Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Lobaplatin Induces Pyroptosis in Cervical Cancer Cells via the Caspase-3/GSDME Pathway

Author(s): Jie Chen , Lili Ge , Xiaoyan Shi, Juan Liu, Hongjie Ruan, Dou Heng and Chunping Ye*

Volume 22, Issue 11, 2022

Published on: 11 January, 2022

Page: [2091 - 2097] Pages: 7

DOI: 10.2174/1871520621666211018100532

Price: $65

Abstract

Background: Increasing evidence shows that GSDME is involved in tumor chemotherapy. Lobaplatin is an important chemotherapy drug for the treatment of cervical cancer. However, the exact mechanism of lobaplatin in the treatment of cervical cancer remains unclear.

Objective: In this study, whether GSDME is a new mechanism of lobaplatin in the treatment of cervical cancer has been explored.

Methods: Cell pyroptosis was measured by Cell Counting Kit-8 and flow cytometry analyses. Western blot analysis was used to check proteins expression.

Results: The cell viability was significantly decreased by lobaplatin treatment. Compared with the control group, the percentage of pyroptosis (PI and Annexin-V double-positive cells) increased after lobaplatin treatment. In addition, lobaplatin induced caspase-3 activation and GSDME cleavage. z-DEVD, a specific inhibitor of caspase-3, reduced lobaplatin-mediated GSDME cleavage and concurrently inhibited pyroptosis. More importantly, GSDME deficiency obviously reduced lobaplatin-induced pyroptosis.

Conclusion: These data demonstrate that caspase-3/GSDME axis contributed to the lobaplatin-mediated pyroptosis in cervical cancer cells. This finding indicates that GSDME-mediated pyroptosis is a new mechanism for lobaplatin to kill tumor cells and suggests that the caspase-3/GSDME pathway offers new insights into cancer chemotherapy.

Keywords: GSDME, caspase-3, pyroptosis, lobaplatin, cervical cancer, pyroptosis.

Graphical Abstract

[1]
Cea García, J.; Rodríguez Jiménez, I.; Ríos-Pena, L.; Márquez Mareaver, F.; Rubio Rodríguez, M.D.C. Incidence and univariate models for lymphatic drainage disorders following management for cervical cancer. J. Obstet. Gynaecol. Res., 2021, 47(1), 343-351.
[http://dx.doi.org/10.1111/jog.14530] [PMID: 33191618]
[2]
Maguire, P.J.; Sobota, A.; Mulholland, D.; Ryan, J.M.; Gleeson, N. Incidence, management, and sequelae of ureteric obstruction in women with cervical cancer. Support. Care Cancer, 2020, 28(2), 725-730.
[http://dx.doi.org/10.1007/s00520-019-04851-9] [PMID: 31129761]
[3]
Putri, N.Q.; Permata, T.B.M.; Wulandari, N.A. Handoko; Nuryadi, E.; Purwoto, G.; Gondhowiardjo, S.A. Relationship of adherence to cervical cancer treatment guideline towards patients’ five-year survival: Systematic review of follow-up trials. Cancer Manag. Res., 2020, 12, 12649-12655.
[http://dx.doi.org/10.2147/CMAR.S267824] [PMID: 33328762]
[4]
Klyuchko, K.O.; Gargin, V.V. Influence of neoadjuvant chemoradiotherapy for locally advanced cervical cancer. Pol. Merkuriusz Lek., 2020, 48(288), 406-409.
[PMID: 33387427]
[5]
Zhang, Y.; Li, B.; Wang, Y.; Liu, S.; Wang, H. Paclitaxel plus platinum neoadjuvant chemotherapy followed by surgery versus primary surgery in locally advanced cervical cancer-A propensity score matching analysis. Front. Oncol., 2020, 10, 604308.
[http://dx.doi.org/10.3389/fonc.2020.604308] [PMID: 33365272]
[6]
de Foucher, T.; Hennebert, C.; Dabi, Y.; Ouldamer, L.; Lavoué, V.; Dion, L.; Canlorbe, G.; Bolze, P.A.; Golfier, F.; Akladios, C.; Lecointre, L.; Kerbage, Y.; Collinet, P.; Bricou, A.; Carcopino, X.; Huchon, C.; Raimond, E.; Graesslin, O.; Owen, C.; Touboul, C.; Ballester, M.; Darai, E.; Bendifallah, S. Recurrence pattern of cervical cancer based on the platinum sensitivity concept: A multi-institutional study from the FRANCOGYN group. J. Clin. Med., 2020, 9(11), E3646.
[http://dx.doi.org/10.3390/jcm9113646] [PMID: 33198384]
[7]
Venkatas, J.; Singh, M. Cervical cancer: a meta-analysis, therapy and future of nanomedicine. Ecancermedicalscience, 2020, 14, 1111.
[PMID: 33144879]
[8]
Wang, L.; Qin, X.; Liang, J.; Ge, P. Induction of pyroptosis: A promising strategy for cancer treatment. Front. Oncol., 2021, 11, 635774.
[http://dx.doi.org/10.3389/fonc.2021.635774] [PMID: 33718226]
[9]
Blasco, M.T.; Gomis, R.R. PD-L1 controls cancer pyroptosis. Nat. Cell Biol., 2020, 22(10), 1157-1159.
[http://dx.doi.org/10.1038/s41556-020-00582-w] [PMID: 32943765]
[10]
Fang, Y.; Tian, S.; Pan, Y.; Li, W.; Wang, Q.; Tang, Y.; Yu, T.; Wu, X.; Shi, Y.; Ma, P.; Shu, Y. Pyroptosis: A new frontier in cancer. Biomed. Pharmacother., 2020, 121, 109595.
[http://dx.doi.org/10.1016/j.biopha.2019.109595] [PMID: 31710896]
[11]
He, B.; Nie, Q.; Wang, F.; Han, Y.; Yang, B.; Sun, M.; Fan, X.; Ye, Z.; Liu, P.; Wen, J. Role of pyroptosis in atherosclerosis and its therapeutic implications. J. Cell. Physiol., 2021, 236(10), 7159-7175.
[http://dx.doi.org/10.1002/jcp.30366] [PMID: 33755211]
[12]
Tan, C.C.; Zhang, J.G.; Tan, M.S.; Chen, H.; Meng, D.W.; Jiang, T.; Meng, X.F.; Li, Y.; Sun, Z.; Li, M.M.; Yu, J.T.; Tan, L. NLRP1 inflammasome is activated in patients with medial temporal lobe epilepsy and contributes to neuronal pyroptosis in amygdala kindling-induced rat model. J. Neuroinflammation, 2015, 12, 18.
[http://dx.doi.org/10.1186/s12974-014-0233-0] [PMID: 25626361]
[13]
Cheng, L.; Zhang, W. DJ-1 affects oxidative stress and pyroptosis in hippocampal neurons of Alzheimer’s disease mouse model by regulating the Nrf2 pathway. Exp. Ther. Med., 2021, 21(6), 557.
[http://dx.doi.org/10.3892/etm.2021.9989] [PMID: 33850529]
[14]
Chen, J.; Peng, R.; Niu, Z.; Zhou, H.; Kang, C. Betulinic acid enhanced the chemical sensitivity of esophageal cancer cells to cisplatin by inducing cell pyroptosis and reducing cell stemness. Ann. Palliat. Med., 2020, 9(4), 1912-1920.
[http://dx.doi.org/10.21037/apm-20-867] [PMID: 32575994]
[15]
Jiang, M.; Qi, L.; Li, L.; Li, Y. The caspase-3/GSDME signal pathway as a switch between apoptosis and pyroptosis in cancer. Cell Death Discov., 2020, 6, 112.
[http://dx.doi.org/10.1038/s41420-020-00349-0] [PMID: 33133646]
[16]
De Schutter, E.; Croes, L.; Ibrahim, J.; Pauwels, P.; Op de Beeck, K.; Vandenabeele, P.; Van Camp, G. GSDME and its role in cancer: From behind the scenes to the front of the stage. Int. J. Cancer, 2020.
[PMID: 33186472]
[17]
Booth, K.T.; Azaiez, H.; Smith, R.J.H. DFNA5 (GSDME) c.991-15_991-13delTTC: Founder mutation or mutational hotspot? Int. J. Mol. Sci., 2020, 21(11), E3951.
[http://dx.doi.org/10.3390/ijms21113951] [PMID: 32486382]
[18]
Mai, F.Y.; He, P.; Ye, J.Z.; Xu, L.H.; Ouyang, D.Y.; Li, C.G.; Zeng, Q.Z.; Zeng, C.Y.; Zhang, C.C.; He, X.H.; Hu, B. Caspase-3-mediated GSDME activation contributes to cisplatin- and doxorubicin-induced secondary necrosis in mouse macrophages. Cell Prolif., 2019, 52(5), e12663.
[http://dx.doi.org/10.1111/cpr.12663] [PMID: 31347748]
[19]
Li, Y.Q.; Peng, J.J.; Peng, J.; Luo, X.J. The deafness gene GSDME: its involvement in cell apoptosis, secondary necrosis, and cancers. Naunyn Schmiedebergs Arch. Pharmacol., 2019, 392(9), 1043-1048.
[http://dx.doi.org/10.1007/s00210-019-01674-7] [PMID: 31230091]
[20]
Akino, K.; Toyota, M.; Suzuki, H.; Imai, T.; Maruyama, R.; Kusano, M.; Nishikawa, N.; Watanabe, Y.; Sasaki, Y.; Abe, T.; Yamamoto, E.; Tarasawa, I.; Sonoda, T.; Mori, M.; Imai, K.; Shinomura, Y.; Tokino, T. Identification of DFNA5 as a target of epigenetic inactivation in gastric cancer. Cancer Sci., 2007, 98(1), 88-95.
[http://dx.doi.org/10.1111/j.1349-7006.2006.00351.x] [PMID: 17083569]
[21]
Kim, M.S.; Lebron, C.; Nagpal, J.K.; Chae, Y.K.; Chang, X.; Huang, Y.; Chuang, T.; Yamashita, K.; Trink, B.; Ratovitski, E.A.; Califano, J.A.; Sidransky, D. Methylation of the DFNA5 increases risk of lymph node metastasis in human breast cancer. Biochem. Biophys. Res. Commun., 2008, 370(1), 38-43.
[http://dx.doi.org/10.1016/j.bbrc.2008.03.026] [PMID: 18346456]
[22]
Yu, P.; Wang, H.Y.; Tian, M.; Li, A.X.; Chen, X.S.; Wang, X.L.; Zhang, Y.; Cheng, Y. Eukaryotic elongation factor-2 kinase regulates the cross-talk between autophagy and pyroptosis in doxorubicin-treated human melanoma cells in vitro. Acta Pharmacol. Sin., 2019, 40(9), 1237-1244.
[http://dx.doi.org/10.1038/s41401-019-0222-z] [PMID: 30914761]
[23]
Peng, Z.; Wang, P.; Song, W.; Yao, Q.; Li, Y.; Liu, L.; Li, Y.; Zhou, S. GSDME enhances Cisplatin sensitivity to regress non-small cell lung carcinoma by mediating pyroptosis to trigger antitumor immunocyte infiltration. Signal Transduct. Target. Ther., 2020, 5(1), 159.
[http://dx.doi.org/10.1038/s41392-020-00274-9] [PMID: 32839451]
[24]
Zhou, N.N.; Zhao, Y.Y.; Zhai, L.Z.; Ruan, C.M.; Yang, Y.P.; Huang, Y.; Hou, X.; Chen, L.K.; Zhou, T.; Zhang, L. The efficacy and toxicity of lobaplatin-contained chemotherapy in extensive-stage small-cell lung cancer. J. Cancer, 2018, 9(13), 2232-2236.
[http://dx.doi.org/10.7150/jca.24557] [PMID: 30026818]
[25]
Ju, X.; Yang, Z.; Zhang, H.; Wang, Q. Role of pyroptosis in cancer cells and clinical applications. Biochimie, 2021, 185, 78-86.
[http://dx.doi.org/10.1016/j.biochi.2021.03.007] [PMID: 33746064]
[26]
Wang, Y.; Yin, B.; Li, D.; Wang, G.; Han, X.; Sun, X. GSDME mediates caspase-3-dependent pyroptosis in gastric cancer. Biochem. Biophys. Res. Commun., 2018, 495(1), 1418-1425.
[http://dx.doi.org/10.1016/j.bbrc.2017.11.156] [PMID: 29183726]
[27]
He, J.; Zhang, H. The antitumor effect of lobaplatin against Ishikawa endometrial cancer cells in vitro and in vivo. Biomed. Pharmacother., 2019, 114, 108762.
[http://dx.doi.org/10.1016/j.biopha.2019.108762] [PMID: 30925454]
[28]
(a) Li, X.; Ran, L.; Fang, W.; Wang, D. Lobaplatin arrests cell cycle progression, induces apoptosis and alters the proteome in human cervical cancer cell Line CaSki. Biomed. Pharmacother., 2014, 68(3), 291-297.
[http://dx.doi.org/10.1016/j.biopha.2013.10.004] [PMID: 24239273]
(b) Wang, W.; Liu, M.; Ding, B. Comparison of the short-term efficacy and serum markers between lobaplatin/paclitaxel- And carboplatin/paclitaxel-based adjuvant chemotherapy in patient with ovarian cancer. J. Clin. Pharm. Ther., 2021, 46(1), 166-172.
[http://dx.doi.org/10.1111/jcpt.13276] [PMID: 33098169]
(c) Wang, Z.; Xu, L.; Wang, H.; Li, Z.; Lu, L.; Li, X.; Zhang, Q. Lobaplatin-based regimens outperform cisplatin for metastatic breast cancer after anthracyclines and taxanes treatment. Saudi J. Biol. Sci., 2018, 25(5), 909-916.
[http://dx.doi.org/10.1016/j.sjbs.2018.01.011] [PMID: 30108440]
(d) Zhang, H.; Zhang, Y.; Wang, C.; Fang, S.; Xu, B.; Wang, C.; Wu, J.; Liu, D. Clinical research on therapeutic effect of combined application of lobaplatin and irinotecan in treating recurrant small cell lung cancer. Pak. J. Pharm. Sci., 2018, 31(5(Special)), 2295-2298.
[PMID: 30463828]
[29]
Cao, H.; Feng, Y.; Chen, L.; Yu, C. Lobaplatin inhibits prostate cancer proliferation and migration through regulation of BCL2 and BAX. Dose Response, 2019, 17(2), 1559325819850981.
[http://dx.doi.org/10.1177/1559325819850981] [PMID: 31217754]
[30]
Chen, L.; Cao, H.; Yu, C.; Feng, Y. Lobaplatin inhibits prostate cancer progression in part by impairing AR and ERG signal. Fundam. Clin. Pharmacol., 2018, 32(5), 548-557.
[http://dx.doi.org/10.1111/fcp.12377] [PMID: 29733466]
[31]
Zhang, H.; Chen, R.; Wang, X.; Zhang, H.; Zhu, X.; Chen, J. Lobaplatin-induced apoptosis requires p53-mediated p38MAPK activation through ROS generation in non-small-cell lung cancer. Front. Oncol., 2019, 9, 538.
[http://dx.doi.org/10.3389/fonc.2019.00538] [PMID: 31428569]
[32]
Chen, Z.; Xu, G.; Wu, D.; Wu, S.; Gong, L.; Li, Z.; Luo, G.; Hu, J.; Chen, J.; Huang, X.; Chen, C.; Jiang, Z.; Li, X. Lobaplatin induces pyroptosis through regulating cIAP1/2, Ripoptosome and ROS in nasopharyngeal carcinoma. Biochem. Pharmacol., 2020, 177, 114023.
[http://dx.doi.org/10.1016/j.bcp.2020.114023] [PMID: 32413426]
[33]
Marcuzzi, A.; Piscianz, E.; Girardelli, M.; Crovella, S.; Pontillo, A. Defect in mevalonate pathway induces pyroptosis in Raw 264.7 murine monocytes. Apoptosis, 2011, 16(9), 882-888.
[http://dx.doi.org/10.1007/s10495-011-0621-1] [PMID: 21667041]
[34]
Wang, Y.; Gao, W.; Shi, X.; Ding, J.; Liu, W.; He, H.; Wang, K.; Shao, F. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature, 2017, 547(7661), 99-103.
[http://dx.doi.org/10.1038/nature22393] [PMID: 28459430]
[35]
Wang, X.; Li, H.; Li, W.; Xie, J.; Wang, F.; Peng, X.; Song, Y.; Tan, G. The role of Caspase-1/GSDMD-mediated pyroptosis in Taxol-induced cell death and a Taxol-resistant phenotype in nasopharyngeal carcinoma regulated by autophagy. Cell Biol. Toxicol., 2020, 36(5), 437-457.
[http://dx.doi.org/10.1007/s10565-020-09514-8] [PMID: 31993881]
[36]
Chen, X.; Liu, G.; Yuan, Y.; Wu, G.; Wang, S.; Yuan, L. NEK7 interacts with NLRP3 to modulate the pyroptosis in inflammatory bowel disease via NF-κB signaling. Cell Death Dis., 2019, 10(12), 906.
[http://dx.doi.org/10.1038/s41419-019-2157-1] [PMID: 31787755]
[37]
Huang, Z.; Zhang, Q.; Wang, Y.; Chen, R.; Wang, Y.; Huang, Z.; Zhou, G.; Li, H.; Rui, X.; Jin, T.; Li, S.; Zhang, Y.; Huang, Z. Inhibition of caspase-3-mediated GSDME-derived pyroptosis aids in noncancerous tissue protection of squamous cell carcinoma patients during cisplatin-based chemotherapy. Am. J. Cancer Res., 2020, 10(12), 4287-4307.
[PMID: 33415000]
[38]
An, H.; Heo, J.S.; Kim, P.; Lian, Z.; Lee, S.; Park, J.; Hong, E.; Pang, K.; Park, Y.; Ooshima, A.; Lee, J.; Son, M.; Park, H.; Wu, Z.; Park, K.S.; Kim, S.J.; Bae, I.; Yang, K.M. Tetraarsenic hexoxide enhances generation of mitochondrial ROS to promote pyroptosis by inducing the activation of caspase-3/GSDME in triple-negative breast cancer cells. Cell Death Dis., 2021, 12(2), 159.
[http://dx.doi.org/10.1038/s41419-021-03454-9] [PMID: 33558527]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy