Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Role of Lipopolysaccharides in Potential Applications of Nanocarrier Systems

Author(s): Pravin Shende* and Shubham Gupta

Volume 28, Issue 12, 2022

Published on: 03 January, 2022

Page: [1000 - 1010] Pages: 11

DOI: 10.2174/1381612827666211124094302

Price: $65

Abstract

Background: Lipopolysaccharides (LPS) are considered the main molecular component in the outer membrane of gram-negative bacteria. The LPS molecule in the bacterial cell wall acts as a primary physical barrier and protects gram-negative bacteria from the surrounding environment. LPS (endotoxins) show immunomodulatory therapeutic properties as well as toxicity to the host cell, along with several potential applications.

Objective: This review article aims to describe the recent developments of lipopolysaccharides in nanocarrier systems for various applications such as vaccination, cancer chemotherapy, and immune stimulants action. Different nanocarriers like cubosomes, niosomes, dendrimers, and metal nanoparticles used in the delivery of actives are employed to decorate lipopolysaccharide molecules superficially.

Methods: A narrative review of all the relevant papers known to the author was conducted.

Conclusion: Commercially available lipid nanoparticles contribute to many advances as promising nanocarriers in cancer therapy and are used as a vaccine adjuvant by improving the immune response due to their properties such as size, shape, biocompatibility, and biodegradability. In contrast, lipopolysaccharide-decorated nanoparticles change the host’s tolerability and increase the effectiveness of molecules in cancer immunotherapy. These nanoconjugate systems enhance overall immunogenic response and effectiveness in vaccine immunotherapy and targeted therapy, not only limited to human applications but also for poultry and aquaculture. Newer opportunities include the use of lipopolysaccharides for the treatment and management of diseases with unique characteristics like the presence of lipoprotein that acts as an alternative for bacterial infections over conventional dosage forms.

Keywords: Lipopolysaccharides, nano-conjugated vaccines, OMVs vaccines, bacterial vaccines, submicron vaccines, prophylactic vaccines, cancer immunotherapy.

Next »
[1]
Rosenfeld Y, Shai Y. “Lipopolysaccharide (Endotoxin) -host defence antibacterial peptides interactions : Role in bacterial resistance and prevention of sepsis,” Biochimica et biophysica acta (BBA)-. Biomembranes 2006; 1758: 1513-22.
[http://dx.doi.org/10.1016/j.bbamem.2006.05.017] [PMID: 16854372]
[2]
Zhou F, Ciric B, Zhang GX, Rostami A. Immunotherapy using lipopolysaccharide-stimulated bone marrow-derived dendritic cells to treat experimental autoimmune encephalomyelitis. Clin Exp Immunol 2014; 178(3): 447-58.
[http://dx.doi.org/10.1111/cei.12440] [PMID: 25138204]
[3]
Maldonado RF, Isabel S, Valvano MA. Lipopolysaccharide modification in gram-negative bacteria during chronic infection. FEMS microbiology reviews 2016; 40(4): 480-93.
[http://dx.doi.org/10.1093/femsre/fuw007]
[4]
Rittig MG, Kaufmann A, Robins A, et al. Smooth and rough lipopolysaccharide phenotypes of brucella induce different intracellular trafficking and cytokine/chemokine release in human monocytes. J Leukoc Biol 2003; 74(6): 1045-55.
[http://dx.doi.org/10.1189/jlb.0103015] [PMID: 12960272]
[5]
Vanhaecke E, Pijck J, Vuye A. Endotoxin testing. J Clin Pharm Ther 1987; 12(4): 223-35.
[http://dx.doi.org/10.1111/j.1365-2710.1987.tb00531.x] [PMID: 3305530]
[6]
Arenas J. The role of bacterial lipopolysaccharides as immune modulator in vaccine and drug development. Endocr Metabol Disord 2012; 12(3): 221-35.
[http://dx.doi.org/10.2174/187153012802002884] [PMID: 22385116]
[7]
Zhang L, Yang W, Hu C, Wang Q, Wu Y. Properties and applications of nanoparticle/microparticle conveyors with adjuvant characteristics suitable for oral vaccination. Int J Nanomedicine 2018; 13: 2973-87.
[http://dx.doi.org/10.2147/IJN.S154743] [PMID: 29861631]
[8]
Rylander R. Endotoxin in the environment-exposure and effects. J Endotoxin Res 2002; 8(4): 241-52.
[http://dx.doi.org/10.1179/096805102125000452] [PMID: 12230914]
[9]
Shetab Boushehri MA, Abdel-Mottaleb MMA, Béduneau A, Pellequer Y, Lamprecht A. A nanoparticle-based approach to improve the outcome of cancer active immunotherapy with lipopolysaccharides. Drug Deliv 2018; 25(1): 1414-25.
[http://dx.doi.org/10.1080/10717544.2018.1469684] [PMID: 29902933]
[10]
Goto S, Sakai S, Kera J, Suma Y, Soma GI, Takeuchi S. Intradermal administration of lipopolysaccharide in treatment of human cancer. Cancer Immunol Immunother 1996; 42(4): 255-61.
[http://dx.doi.org/10.1007/s002620050279] [PMID: 8665574]
[11]
Hanson PJ, Moran AP, Butler K. Paracellular permeability is increased by basal lipopolysaccharide in a primary culture of colonic epithelial cells; an effect prevented by an activator of Toll-like receptor-2. Innate Immun 2011; 17(3): 269-82.
[http://dx.doi.org/10.1177/1753425910367813] [PMID: 20472611]
[12]
Schultz C. Lipopolysaccharide, structure and biological effects. Gen Intern Med Clin Innov 2018; 3(1): 1-2.
[http://dx.doi.org/10.15761/GIMCI.1000152]
[13]
Lam JS, Taylor VL, Islam ST, Hao Y, Kocíncová D. Genetic and functional diversity of Pseudomonas aeruginosa lipopolysaccha- ride. Front Microbiol 2011; 2: 118.
[http://dx.doi.org/10.3389/fmicb.2011.00118] [PMID: 21687428]
[14]
Gunn JS. Bacterial modification of LPS and resistance to antimicrobial peptides. J Endotoxin Res 2001; 7(1): 57-62.
[http://dx.doi.org/10.1177/09680519010070011001] [PMID: 11521084]
[15]
Khan MM, Ernst O, Sun J, et al. Mass spectrometry-based structural analysis and systems immunoproteomics strategies for deciphering the host response to endotoxin. J Mol Biol 2018; 430(17): 2641-60.
[http://dx.doi.org/10.1016/j.jmb.2018.06.032] [PMID: 29949751]
[16]
Stereochei I, Deteluiinatiok IICAL, Hershbehger C, Bixkley S. Chemistry and metabolism of 3-ueoxy-o-rnalznooctralosonic acid. JOUR 1968; (7): 1578-85.
[17]
Erridge C, Bennett-Guerrero E, Poxton IR. Structure and function of lipopolysaccharides. Microbes Infect 2002; 4(8): 837-51.
[http://dx.doi.org/10.1016/S1286-4579(02)01604-0] [PMID: 12270731]
[18]
Ebbensgaard A, Mordhorst H, Aarestrup FM, Hansen EB. The role of outer membrane proteins and lipopolysaccharides for the sensitivity of Escherichia coli to antimicrobial peptides. Front Microbiol 2018; 9: 2153.
[http://dx.doi.org/10.3389/fmicb.2018.02153] [PMID: 30245684]
[19]
Heinrichs DE, Yethon JA, Whitfield C. Molecular basis for structural diversity in the core regions of the lipopolysaccharides of Escherichia coli and Salmonella enterica. Mol Microbiol 1998; 30(2): 221-32.
[http://dx.doi.org/10.1046/j.1365-2958.1998.01063.x] [PMID: 9791168]
[20]
Caroff M, Novikov A. LPS Structure, Function, and Heterogeneity. In: Williams KL, Ed. Endotoxin Detection and Control in Pharma, Limulus, and Mammalian Systems. Cham: Springer International Publishing 2019; pp. 53-93.
[http://dx.doi.org/10.1007/978-3-030-17148-3_3]
[21]
Jan AT. Outer membrane vesicles (omvs) of gram-negative bacteria: A perspective update. Front Microbiol 2017; 8: 1053.
[http://dx.doi.org/10.3389/fmicb.2017.01053] [PMID: 28649237]
[22]
Schwechheimer C, Kuehn MJ. Outer-membrane vesicles from gram-negative bacteria: Biogenesis and functions. Nat Rev Microbiol 2015; 13(10): 605-19.
[http://dx.doi.org/10.1038/nrmicro3525] [PMID: 26373371]
[23]
Gerritzen MJH, Martens DE, Wijffels RH, van der Pol L, Stork M. Bioengineering bacterial outer membrane vesicles as vaccine platform. Biotechnol Adv 2017; 35(5): 565-74.
[http://dx.doi.org/10.1016/j.biotechadv.2017.05.003] [PMID: 28522212]
[24]
Tan K, Li R, Huang X, Liu Q. Outer membrane vesicles: current status and future direction of these novel vaccine adjuvants. Front Microbiol 2018; 9(April): 783.
[http://dx.doi.org/10.3389/fmicb.2018.00783] [PMID: 29755431]
[25]
Torres-sangiao E, Holban AM, Gestal MC. Advanced nanobiomaterials : vaccines, diagnosis and treatment of infectious diseases. Molecules 21(7): 1-22.
[http://dx.doi.org/10.3390/molecules21070867] [PMID: 27376260]
[26]
Ellis TN, Kuehn MJ. Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev 2010; 74(1): 81-94.
[http://dx.doi.org/10.1128/MMBR.00031-09] [PMID: 20197500]
[27]
Acevedo R, Fernández S, Zayas C, et al. Bacterial outer membrane vesicles and vaccine applications. Front Immunol 2014; 5: 121.
[http://dx.doi.org/10.3389/fimmu.2014.00121] [PMID: 24715891]
[28]
Zhang G, Meredith TC, Kahne D. On the essentiality of lipopolysaccharide to gram-negative bacteria. Curr Opin Microbiol 2013; 16(6): 779-85.
[http://dx.doi.org/10.1016/j.mib.2013.09.007] [PMID: 24148302]
[29]
Chan A, Mcintire FC, Sievert HW, Barlow GH, Finley RA, Lce AY. Chemical, physical, biological properties of a lipopolysaccharide from Escherichia coli K-235. Biochemistry 1962; 6(8): 2363-72.
[http://dx.doi.org/10.1021/bi00860a011] [PMID: 4867999]
[30]
Kabanov DS, Prokhorenko IR. Relationships between physicochemical characteristics and biological activity of lipopolysaccharides. Biochem Suppl Ser A: Membr Cell Biol 2011; 5(4): 293-309.
[http://dx.doi.org/10.1134/S1990747811040064]
[31]
Watanabe M, Takimoto H, Kumazawa Y, Amano K. Biological properties of lipopolysaccharides from Bordetella species. J Gen Microbiol 1990; 136(3): 489-93.
[http://dx.doi.org/10.1099/00221287-136-3-489] [PMID: 2202781]
[32]
Luchi M, Morrison DC. Comparable endotoxic properties of lipopolysaccharides are manifest in diverse clinical isolates of gram-negative bacteria. Infect Immun 2000; 68(4): 1899-904.
[http://dx.doi.org/10.1128/IAI.68.4.1899-1904.2000] [PMID: 10722580]
[33]
Todar K. Todar’s online textbook of bacteriology. Available from: http://www.textbookofbacteriology.net/.
[34]
Rafiqi SI, Kumar S, Zehra A, Kumar D. Nanovaccinology: Dawn of biomimetic vaccine carriers J Ento Zoology Stud 2017; 5(2): 795-802.
[35]
Nakhla AN, Banoub JH, Hernandez-Borrell J, Keough KMW. Incorporation of the lipopolysaccharide and polysaccharide from aeromonas salmonicida into liposomes. J Liposome Res 1996; 6(1): 141-54.
[http://dx.doi.org/10.3109/08982109609037209]
[36]
Abbasi E, Aval SF, Akbarzadeh A, et al. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett 2014; 9(1): 247.
[http://dx.doi.org/10.1186/1556-276X-9-247] [PMID: 24994950]
[37]
Heegaard PMH, Boas U, Sorensen NS. Dendrimers for vaccine and immunostimulatory uses. A review. Bioconjug Chem 2010; 21(3): 405-18.
[http://dx.doi.org/10.1021/bc900290d] [PMID: 19886668]
[38]
Shetab Boushehri MA, Lamprecht A. Challenges of using lipopolysaccharides for cancer immunotherapy and potential delivery-based solutions thereto. Ther Deliv 2019; 10(3): 165-87.
[http://dx.doi.org/10.4155/tde-2018-0076] [PMID: 30909855]
[39]
Li Y, Shi Z, Radauer-Preiml I, et al. Bacterial endotoxin (lipopolysaccharide) binds to the surface of gold nanoparticles, interferes with biocorona formation and induces human monocyte inflammatory activation. Nanotoxicology 2017; 11(9-10): 1157-75.
[http://dx.doi.org/10.1080/17435390.2017.1401142] [PMID: 29192556]
[40]
Marques Neto LM, Kipnis A, Junqueira-Kipnis AP, Junqueira-kipnis AP, Junqueira-kipnis AP. Role of metallic nanoparticles in vaccinology : implications for infectious disease vaccine development. Front Immunol 2017; 8(March): 239.
[http://dx.doi.org/10.3389/fimmu.2017.00239] [PMID: 28337198]
[41]
Piazza M, Colombo M, Zanoni I, et al. Uniform lipopolysaccharide (LPS) -loaded magnetic nanoparticles for the investigation of LPS – TLR4.Angewandte Chemie. 2011; 50: pp. (3)622-.
[http://dx.doi.org/10.1002/anie.201004655] [PMID: 21226138]
[42]
Liu Z, Luo L, Zheng S, et al. Cubosome nanoparticles potentiate immune properties of immunostimulants. Int J Nanomedicine 2016; 11: 3571-83.
[http://dx.doi.org/10.2147/IJN.S110406] [PMID: 27536099]
[43]
Rizwan SB, McBurney WT, Young K, et al. Cubosomes containing the adjuvants imiquimod and monophosphoryl lipid A stimulate robust cellular and humoral immune responses. J Control Release 2013; 165(1): 16-21.
[http://dx.doi.org/10.1016/j.jconrel.2012.10.020] [PMID: 23142776]
[44]
Kong IG, Sato A, Yuki Y, et al. Nanogel-based PspA intranasal vaccine prevents invasive disease and nasal colonization by Streptococcus pneumoniae. Infect Immun 2013; 81(5): 1625-34.
[http://dx.doi.org/10.1128/IAI.00240-13] [PMID: 23460513]
[45]
Scheinberg DA, McDevitt MR, Dao T, Mulvey JJ, Feinberg E, Alidori S. Carbon nanotubes as vaccine scaffolds. Adv Drug Deliv Rev 2013; 65(15): 2016-22.
[http://dx.doi.org/10.1016/j.addr.2013.07.013] [PMID: 23899863]
[46]
He H, Pham-huy LA, Dramou P, Xiao D, Zuo P, Pham-huy C. Carbon nanotubes: applications in pharmacy and medicine. Biomed Res Int 2013; 2013: 578290.
[http://dx.doi.org/10.1155/2013/578290] [PMID: 24195076]
[47]
Data RUSA, Examiner P, Housel JC. United States particle diameter (NM) 19, 1999.
[48]
Gómez S, Gamazo C, San Roman B, et al. Allergen immunotherapy with nanoparticles containing lipopolysaccharide from Brucella ovis. Eur J Pharm Biopharm 2008; 70(3): 711-7.
[http://dx.doi.org/10.1016/j.ejpb.2008.05.016] [PMID: 18582571]
[49]
Pali-Schöll I, DeBoer DJ, Alessandri C, Seida AA, Mueller RS, Jensen-Jarolim E. Formulations for allergen immunotherapy in human and veterinary patients: New candidates on the horizon. Front Immunol 2020; 11: 1697.
[http://dx.doi.org/10.3389/fimmu.2020.01697] [PMID: 32849594]
[50]
Ferreira SA, Gama FM, Vilanova M. Polymeric nanogels as vaccine delivery systems. Nanomedicine 2013; 9(2): 159-73.
[http://dx.doi.org/10.1016/j.nano.2012.06.001] [PMID: 22772049]
[51]
Killeen SD, Wang JH, Andrews EJ, Redmond HP. Bacterial endotoxin enhances colorectal cancer cell adhesion and invasion through TLR-4 and NF-kappaB-dependent activation of the urokinase plasminogen activator system. Br J Cancer 2009; 100(10): 1589-602.
[http://dx.doi.org/10.1038/sj.bjc.6604942] [PMID: 19436306]
[52]
Chaurasia S, Patel RR, Chaubey P, Kumar N, Khan G, Mishra B. Lipopolysaccharide based oral nanocarriers for the improvement of bioavailability and anticancer efficacy of curcumin. Carbohydr Polym 2015; 130: 9-17.
[http://dx.doi.org/10.1016/j.carbpol.2015.04.062] [PMID: 26076595]
[53]
Song W, Tiruthani K, Wang Y, et al. Trapping of lipopolysaccharide to promote immunotherapy against colorectal cancer and attenuate liver metastasis. Adv Mater 2018; 30(52): e1805007.
[http://dx.doi.org/10.1002/adma.201805007] [PMID: 30387230]
[54]
Aldayel AM, Naguib YW, O’Mary HL, et al. Acid-Sensitive sheddable pegylated PLGA nanoparticles increase the delivery of tnf-α sirna in chronic inflammation sites. Mol Ther Nucleic Acids 2016; 5(7): e340.
[http://dx.doi.org/10.1038/mtna.2016.39] [PMID: 27434685]
[55]
Dong K, Li Z, Sun H, Ju E, Ren J, Qu X. Pathogen-mimicking nanocomplexes : Self-stimulating oxidative stress in tumor microenvironment for. Biochem Pharmacol 2017; 20(7): 346-53.
[http://dx.doi.org/10.1016/j.mattod.2017.06.003]
[56]
Ruyra A, Cano-Sarabia M, Mackenzie SA, Maspoch D, Roher N. A novel liposome-based nanocarrier loaded with an LPS-dsRNA cocktail for fish innate immune system stimulation. PLoS One 2013; 8(10): e76338.
[http://dx.doi.org/10.1371/journal.pone.0076338] [PMID: 24204616]
[57]
Nile RSH, Darweesh MF, Al-rufaie MM. Liposomal-lipopolysaccharide vaccine extracted from Proteus mirabilis induces moderate TLR4 and CD14 production. Curr Issues Pharm Med Sci 2019; 32(2): 81-6.
[http://dx.doi.org/10.2478/cipms-2019-0016]
[58]
Carabineiro SAC. Applications of gold nanoparticles in nanomedicine: Recent advances in vaccines. Molecules 2017; 22(5): 857.
[http://dx.doi.org/10.3390/molecules22050857] [PMID: 28531163]
[59]
Shen L, Higuchi T, Tubbe I, et al. A trifunctional dextran-based nanovaccine targets and activates murine dendritic cells, and induces potent cellular and humoral immune responses in vivo. PLoS One 2013; 8(12): e80904.
[http://dx.doi.org/10.1371/journal.pone.0080904] [PMID: 24339889]
[60]
Chhibber S, Wadhwa S, Yadav V. Protective role of liposome incorporated lipopolysaccharide antigen of Klebsiella pneumoniae in a rat model of lobar pneumonia. Jpn J Infect Dis 2004; 57(4): 150-5.
[PMID: 15329446]
[61]
Journal AI, Fasihi-ramandi M, Ghobadi-ghadikolaee H, Ahmadi S, Taheri RA, Ahmadi K. Vibrio cholerae lipopolysaccharide loaded chitosan nanoparticle could save life by induction of specific immunoglobulin isotype. Artif Cells Nanomed Biotechnol 2018; 46(1): 56-61.
[http://dx.doi.org/10.1080/21691401.2017.1290646] [PMID: 28278575]
[62]
Dissanayake DRA, Wijewardana TG, Gunawardena GA, Poxton IR. Potential use of a liposome-encapsulated mixture of lipopolysaccharide core types (R1, R2, R3 and R4) of Escherichia coli in controlling colisepticaemia in chickens. J Med Microbiol 2010; 59(Pt 1): 100-7.
[http://dx.doi.org/10.1099/jmm.0.014720-0] [PMID: 19797465]
[63]
Wong PT, Tang S, Mukherjee J, et al. Light-controlled active release of photocaged ciprofloxacin for lipopolysaccharide-targeted drug delivery using dendrimer conjugates. Chem Commun (Camb) 2016; 52(68): 10357-60.
[http://dx.doi.org/10.1039/C6CC05179K] [PMID: 27476878]
[64]
Black CE, Zhou E, DeAngelo CM, et al. Cyanine nanocages activated by near-infrared light for the targeted treatment of traumatic brain injury. Front Chem 2020; 8: 769.
[http://dx.doi.org/10.3389/fchem.2020.00769] [PMID: 33062635]
[65]
Gregory AE, Judy BM, Qazi O, et al. A gold nanoparticle-linked glycoconjugate vaccine against Burkholderia mallei. Nanomedicine 2015; 11(2): 447-56.
[http://dx.doi.org/10.1016/j.nano.2014.08.005] [PMID: 25194998]
[66]
Torres AG, Gregory AE, Hatcher CL, et al. Protection of non-human primates against glanders with a gold nanoparticle glycoconjugate vaccine. Vaccine 2015; 33(5): 686-92.
[http://dx.doi.org/10.1016/j.vaccine.2014.11.057] [PMID: 25533326]
[67]
Bennett-guerrero E, McIntosh TJ, Barclay GR, et al. Preparation and preclinical evaluation of a novel liposomal complete-core lipopolysaccharide vaccine. Infect Immun 2000; 68(11): 6202-8.
[http://dx.doi.org/10.1128/IAI.68.11.6202-6208.2000] [PMID: 11035726]
[68]
Ghiani CA, Mattan NS, Nobuta H, et al. Early effects of lipopolysaccharide-induced inflammation on foetal brain development in rat. ASN Neuro 2011; 3(4): 233-45.
[http://dx.doi.org/10.1042/AN20110027] [PMID: 22007738]
[69]
Lee JW, Lee YK, Yuk DY, et al. Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J Neuroinflammation 2008; 5: 37.
[http://dx.doi.org/10.1186/1742-2094-5-37] [PMID: 18759972]
[70]
Vij N, Min T, Bodas M, Gorde A, Roy I. Neutrophil targeted nano-drug delivery system for chronic obstructive lung diseases. Nanomedicine 2016; 12(8): 2415-27.
[http://dx.doi.org/10.1016/j.nano.2016.06.008] [PMID: 27381067]
[71]
Chiu TW, Peng CJ, Chen MC, et al. Constructing conjugate vaccine against Salmonella typhimurium using lipid-A free lipopolysaccharide. J Biomed Sci 2020; 27(1): 89.
[http://dx.doi.org/10.1186/s12929-020-00681-8] [PMID: 32831077]
[72]
Alving CR, Peachman KK, Matyas GR, Rao M, Beck Z. Army Liposome formulation (ALF) family of vaccine adjuvants. Expert Rev Vaccines 2020; 19(3): 279-92.
[http://dx.doi.org/10.1080/14760584.2020.1745636] [PMID: 32228108]
[73]
Sidhu-Muñoz RS, Sancho P, Cloeckaert A, et al. Characterization of cell envelope multiple mutants of Brucella ovis and assessment in mice of their vaccine potential. Front Microbiol 2018; 9: 2230.
[http://dx.doi.org/10.3389/fmicb.2018.02230] [PMID: 30294312]
[74]
Shende P, Waghchaure M. Combined vaccines for prophylaxis of infectious conditions. Artif Cells Nanomed Biotechnol 2019; 47(1): 696-705.
[http://dx.doi.org/10.1080/21691401.2019.1576709] [PMID: 30829068]
[75]
Lumsden JM, Pichyangkul S, Srichairatanakul U, et al. Evaluation of the safety and immunogenicity in rhesus monkeys of a recombinant malaria vaccine for plasmodium vivax with a synthetic toll- like receptor 4 agonist formulated in an emulsion. Infect Immun 2011; 79(9): 3492-500.
[http://dx.doi.org/10.1128/IAI.05257-11] [PMID: 21690242]
[76]
Salman AM, Montoya-Díaz E, West H, et al. Rational development of a protective P. vivax vaccine evaluated with transgenic rodent parasite challenge models. Sci Rep 2017; 7: 46482.
[http://dx.doi.org/10.1038/srep46482] [PMID: 28417968]
[77]
Counoupas C, Pinto R, Nagalingam G, Britton WJ, Petrovsky N, Triccas JA. Delta inulin-based adjuvants promote the generation of polyfunctional CD4+ T cell responses and protection against Mycobacterium tuberculosis infection. Sci Rep 2017; 7(1): 8582.
[http://dx.doi.org/10.1038/s41598-017-09119-y] [PMID: 28819247]
[78]
Kim M, Yeon J, Shon Y, Kim G. ScienceDirect nanotechnology and vaccine development. Asian J Pharm Sci 2014; 9(5): 227-35.
[http://dx.doi.org/10.1016/j.ajps.2014.06.002]
[79]
Roy A, Singh MS, Upadhyay P, Bhaskar S. Combined chemo-immunotherapy as a prospective strategy to combat cancer: A nanoparticle based approach. Mol Pharm 2010; 7(5): 1778-88.
[http://dx.doi.org/10.1021/mp100153r] [PMID: 20822093]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy