.
[http://dx.doi.org/10.1093/carcin/bgu102] [PMID: 24894864]
[20]
Xue, K.; Li, J.; Nan, S.; Zhao, X.; Xu, C. Downregulation of LINC00460 decreases STC2 and promotes autophagy of head and neck squamous cell carcinoma by up-regulating microRNA-206. Life Sci., 2019, 231, 116459.
[http://dx.doi.org/10.1016/j.lfs.2019.05.015] [PMID: 31075234]
[21]
Ma, H.F.; Lv, G.X.; Zhang, D.H. MiR-381 mediates the development of head and neck squamous cell carcinoma via targeting STC2. OncoTargets Ther., 2020, 13, 4485-4493.
[http://dx.doi.org/10.2147/OTT.S246289] [PMID: 32547079]
[22]
Wu, Y.T.; Yen, S.L.; Li, C.F.; Chan, T.C.; Chen, T.J.; Lee, S.W.; He, H.L.; Chang, I.W.; Hsing, C.H.; Shiue, Y.L. Overexpression of transi-ent receptor protein cation channel subfamily A member 1, confers an independent prognostic indicator in nasopharyngeal carcinoma. J. Cancer, 2016, 7(10), 1181-1188.
[http://dx.doi.org/10.7150/jca.15326] [PMID: 27390592]
[23]
Chen, Z.; Wu, H.; Huang, S.; Li, W.; Zhang, S.; Zheng, P.; Zhou, X.; Liu, W.; Zhang, D. Expression of BNIP3 and its correlations to hy-poxia-induced autophagy and clinicopathological features in salivary adenoid cystic carcinoma. Cancer Biomark., 2015, 15(4), 467-475.
[http://dx.doi.org/10.3233/CBM-150474] [PMID: 25769455]
[24]
Thongchot, S.; Yongvanit, P.; Loilome, W.; Seubwai, W.; Phunicom, K.; Tassaneeyakul, W.; Pairojkul, C.; Promkotra, W.; Techasen, A.; Namwat, N. High expression of HIF-1α, BNIP3 and PI3KC3: Hypoxia-induced autophagy predicts cholangiocarcinoma survival and me-tastasis. Asian Pac. J. Cancer Prev., 2014, 15(14), 5873-5878.
[http://dx.doi.org/10.7314/APJCP.2014.15.14.5873] [PMID: 25081716]
[25]
Korbecki, J.; Kojder, K.; Barczak, K.; Simińska, D.; Gutowska, I.; Chlubek, D.; Baranowska-Bosiacka, I. Hypoxia alters the expression of CC chemokines and CC chemokine receptors in a tumor-a literature review. Int. J. Mol. Sci., 2020, 21(16), 5647-5678.
[http://dx.doi.org/10.3390/ijms21165647] [PMID: 32781743]
[26]
Mei, Z.; Liu, Y.; Liu, C.; Cui, A.; Liang, Z.; Wang, G.; Peng, H.; Cui, L.; Li, C. Tumour-infiltrating inflammation and prognosis in colorec-tal cancer: Systematic review and meta-analysis. Br. J. Cancer, 2014, 110(6), 1595-1605.
[http://dx.doi.org/10.1038/bjc.2014.46] [PMID: 24504370]
[27]
Li, X.; Sun, S.; Li, N.; Gao, J.; Yu, J.; Zhao, J.; Li, M.; Zhao, Z. High expression of CCR7 predicts lymph node metastasis and good prog-nosis in triple negative breast cancer. Cell. Physiol. Biochem., 2017, 43(2), 531-539.
[http://dx.doi.org/10.1159/000480526] [PMID: 28930757]
[28]
Liu, Y.; Ji, R.; Li, J.; Gu, Q.; Zhao, X.; Sun, T.; Wang, J.; Li, J.; Du, Q.; Sun, B. Correlation effect of EGFR and CXCR4 and CCR7 chemo-kine receptors in predicting breast cancer metastasis and prognosis. J. Exp. Clin. Cancer Res., 2010, 29, 16.
[http://dx.doi.org/10.1186/1756-9966-29-16] [PMID: 20181250]
[29]
Vilorio-Marqués, L.; Martín, V.; Diez-Tascón, C.; González-Sevilla, M.F.; Fernández-Villa, T.; Honrado, E.; Davila-Batista, V.; Molina, A.J. The role of EZH2 in overall survival of colorectal cancer: A meta-analysis. Sci. Rep., 2017, 7(1), 13806-13813.
[http://dx.doi.org/10.1038/s41598-017-13670-z] [PMID: 29061982]
[30]
Xu, J.; Wang, Z.; Lu, W.; Jiang, H.; Lu, J.; Qiu, J.; Ye, G. EZH2 promotes gastric cancer cells proliferation by repressing p21 expression. Pathol. Res. Pract., 2019, 215(6), 152374-152379.
[http://dx.doi.org/10.1016/j.prp.2019.03.003] [PMID: 30952377]
[31]
Zakrzewska, M.; Zakrzewski, K.; Grešner, S.M.; Piaskowski, S.; Zalewska-Szewczyk, B.; Liberski, P.P. Polycomb genes expression as a predictor of poor clinical outcome in children with medulloblastoma. Childs Nerv. Syst., 2011, 27(1), 79-86.
[http://dx.doi.org/10.1007/s00381-010-1260-5] [PMID: 20717685]
[32]
Jo, S.; Lee, H.; Kim, S.; Hwang, E.M.; Park, J.Y.; Kang, S.S.; Chung, H. Inhibition of PCGF2 enhances granulocytic differentiation of acute promyelocytic leukemia cell line HL-60 via induction of HOXA7. Biochem. Biophys. Res. Commun., 2011, 416(1-2), 86-91.
[http://dx.doi.org/10.1016/j.bbrc.2011.10.152] [PMID: 22085718]
[33]
Guo, B.H.; Zhang, X.; Zhang, H.Z.; Lin, H.L.; Feng, Y.; Shao, J.Y.; Huang, W.L.; Kung, H.F.; Zeng, M.S. Low expression of Mel-18 pre-dicts poor prognosis in patients with breast cancer. Ann. Oncol., 2010, 21(12), 2361-2369.
[http://dx.doi.org/10.1093/annonc/mdq241] [PMID: 20444850]
[34]
Chen, G.; Li, H.; Niu, X.; Li, G.; Han, N.; Li, X.; Li, G.; Liu, Y.; Sun, G.; Wang, Y.; Li, Z.; Li, Q. Identification of key genes associated with colorectal cancer based on the transcriptional network. Pathol. Oncol. Res., 2015, 21(3), 719-725.
[http://dx.doi.org/10.1007/s12253-014-9880-9] [PMID: 25613817]
[35]
Zhu, L.; Dong, L.; Feng, M.; Yang, F.; Jiang, W.; Huang, Z.; Liu, F.; Wang, L.; Wang, G.; Li, Q. Profiles of autophagy-related genes in esophageal adenocarcinoma. BMC Cancer, 2020, 20(1), 943-955.
[http://dx.doi.org/10.1186/s12885-020-07416-w] [PMID: 32998713]
[36]
Bisheshar, S.K.; De Ruiter, E.J.; Devriese, L.A.; Willems, S.M. The prognostic role of NK cells and their ligands in squamous cell carci-noma of the head and neck: A systematic review and meta-analysis. OncoImmunology, 2020, 9(1), 1747345-1747354.
[http://dx.doi.org/10.1080/2162402X.2020.1747345] [PMID: 32363116]
[37]
Hladíková, K.; Koucký, V.; Bouček, J.; Laco, J.; Grega, M.; Hodek, M.; Zábrodský, M.; Vošmik, M.; Rozkošová, K.; Vošmiková, H.; Čelakovský, P.; Chrobok, V.; Ryška, A.; Špíšek, R.; Fialová, A. Tumor-infiltrating B cells affect the progression of oropharyngeal squa-mous cell carcinoma via cell-to-cell interactions with CD8+ T cells. J. Immunother. Cancer, 2019, 7(1), 261-276.
[http://dx.doi.org/10.1186/s40425-019-0726-6] [PMID: 31623665]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy