Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Mini-Review Article

Pharmacotherapeutic Potential of Garlic in Age-Related Neurological Disorders

Author(s): Ramin Ahangar-Sirous, Mohadeseh Poudineh, Arina Ansari, Ali Nili, Seyyed Mohammad Matin Alavi Dana, Zahra Nasiri, Zahra Hosseini, Dariush Karami, Melika Mokhtari and Niloofar Deravi*

Volume 21, Issue 5, 2022

Published on: 26 November, 2021

Page: [377 - 398] Pages: 22

DOI: 10.2174/1871527320666210927101257

Price: $65

Abstract

Age-related Neurological Disorders (ANDs) involve Neurodegenerative Diseases (NDDs), such as Alzheimer's Disease (AD), the most frequent kind of dementia in elderly people, and Parkinson's Disease (PD), and also other disorders like epilepsy and migraine. Although ANDs are multifactorial, aging is a principal risk factor for them. The common and most main pathologic features among ANDs are inflammation, oxidative stress, and misfolded proteins accumulation. Since failing brains caused by ANDs impose a notable burden on public health and their incidence is increasing, a lot of works have been conducted to overcome them. Garlic, Allium sativum, has been used for different medical purposes globally and more than thousands of publications have reported its health benefits. Garlic and aged garlic extract are considered potent anti-inflammatory and antioxidants agents and can have remarkable neuroprotective effects. This review is aimed to summarize knowledge on the pharmacotherapeutic potential of garlic and its components in ANDs.

Keywords: Age-related neurological disorders, garlic, neurodegenerative diseases, allium sativum, alzheimer’s disease, parkinson’sdisease.

Graphical Abstract

[1]
Wyss-Coray T. Ageing, neurodegeneration and brain rejuvenation. Nature 2016; 539(7628): 180-6.
[http://dx.doi.org/10.1038/nature20411] [PMID: 27830812]
[2]
Jové M, Portero-Otín M, Naudí A, Ferrer I, Pamplona R. Metabolomics of human brain aging and age-related neurodegenerative diseases. J Neuropathol Exp Neurol 2014; 73(7): 640-57.
[http://dx.doi.org/10.1097/NEN.0000000000000091] [PMID: 24918636]
[3]
Mattson MP, Magnus T. Ageing and neuronal vulnerability. Nat Rev Neurosci 2006; 7(4): 278-94.
[http://dx.doi.org/10.1038/nrn1886] [PMID: 16552414]
[4]
Buendia I, Michalska P, Navarro E, Gameiro I, Egea J, León R. Nrf2-ARE pathway: An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacol Ther 2016; 157: 84-104.
[http://dx.doi.org/10.1016/j.pharmthera.2015.11.003] [PMID: 26617217]
[5]
Bhullar KS, Rupasinghe H. Polyphenols: multipotent therapeutic agents in neurodegenerative diseases. Oxidative medicine and cellular longevity 2013; 2013
[http://dx.doi.org/10.1155/2013/891748]
[6]
Berg DA, Belnoue L, Song H, Simon A. Neurotransmitter-mediated control of neurogenesis in the adult vertebrate brain. Development 2013; 140(12): 2548-61.
[http://dx.doi.org/10.1242/dev.088005] [PMID: 23715548]
[7]
Anand R, Gill KD, Mahdi AA. Therapeutics of Alzheimer’s disease: Past, present and future. Neuropharmacology 2014; 76(Pt A): 27-50.
[http://dx.doi.org/10.1016/j.neuropharm.2013.07.004] [PMID: 23891641]
[8]
Samudra N, Patel N, Womack KB, Khemani P, Chitnis S. Psychosis in Parkinson disease: A review of etiology, phenomenology, and management. Drugs Aging 2016; 33(12): 855-63.
[http://dx.doi.org/10.1007/s40266-016-0416-8] [PMID: 27830568]
[9]
Bottegoni G, Favia AD, Recanatini M, Cavalli A. The role of fragment-based and computational methods in polypharmacology. Drug Discov Today 2012; 17(1-2): 23-34.
[http://dx.doi.org/10.1016/j.drudis.2011.08.002] [PMID: 21864710]
[10]
Dias KS, Viegas C Jr. Multi-target directed drugs: A modern approach for design of new drugs for the treatment of Alzheimer’s disease. Curr Neuropharmacol 2014; 12(3): 239-55.
[http://dx.doi.org/10.2174/1570159X1203140511153200] [PMID: 24851088]
[11]
Zheng H, Fridkin M, Youdim M. From single target to multitarget/network therapeutics in Alzheimer’s therapy. Pharmaceuticals (Basel) 2014; 7(2): 113-35.
[http://dx.doi.org/10.3390/ph7020113] [PMID: 24463342]
[12]
Youdim KA, Joseph JA. A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: A multiplicity of effects. Free Radic Biol Med 2001; 30(6): 583-94.
[http://dx.doi.org/10.1016/S0891-5849(00)00510-4] [PMID: 11295356]
[13]
Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 2014; 4: 177.
[http://dx.doi.org/10.3389/fphar.2013.00177] [PMID: 24454289]
[14]
Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 2015; 14(2): 111-29.
[http://dx.doi.org/10.1038/nrd4510] [PMID: 25614221]
[15]
Koehn FE, Carter GT. The evolving role of natural products in drug discovery. Nat Rev Drug Discov 2005; 4(3): 206-20.
[http://dx.doi.org/10.1038/nrd1657] [PMID: 15729362]
[16]
Kim HD, Yun MJ, Kim TG. Forming free resistive switching characteristics and improved reliability in sub stoichiometric NbNx films. physica status solidi (RRL). Rapid Research Letters 2015; 9(4): 264-8.
[17]
Ide N, Lau BH, Ryu K, Matsuura H, Itakura Y. Antioxidant effects of fructosyl arginine, a Maillard reaction product in aged garlic extract. J Nutr Biochem 1999; 10(6): 372-6.
[http://dx.doi.org/10.1016/S0955-2863(99)00021-2] [PMID: 15539313]
[18]
Mukherjee D, Banerjee S. Learning and memory promoting effects of crude garlic extract. 2013.
[19]
Mathew B, Biju R. Neuroprotective effects of garlic a review. Libyan J Med 2008; 3(1): 23-33.
[PMID: 21499478]
[20]
Borek C. Antioxidant health effects of aged garlic extract. J Nutr 2001; 131(3s): 1010S-5S.
[http://dx.doi.org/10.1093/jn/131.3.1010S] [PMID: 11238807]
[21]
Imai J, Ide N, Nagae S, Moriguchi T, Matsuura H, Itakura Y. Antioxidant and radical scavenging effects of aged garlic extract and its constituents. Planta Med 1994; 60(5): 417-20.
[http://dx.doi.org/10.1055/s-2006-959522] [PMID: 7997468]
[22]
Amagase H, Petesch BL, Matsuura H, Kasuga S, Itakura Y. Intake of garlic and its bioactive components. J Nutr 2001; 131(3s): 955S-62S.
[http://dx.doi.org/10.1093/jn/131.3.955S] [PMID: 11238796]
[23]
Rahman K. Garlic and aging: new insights into an old remedy. Ageing Res Rev 2003; 2(1): 39-56.
[http://dx.doi.org/10.1016/S1568-1637(02)00049-1] [PMID: 12437995]
[24]
Borek C. Garlic reduces dementia and heart-disease risk. J Nutr 2006; 136(3)(Suppl.): 810S-2S.
[http://dx.doi.org/10.1093/jn/136.3.810S] [PMID: 16484570]
[25]
Borek C. Garlic and aging: current knowledge and future considerations Bioactive foods in promoting health. Elsevier 2010; pp. 221-34.
[http://dx.doi.org/10.1016/B978-0-12-374628-3.00015-3]
[26]
Shang A, Cao S-Y, Xu X-Y, et al. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods 2019; 8(7): 246.
[http://dx.doi.org/10.3390/foods8070246] [PMID: 31284512]
[27]
Shabab T, Khanabdali R, Moghadamtousi SZ, Kadir HA, Mohan G. Neuroinflammation pathways: A general review. Int J Neurosci 2017; 127(7): 624-33.
[http://dx.doi.org/10.1080/00207454.2016.1212854] [PMID: 27412492]
[28]
Johri A, Beal MF. Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther 2012; 342(3): 619-30.
[http://dx.doi.org/10.1124/jpet.112.192138] [PMID: 22700435]
[29]
Joshi AU, Mochly-Rosen D. Mortal engines: Mitochondrial bioenergetics and dysfunction in neurodegenerative diseases. Pharmacol Res 2018; 138: 2-15.
[http://dx.doi.org/10.1016/j.phrs.2018.08.010] [PMID: 30144530]
[30]
Reddy PH, Reddy TP. Mitochondria as a therapeutic target for aging and neurodegenerative diseases. Curr Alzheimer Res 2011; 8(4): 393-409.
[http://dx.doi.org/10.2174/156720511795745401] [PMID: 21470101]
[31]
Singh DK, Singh VK. Pharmacological Effects of Allium sativum L.(Garlic. Annual Review of Biomedical Sciences 2008; 10: 6-26.
[http://dx.doi.org/10.5016/1806-8774.2008.v10p6]
[32]
Mocayar Marón FJ, Camargo AB, Manucha W. Allicin pharmacology: Common molecular mechanisms against neuroinflammation and cardiovascular diseases. Life Sci 2020; 249: 117513.
[http://dx.doi.org/10.1016/j.lfs.2020.117513] [PMID: 32145307]
[33]
Yoo DY, Kim W, Nam SM, et al. Neuroprotective effects of Z-ajoene, an organosulfur compound derived from oil-macerated garlic, in the gerbil hippocampal CA1 region after transient forebrain ischemia. Food Chem Toxicol 2014; 72: 1-7.
[http://dx.doi.org/10.1016/j.fct.2014.06.023] [PMID: 24997311]
[34]
Diretto G, Rubio-Moraga A, Argandoña J, Castillo P, Gómez-Gómez L, Ahrazem O. Tissue-specific accumulation of sulfur compounds and saponins in different parts of garlic cloves from purple and white ecotypes. Molecules 2017; 22(8): 1359.
[http://dx.doi.org/10.3390/molecules22081359] [PMID: 28825644]
[35]
Kang JS, Kim SO, Kim G-Y, et al. An exploration of the antioxidant effects of garlic saponins in mouse-derived C2C12 myoblasts. Int J Mol Med 2016; 37(1): 149-56.
[http://dx.doi.org/10.3892/ijmm.2015.2398] [PMID: 26531218]
[36]
Nagella P, Thiruvengadam M, Ahmad A, Yoon J-Y, Chung I-M. Composition of polyphenols and antioxidant activity of garlic bulbs collected from different locations of Korea. Asian J Chem 2014; 26(3): 897.
[http://dx.doi.org/10.14233/ajchem.2014.16143A]
[37]
Xue-song H. Isolation and identification of garlic polysaccharide. Food Science 2005; 09
[38]
Li M, Yan YX, Yu QT, et al. Comparison of immunomodulatory effects of fresh garlic and black garlic polysaccharides on RAW 264.7 macrophages. J Food Sci 2017; 82(3): 765-71.
[http://dx.doi.org/10.1111/1750-3841.13589] [PMID: 28196294]
[39]
Kumar NS, Nisha N. Phytomedicines as potential inhibitors of β amyloid aggregation: significance to Alzheimer’s disease. Chin J Nat Med 2014; 12(11): 801-18.
[http://dx.doi.org/10.1016/S1875-5364(14)60122-9] [PMID: 25480511]
[40]
Vest RS, Pike CJ. Gender, sex steroid hormones, and Alzheimer’s disease. Horm Behav 2013; 63(2): 301-7.
[http://dx.doi.org/10.1016/j.yhbeh.2012.04.006] [PMID: 22554955]
[41]
Sampaolo S, Campos-Barros A, Mazziotti G, et al. Increased cerebrospinal fluid levels of 3,3′,5′-triiodothyronine in patients with Alzheimer’s disease. J Clin Endocrinol Metab 2005; 90(1): 198-202.
[http://dx.doi.org/10.1210/jc.2004-1083] [PMID: 15483087]
[42]
Jang MH, Piao XL, Kim JM, Kwon SW, Park JH. Inhibition of cholinesterase and amyloid-β aggregation by resveratrol oligomers from Vitis amurensis. Phytother Res 2008; 22(4): 544-9.
[http://dx.doi.org/10.1002/ptr.2406] [PMID: 18338769]
[43]
Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. Alzheimer’s disease. Nat Rev Dis Primers 2015; 1: 15056.
[http://dx.doi.org/10.1038/nrdp.2015.56] [PMID: 27188934]
[44]
Ray B, B Chauhan N, K Lahiri D. The “Aged Garlic Extract”(AGE) and One of its Active Ingredients S-Allyl-LCysteine (SAC) as Potential Preventive and Therapeutic Agents for Alzheimer’s Disease (AD). Curr Med Chem 2011; 18(22): 3306-13.
[http://dx.doi.org/10.2174/092986711796504664] [PMID: 21728972]
[45]
Gupta VB, Indi SS, Rao KS. Garlic extract exhibits antiamyloidogenic activity on amyloid-beta fibrillogenesis: relevance to Alzheimer’s disease. Phytother Res 2009; 23(1): 111-5.
[http://dx.doi.org/10.1002/ptr.2574] [PMID: 18844255]
[46]
Javed H, Khan MM, Khan A, et al. S-allyl cysteine attenuates oxidative stress associated cognitive impairment and neurodegeneration in mouse model of streptozotocin-induced experimental dementia of Alzheimer’s type. Brain Res 2011; 1389: 133-42.
[http://dx.doi.org/10.1016/j.brainres.2011.02.072] [PMID: 21376020]
[47]
Ghajarbeygi P, Hajhoseini A, Hosseini M-S, Sharifan A. An In Vitro and In Vivo Cholinesterase Inhibitory Activity of Pistacia khinjuk and Allium sativum Essential Oils. J Pharmacopuncture 2019; 22(4): 231-8.
[PMID: 31970020]
[48]
Jeong JH, Jeong HR, Jo YN, Kim HJ, Shin JH, Heo HJ. Ameliorating effects of aged garlic extracts against Aβ-induced neurotoxicity and cognitive impairment. BMC Complement Altern Med 2013; 13(1): 268.
[http://dx.doi.org/10.1186/1472-6882-13-268] [PMID: 24134394]
[49]
Chauhan NB. Anti-amyloidogenic effect of Allium sativum in Alzheimer’s transgenic model Tg2576. J Herb Pharmacother 2003; 3(1): 95-107.
[http://dx.doi.org/10.1080/J157v03n01_05] [PMID: 15277073]
[50]
Dey A, Bhattacharya R, Mukherjee A, Pandey DK. Natural products against Alzheimer’s disease: Pharmaco-therapeutics and biotechnological interventions. Biotechnol Adv 2017; 35(2): 178-216.
[http://dx.doi.org/10.1016/j.biotechadv.2016.12.005] [PMID: 28043897]
[51]
Giacobini E. Cholinesterase inhibitors: new roles and therapeutic alternatives. Pharmacol Res 2004; 50(4): 433-40.
[http://dx.doi.org/10.1016/j.phrs.2003.11.017] [PMID: 15304240]
[52]
Rahman K, Lowe GM. Significance of garlic and its constituents in cancer and cardiovascular disease. J Nutr 2006; 136(3)(Suppl.): 736S-40S.
[http://dx.doi.org/10.1093/jn/136.3.736S] [PMID: 16484553]
[53]
Castellani RJ, Siedlak SL, Fortino AE, Perry G, Ghetti B, Smith MA. Chitin-like polysaccharides in Alzheimer’s disease brains. Curr Alzheimer Res 2005; 2(4): 419-23.
[http://dx.doi.org/10.2174/156720505774330555] [PMID: 16248847]
[54]
Sotgiu S, Musumeci S, Marconi S, Gini B, Bonetti B. Different content of chitin-like polysaccharides in multiple sclerosis and Alzheimer’s disease brains. J Neuroimmunol 2008; 197(1): 70-3.
[http://dx.doi.org/10.1016/j.jneuroim.2008.03.021] [PMID: 18485490]
[55]
Castellani RJ, Perry G, Smith MA. The role of novel chitin-like polysaccharides in Alzheimer disease. Neurotox Res 2007; 12(4): 269-74.
[http://dx.doi.org/10.1007/BF03033910] [PMID: 18201954]
[56]
Choi J, Lee H-W, Suk K. Plasma level of chitinase 3-like 1 protein increases in patients with early Alzheimer’s disease. J Neurol 2011; 258(12): 2181-5.
[http://dx.doi.org/10.1007/s00415-011-6087-9] [PMID: 21562723]
[57]
Rosén C, Andersson C-H, Andreasson U, et al. Increased levels of chitotriosidase and YKL-40 in cerebrospinal fluid from patients with Alzheimer’s disease. Dement Geriatr Cogn Disord Extra 2014; 4(2): 297-304.
[http://dx.doi.org/10.1159/000362164] [PMID: 25254036]
[58]
Watabe-Rudolph M, Song Z, Lausser L, et al. Chitinase enzyme activity in CSF is a powerful biomarker of Alzheimer disease. Neurology 2012; 78(8): 569-77.
[http://dx.doi.org/10.1212/WNL.0b013e318247caa1] [PMID: 22323746]
[59]
Wildsmith KR, Schauer SP, Smith AM, et al. Identification of longitudinally dynamic biomarkers in Alzheimer’s disease cerebrospinal fluid by targeted proteomics. Mol Neurodegener 2014; 9(1): 22.
[http://dx.doi.org/10.1186/1750-1326-9-22] [PMID: 24902845]
[60]
Soscia SJ, Kirby JE, Washicosky KJ, et al. The Alzheimer’s disease-associated amyloid β-protein is an antimicrobial peptide. PLoS One 2010; 5(3): e9505.
[http://dx.doi.org/10.1371/journal.pone.0009505] [PMID: 20209079]
[61]
Butchart J, Holmes C. Systemic and central immunity in Alzheimer’s disease: therapeutic implications. CNS Neurosci Ther 2012; 18(1): 64-76.
[http://dx.doi.org/10.1111/j.1755-5949.2011.00245.x] [PMID: 22070806]
[62]
Goldgaber D, Harris HW, Hla T, et al. Interleukin 1 regulates synthesis of amyloid beta-protein precursor mRNA in human endothelial cells. Proc Natl Acad Sci USA 1989; 86(19): 7606-10.
[http://dx.doi.org/10.1073/pnas.86.19.7606] [PMID: 2508093]
[63]
Sutinen EM, Pirttilä T, Anderson G, Salminen A, Ojala JO. Pro-inflammatory interleukin-18 increases Alzheimer’s disease-associated amyloid-β production in human neuron-like cells. J Neuroinflammation 2012; 9(1): 199.
[http://dx.doi.org/10.1186/1742-2094-9-199] [PMID: 22898493]
[64]
Wüthrich M, Deepe GS Jr, Klein B. Adaptive immunity to fungi. Annu Rev Immunol 2012; 30: 115-48.
[http://dx.doi.org/10.1146/annurev-immunol-020711-074958] [PMID: 22224780]
[65]
Espinosa V, Rivera A. Cytokines and the regulation of fungus-specific CD4 T cell differentiation. Cytokine 2012; 58(1): 100-6.
[http://dx.doi.org/10.1016/j.cyto.2011.11.005] [PMID: 22133343]
[66]
Gozalbo D, Maneu V, Gil ML. Role of IFN-gamma in immune responses to Candida albicans infections. 2014.
[http://dx.doi.org/10.2741/4281]
[67]
Romani L. Immunity to fungal infections. Nat Rev Immunol 2004; 4(1): 1-23.
[http://dx.doi.org/10.1038/nri1255] [PMID: 14661066]
[68]
Pisa D, Alonso R, Rábano A, Rodal I, Carrasco L. Different brain regions are infected with fungi in Alzheimer’s disease. Sci Rep 2015; 5(1): 15015.
[http://dx.doi.org/10.1038/srep15015] [PMID: 26468932]
[69]
Kim KS. Microbial translocation of the blood-brain barrier. Int J Parasitol 2006; 36(5): 607-14.
[http://dx.doi.org/10.1016/j.ijpara.2006.01.013] [PMID: 16542662]
[70]
Somer T, Finegold SM. Vasculitides associated with infections, immunization, and antimicrobial drugs. Clin Infect Dis 1995; 20(4): 1010-36.
[http://dx.doi.org/10.1093/clinids/20.4.1010] [PMID: 7795045]
[71]
Younger DS. Vasculitis of the nervous system. Curr Opin Neurol 2004; 17(3): 317-36.
[http://dx.doi.org/10.1097/00019052-200406000-00014] [PMID: 15167068]
[72]
Lionakis MS, Netea MG, Holland SM. Mendelian genetics of human susceptibility to fungal infection. Cold Spring Harb Perspect Med 2014; 4(6): a019638.
[http://dx.doi.org/10.1101/cshperspect.a019638] [PMID: 24890837]
[73]
Smeekens SP, van de Veerdonk FL, Kullberg BJ, Netea MG. Genetic susceptibility to Candida infections. EMBO Mol Med 2013; 5(6): 805-13.
[http://dx.doi.org/10.1002/emmm.201201678] [PMID: 23629947]
[74]
Alonso R, Pisa D, Rábano A, Carrasco L. Alzheimer’s disease and disseminated mycoses. Eur J Clin Microbiol Infect Dis 2014; 33(7): 1125-32.
[http://dx.doi.org/10.1007/s10096-013-2045-z] [PMID: 24452965]
[75]
Mrak RE, Griffin ST, Graham DI. Aging-associated changes in human brain. J Neuropathol Exp Neurol 1997; 56(12): 1269-75.
[http://dx.doi.org/10.1097/00005072-199712000-00001] [PMID: 9413275]
[76]
Keller JN. Age-related neuropathology, cognitive decline, and Alzheimer’s disease. Ageing Res Rev 2006; 5(1): 1-13.
[http://dx.doi.org/10.1016/j.arr.2005.06.002] [PMID: 16084778]
[77]
Cobianchi S, de Cruz J, Navarro X. Assessment of sensory thresholds and nociceptive fiber growth after sciatic nerve injury reveals the differential contribution of collateral reinnervation and nerve regeneration to neuropathic pain. Exp Neurol 2014; 255: 1-11.
[http://dx.doi.org/10.1016/j.expneurol.2014.02.008] [PMID: 24552688]
[78]
Pisa D, Alonso R, Rábano A, Carrasco L. Corpora amylacea of brain tissue from neurodegenerative diseases are stained with specific antifungal antibodies. Front Neurosci 2016; 10: 86.
[http://dx.doi.org/10.3389/fnins.2016.00086] [PMID: 27013948]
[79]
Kowalska M, Owecki M, Prendecki M, Wize K, Nowakowska J, Kozubski W, et al. Aging and Neurological Diseases. 2017.
[http://dx.doi.org/10.5772/intechopen.69499]
[80]
Mukherjee D, Banerjee S. Learning and memory promoting effects of crude garlic extract. Indian J Exp Biol 2013; 51(12): 1094-100.
[PMID: 24579375]
[81]
Haider S, Naz N, Khaliq S, Perveen T, Haleem DJ. Repeated administration of fresh garlic increases memory retention in rats. J Med Food 2008; 11(4): 675-9.
[http://dx.doi.org/10.1089/jmf.2006.0229] [PMID: 19053859]
[82]
Hashimoto M, Nakai T, Masutani T, Unno K, Akao Y. Improvement of Learning and Memory in Senescence-Accelerated Mice by S-Allylcysteine in Mature Garlic Extract. Nutrients 2020; 12(6): 1834.
[http://dx.doi.org/10.3390/nu12061834] [PMID: 32575593]
[83]
Hazzaa SM, Abdelaziz SAM, Abd Eldaim MA, Abdel-Daim MM, Elgarawany GE. Neuroprotective Potential of Allium sativum against Monosodium Glutamate-Induced Excitotoxicity: Impact on Short-Term Memory, Gliosis, and Oxidative Stress. Nutrients 2020; 12(4): 1028.
[http://dx.doi.org/10.3390/nu12041028] [PMID: 32290031]
[84]
Nishiyama N, Moriguchi T, Saito H. Beneficial effects of aged garlic extract on learning and memory impairment in the senescence-accelerated mouse. Exp Gerontol 1997; 32(1-2): 149-60.
[http://dx.doi.org/10.1016/S0531-5565(96)00062-9] [PMID: 9088912]
[85]
Semuyaba I, Safiriyu AA, Tiyo EA, Niurka RF. Memory improvement effect of ethanol garlic (A. Sativum) extract in streptozotocin-nicotinamide induced diabetic wistar rats is mediated through increasing of hippocampal sodium-potassium ATPase, glutamine synthetase, and calcium ATPase activities. Evidence-Based Complementary and Alternative Medicine 2017; 2017
[86]
Sarkaki A, Valipour Chehardacheric S, Farbood Y, Mansouri SMT, Naghizadeh B, Basirian E. Effects of fresh, aged and cooked garlic extracts on short- and long-term memory in diabetic rats. Avicenna J Phytomed 2013; 3(1): 45-55.
[PMID: 25050258]
[87]
Schwartz CJ, Valente AJ, Sprague EA. A modern view of atherogenesis. Am J Cardiol 1993; 71(6): 9B-14B.
[http://dx.doi.org/10.1016/0002-9149(93)90139-4] [PMID: 8434561]
[88]
Rahman K, Lowe GM. Garlic and cardiovascular disease: A critical review. J Nutr 2006; 136(3)(Suppl.): 736S-40S.
[http://dx.doi.org/10.1093/jn/136.3.736S] [PMID: 16484553]
[89]
Steyn K, Steyn M, Swanepoel AS, et al. Twelve-year results of the coronary risk factor study (CORIS). Int J Epidemiol 1997; 26(5): 964-71.
[http://dx.doi.org/10.1093/ije/26.5.964] [PMID: 9363516]
[90]
Stampfer MJ. Cardiovascular disease and Alzheimer’s disease: common links. J Intern Med 2006; 260(3): 211-23.
[http://dx.doi.org/10.1111/j.1365-2796.2006.01687.x] [PMID: 16918818]
[91]
Bergmann C, Sano M. Cardiac risk factors and potential treatments in Alzheimer’s disease. Neurol Res 2006; 28(6): 595-604.
[http://dx.doi.org/10.1179/016164106X130498] [PMID: 16945210]
[92]
Rosendorff C, Beeri MS, Silverman JM. Cardiovascular risk factors for Alzheimer’s disease. Am J Geriatr Cardiol 2007; 16(3): 143-9.
[http://dx.doi.org/10.1111/j.1076-7460.2007.06696.x] [PMID: 17483665]
[93]
Newman AB, Fitzpatrick AL, Lopez O, et al. Dementia and Alzheimer’s disease incidence in relationship to cardiovascular disease in the Cardiovascular Health Study cohort. J Am Geriatr Soc 2005; 53(7): 1101-7.
[http://dx.doi.org/10.1111/j.1532-5415.2005.53360.x] [PMID: 16108925]
[94]
Launer LJ. Demonstrating the case that AD is a vascular disease: epidemiologic evidence. Ageing Res Rev 2002; 1(1): 61-77.
[http://dx.doi.org/10.1016/S0047-6374(01)00364-5] [PMID: 12039449]
[95]
Kalmijn S, Feskens EJ, Launer LJ, Kromhout D. Cerebrovascular disease, the apolipoprotein e4 allele, and cognitive decline in a community-based study of elderly men. Stroke 1996; 27(12): 2230-5.
[http://dx.doi.org/10.1161/01.STR.27.12.2230] [PMID: 8969786]
[96]
Streit WJ, Sparks DL. Activation of microglia in the brains of humans with heart disease and hypercholesterolemic rabbits. J Mol Med (Berl) 1997; 75(2): 130-8.
[http://dx.doi.org/10.1007/s001090050097] [PMID: 9083930]
[97]
Sparks DL, Scheff SW, Hunsaker JC III, Liu H, Landers T, Gross DR. Induction of Alzheimer-like β-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol. Exp Neurol 1994; 126(1): 88-94.
[http://dx.doi.org/10.1006/exnr.1994.1044] [PMID: 8157129]
[98]
Saczynski JS, White L, Peila RL, Rodriguez BL, Launer LJ. The relation between apolipoprotein A-I and dementia: the Honolulu-Asia aging study. Am J Epidemiol 2007; 165(9): 985-92.
[http://dx.doi.org/10.1093/aje/kwm027] [PMID: 17298957]
[99]
Michikawa M. Role of cholesterol in amyloid cascade: cholesterol-dependent modulation of tau phosphorylation and mitochondrial function. Acta Neurol Scand Suppl 2006; 185: 21-6.
[http://dx.doi.org/10.1111/j.1600-0404.2006.00681.x] [PMID: 16866907]
[100]
Mathew BC, Augusti KT. Biochemical effects of garlic protein diet and garlic oil on glycosaminoglycan metabolism in cholesterol fed rats. Indian J Exp Biol 1996; 34(4): 346-50.
[PMID: 8698424]
[101]
Snow A, Sekiguchi R, Mizutani M, Morgan D. An important role of heparin sulfate proteoglycan in a model system for the deposition and persistence of fibrillar A-amyloid in rat brain. Neuron 1994; 12: 221-34.
[http://dx.doi.org/10.1016/0896-6273(94)90165-1]
[102]
Chang MLW, Johnson MA. Effect of garlic on carbohydrate metabolism and lipid synthesis in rats. J Nutr 1980; 110(5): 931-6.
[http://dx.doi.org/10.1093/jn/110.5.931] [PMID: 6989965]
[103]
Mathew BC, Daniel RS, Augusti KT. Hypolipidemic effect of garlic protein substituted for casein in diet of rats compared to those of garlic oil. Indian J Exp Biol 1996; 34(4): 337-40.
[PMID: 8698422]
[104]
Rajasree C, Rajamohan T, Augusti K. Biochemical effects of garlic protein on lipid metabolism in alcohol fed rats. Indian J Exp Biol 1999; 37(3): 243-7.
[105]
Augusti K, Chackery J, Jacob J, Kuriakose S, George S, Nair SS. Beneficial effects of a polar fraction of garlic (Allium sativum Linn) oil in rats fed with two different high fat diets. Indian J Exp Biol 2005; 43(1): 76-83.
[106]
Bordia A, Verma SK. Effect of garlic feeding on regression of experimental atherosclerosis in rabbits. Artery 1980; 7(5): 428-37.
[PMID: 7213027]
[107]
Qureshi AA, Abuirmeileh N, Din ZZ, Elson CE, Burger WC. Inhibition of cholesterol and fatty acid biosynthesis in liver enzymes and chicken hepatocytes by polar fractions of garlic. Lipids 1983; 18(5): 343-8.
[http://dx.doi.org/10.1007/BF02537229] [PMID: 6877039]
[108]
Qureshi AA, Crenshaw TD, Abuirmeileh N, Peterson DM, Elson CE. Influence of minor plant constituents on porcine hepatic lipid metabolism. Impact on serum lipids. Atherosclerosis 1987; 64(2-3): 109-15.
[http://dx.doi.org/10.1016/0021-9150(87)90235-8] [PMID: 3606707]
[109]
Yeh Y-Y, Liu L. Cholesterol-lowering effect of garlic extracts and organosulfur compounds: human and animal studies. J Nutr 2001; 131(3s): 989S-93S.
[http://dx.doi.org/10.1093/jn/131.3.989S] [PMID: 11238803]
[110]
Kannar D, Wattanapenpaiboon N, Savige GS, Wahlqvist ML. Hypocholesterolemic effect of an enteric-coated garlic supplement. J Am Coll Nutr 2001; 20(3): 225-31.
[http://dx.doi.org/10.1080/07315724.2001.10719036] [PMID: 11444418]
[111]
Turner B, Mølgaard C, Marckmann P. Effect of garlic (Allium sativum) powder tablets on serum lipids, blood pressure and arterial stiffness in normo-lipidaemic volunteers: A randomised, double-blind, placebo-controlled trial. Br J Nutr 2004; 92(4): 701-6.
[http://dx.doi.org/10.1079/BJN20041255] [PMID: 15522140]
[112]
Durak I, Kavutcu M, Aytaç B, et al. Effects of garlic extract consumption on blood lipid and oxidant/antioxidant parameters in humans with high blood cholesterol. J Nutr Biochem 2004; 15(6): 373-7.
[http://dx.doi.org/10.1016/j.jnutbio.2004.01.005] [PMID: 15157944]
[113]
Mehrzia M, Ferid L, Mohamed A, Ezzedine A. Acute effects of a partially purified fraction from garlic on plasma glucose and cholesterol levels in rats: putative involvement of nitric oxide. Indian J Biochem Biophys 2006; 43(6): 386-90.
[PMID: 17285804]
[114]
Augusti KT, Mathew PT. Effect of allicin on certain enzymes of liver after a short term feeding to normal rats. Experientia 1975; 31(2): 148-9.
[http://dx.doi.org/10.1007/BF01990673] [PMID: 164364]
[115]
Amagase H. Clarifying the real bioactive constituents of garlic. J Nutr 2006; 136(3)(Suppl.): 716S-25S.
[http://dx.doi.org/10.1093/jn/136.3.716S] [PMID: 16484550]
[116]
Budoff MJ, Takasu J, Flores FR, et al. Inhibiting progression of coronary calcification using Aged Garlic Extract in patients receiving statin therapy: A preliminary study. Prev Med 2004; 39(5): 985-91.
[http://dx.doi.org/10.1016/j.ypmed.2004.04.012] [PMID: 15475033]
[117]
Steiner M, Li W. Aged garlic extract, a modulator of cardiovascular risk factors: A dose-finding study on the effects of AGE on platelet functions. J Nutr 2001; 131(3s): 980S-4S.
[http://dx.doi.org/10.1093/jn/131.3.980S] [PMID: 11238801]
[118]
Nam H, Jung H, Kim Y, et al. Aged black garlic extract regulates lipid metabolism by inhibiting lipogenesis and promoting lipolysis in mature 3T3-L1 adipocytes. Food Sci Biotechnol 2017; 27(2): 575-9.
[http://dx.doi.org/10.1007/s10068-017-0268-y] [PMID: 30263782]
[119]
Ha AW, Ying T, Kim WK. The effects of black garlic (Allium satvium) extracts on lipid metabolism in rats fed a high fat diet. Nutr Res Pract 2015; 9(1): 30-6.
[http://dx.doi.org/10.4162/nrp.2015.9.1.30] [PMID: 25671065]
[120]
Wolf P. Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. 2002.
[121]
Weiss N, Ide N, Abahji T, Nill L, Keller C, Hoffmann U. Aged garlic extract improves homocysteine-induced endothelial dysfunction in macro- and microcirculation. J Nutr 2006; 136(3)(Suppl.): 750S-4S.
[http://dx.doi.org/10.1093/jn/136.3.750S] [PMID: 16484556]
[122]
Sharrett AR, Patsch W, Sorlie PD, Heiss G, Bond MG, Davis CE. Associations of lipoprotein cholesterols, apolipoproteins AI and B, and triglycerides with carotid atherosclerosis and coronary heart disease. The Atherosclerosis Risk in Communities (ARIC) Study Arteriosclerosis and thrombosis: A journal of vascular biology 1994; 14(7): 1098-104.
[123]
Breteler MM, Claus JJ, Grobbee DE, Hofman A. Cardiovascular disease and distribution of cognitive function in elderly people: the Rotterdam Study. BMJ 1994; 308(6944): 1604-8.
[http://dx.doi.org/10.1136/bmj.308.6944.1604] [PMID: 8025427]
[124]
Kin T, Yamano S, Sakurai R, et al. Carotid atherosclerosis is associated with brain atrophy in Japanese elders. Gerontology 2007; 53(1): 1-6.
[http://dx.doi.org/10.1159/000095385] [PMID: 16940733]
[125]
Vander AJ, Sherman JH, Luciano DS. Human physiology: the mechanisms of body function In: New York, US: McGraw-Hill 1990; 1998.
[126]
Srivastava KC. Evidence for the mechanism by which garlic inhibits platelet aggregation. Prostaglandins Leukot Med 1986; 22(3): 313-21.
[http://dx.doi.org/10.1016/0262-1746(86)90142-3] [PMID: 3088604]
[127]
Apitz-Castro R, Badimon JJ, Badimon L. Effect of ajoene, the major antiplatelet compound from garlic, on platelet thrombus formation. Thromb Res 1992; 68(2): 145-55.
[http://dx.doi.org/10.1016/0049-3848(92)90030-E] [PMID: 1475777]
[128]
Chang HS, Yamato O, Yamasaki M, Maede Y. Modulatory influence of sodium 2-propenyl thiosulfate from garlic on cyclooxygenase activity in canine platelets: possible mechanism for the anti-aggregatory effect. Prostaglandins Leukot Essent Fatty Acids 2005; 72(5): 351-5.
[http://dx.doi.org/10.1016/j.plefa.2005.01.003] [PMID: 15850716]
[129]
Qi R, Liao F, Inoue K, Yatomi Y, Sato K, Ozaki Y. Inhibition by diallyl trisulfide, a garlic component, of intracellular Ca(2+) mobilization without affecting inositol-1,4, 5-trisphosphate (IP(3)) formation in activated platelets. Biochem Pharmacol 2000; 60(10): 1475-83.
[http://dx.doi.org/10.1016/S0006-2952(00)00467-6] [PMID: 11020449]
[130]
Chan KC, Yin MC, Chao WJ. Effect of diallyl trisulfide-rich garlic oil on blood coagulation and plasma activity of anticoagulation factors in rats. Food Chem Toxicol 2007; 45(3): 502-7.
[http://dx.doi.org/10.1016/j.fct.2006.10.005] [PMID: 17123684]
[131]
Bordia A, Sharma KD, Parmar YK, Verma SK. Protective effect of garlic oil on the changes produced by 3 weeks of fatty diet on serum cholesterol, serum triglycerides, fibrinolytic activity and platelet adhesiveness in man. Indian Heart J 1982; 34(2): 86-8.
[PMID: 7118147]
[132]
Bordia AK, Sanadhya SK, Rathore AS, Bhu N. Essential oil of garlic on blood lipids and fibrinolytic activity in patients of coronary artery disease. Part I. J Assoc Physicians India 1978; 26(5): 327-31.
[PMID: 730712]
[133]
Chutani SK, Bordia A. The effect of fried versus raw garlic on fibrinolytic activity in man. Atherosclerosis 1981; 38(3-4): 417-21.
[http://dx.doi.org/10.1016/0021-9150(81)90058-7] [PMID: 7225179]
[134]
Morihara N, Hino A, Yamaguchi T, Suzuki J. Aged Garlic Extract Suppresses the Development of Atherosclerosis in Apolipoprotein E-Knockout Mice. J Nutr 2016; 146(2): 460S-3S.
[http://dx.doi.org/10.3945/jn.114.206953] [PMID: 26764329]
[135]
Rashid A, Khan HH. The mechanism of hypotensive effect of garlic extract. J Pak Med Assoc 1985; 35(12): 357-62.
[PMID: 3937909]
[136]
Sendl A, Elbl G, Steinke B, Redl K, Breu W, Wagner H. Comparative pharmacological investigations of Allium ursinum and Allium sativum. Planta Med 1992; 58(1): 1-7.
[http://dx.doi.org/10.1055/s-2006-961378] [PMID: 1620734]
[137]
Ahmad MS, Pischetsrieder M, Ahmed N. Aged garlic extract and S-allyl cysteine prevent formation of advanced glycation endproducts. Eur J Pharmacol 2007; 561(1-3): 32-8.
[http://dx.doi.org/10.1016/j.ejphar.2007.01.041] [PMID: 17321518]
[138]
Breithaupt-Grögler K, Belz GG. Epidemiology of the arterial stiffness. Pathol Biol (Paris) 1999; 47(6): 604-13.
[PMID: 10472071]
[139]
Breithaupt-Grögler K, Ling M, Boudoulas H, Belz GG. Protective effect of chronic garlic intake on elastic properties of aorta in the elderly. Circulation 1997; 96(8): 2649-55.
[http://dx.doi.org/10.1161/01.CIR.96.8.2649] [PMID: 9355906]
[140]
Sun YE, Wang W, Qin J. Anti-hyperlipidemia of garlic by reducing the level of total cholesterol and low-density lipoprotein: A meta-analysis. Medicine (Baltimore) 2018; 97(18): e0255.
[http://dx.doi.org/10.1097/MD.0000000000010255] [PMID: 29718835]
[141]
Zeng T, Guo FF, Zhang CL, Song FY, Zhao XL, Xie KQ. A meta- analysis of randomized, double-blind, placebo-controlled trials for the effects of garlic on serum lipid profiles. J Sci Food Agric 2012; 92(9): 1892-902.
[http://dx.doi.org/10.1002/jsfa.5557] [PMID: 22234974]
[142]
Hoeijmakers JHJ. DNA damage, aging, and cancer. N Engl J Med 2009; 361(15): 1475-85.
[http://dx.doi.org/10.1056/NEJMra0804615] [PMID: 19812404]
[143]
Kowalska M, Owecki M, Prendecki M, Wize K, Nowakowska J, Kozubski W, et al. Aging and Neurological Diseases. Senescence - Physiology or Pathology 2017.
[http://dx.doi.org/10.5772/intechopen.69499]
[144]
Colín-González AL, Santana RA, Silva-Islas CA, Chánez-Cárdenas ME, Santamaría A, Maldonado PD. The antioxidant mechanisms underlying the aged garlic extract- and S-allylcysteine-induced protection. Oxid Med Cell Longev 2012; 2012: 907162.
[http://dx.doi.org/10.1155/2012/907162] [PMID: 22685624]
[145]
Lau BH. Suppression of LDL oxidation by garlic. J Nutr 2001; 131(3s): 985S-8S.
[http://dx.doi.org/10.1093/jn/131.3.985S] [PMID: 11238802]
[146]
Hwang CJ, Lee HP, Choi D-Y, et al. Inhibitory effect of thiacremonone on MPTP-induced dopaminergic neurodegeneration through inhibition of p38 activation. Oncotarget 2016; 7(30): 46943-58.
[http://dx.doi.org/10.18632/oncotarget.10504] [PMID: 27409674]
[147]
Tesfaye A, Mengesha W. Traditional uses, phytochemistry and pharmacological properties of garlic (Allium sativum) and its biological active compounds. Int J Sci Res Eng Technol 2015; 1: 142-8.
[148]
Lau A, Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 2010; 460(2): 525-42.
[http://dx.doi.org/10.1007/s00424-010-0809-1] [PMID: 20229265]
[149]
Shivasharan BD, Nagakannan P, Thippeswamy BS, Veerapur VP. Protective Effect of Calendula officinalis L. Flowers Against Monosodium Glutamate Induced Oxidative Stress and Excitotoxic Brain Damage in Rats. Indian J Clin Biochem 2013; 28(3): 292-8.
[http://dx.doi.org/10.1007/s12291-012-0256-1] [PMID: 24426226]
[150]
Ide N, Lau BH. Garlic compounds protect vascular endothelial cells from oxidized low density lipoprotein-induced injury. J Pharm Pharmacol 1997; 49(9): 908-11.
[http://dx.doi.org/10.1111/j.2042-7158.1997.tb06134.x] [PMID: 9306260]
[151]
Fleischauer AT, Poole C, Arab L. Garlic consumption and cancer prevention: meta-analyses of colorectal and stomach cancers. Am J Clin Nutr 2000; 72(4): 1047-52.
[http://dx.doi.org/10.1093/ajcn/72.4.1047] [PMID: 11010950]
[152]
Fleischauer AT, Arab L. Garlic and cancer: A critical review of the epidemiologic literature. J Nutr 2001; 131(3s): 1032S-40S.
[http://dx.doi.org/10.1093/jn/131.3.1032S] [PMID: 11238811]
[153]
Liu H-G, Xu L-H. Garlic oil prevents tributyltin-induced oxidative damage In vivo and in vitro. J Food Prot 2007; 70(3): 716-21.
[http://dx.doi.org/10.4315/0362-028X-70.3.716] [PMID: 17388064]
[154]
Pinto JT, Krasnikov BF, Cooper AJL. Redox-sensitive proteins are potential targets of garlic-derived mercaptocysteine derivatives. J Nutr 2006; 136(3)(Suppl.): 835S-41S.
[http://dx.doi.org/10.1093/jn/136.3.835S] [PMID: 16484576]
[155]
López-Pérez SJ, Ureña-Guerrero ME, Morales-Villagrán A. Monosodium glutamate neonatal treatment as a seizure and excitotoxic model. Brain Res 2010; 1317: 246-56.
[http://dx.doi.org/10.1016/j.brainres.2009.12.054] [PMID: 20043888]
[156]
Schipper HM. Brain iron deposition and the free radical-mitochondrial theory of ageing. Ageing Res Rev 2004; 3(3): 265-301.
[http://dx.doi.org/10.1016/j.arr.2004.02.001] [PMID: 15231237]
[157]
Dringen R. Metabolism and functions of glutathione in brain. Prog Neurobiol 2000; 62(6): 649-71.
[http://dx.doi.org/10.1016/S0301-0082(99)00060-X] [PMID: 10880854]
[158]
Gudiño-Cabrera G, Ureña-Guerrero ME, Rivera-Cervantes MC, Feria-Velasco AI, Beas-Zárate C. Excitotoxicity triggered by neonatal monosodium glutamate treatment and blood-brain barrier function. Arch Med Res 2014; 45(8): 653-9.
[http://dx.doi.org/10.1016/j.arcmed.2014.11.014] [PMID: 25431840]
[159]
Liedtke W, Edelmann W, Bieri PL, et al. GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination. Neuron 1996; 17(4): 607-15.
[http://dx.doi.org/10.1016/S0896-6273(00)80194-4] [PMID: 8893019]
[160]
Hassaan PS, Dief AE, Zeitoun TM, Baraka AM, Deacon RMJ, Elshorbagy A. Cortical tau burden and behavioural dysfunctions in mice exposed to monosodium glutamate in early life. PLoS One 2019; 14(8): e0220720.
[http://dx.doi.org/10.1371/journal.pone.0220720] [PMID: 31412065]
[161]
Sanabria ER, Pereira MF, Dolnikoff MS, et al. Deficit in hippocampal long-term potentiation in monosodium glutamate-treated rats. Brain Res Bull 2002; 59(1): 47-51.
[http://dx.doi.org/10.1016/S0361-9230(02)00837-7] [PMID: 12372548]
[162]
Rao SD, Yin HZ, Weiss JH. Disruption of glial glutamate transport by reactive oxygen species produced in motor neurons. J Neurosci 2003; 23(7): 2627-33.
[http://dx.doi.org/10.1523/JNEUROSCI.23-07-02627.2003] [PMID: 12684448]
[163]
Colín-González AL, Ali SF, Túnez I, Santamaría A. On the antioxidant, neuroprotective and anti-inflammatory properties of S-allyl cysteine: An update. Neurochem Int 2015; 89: 83-91.
[http://dx.doi.org/10.1016/j.neuint.2015.06.011] [PMID: 26122973]
[164]
Pari L, Murugavel P. Diallyl tetrasulfide improves cadmium induced alterations of acetylcholinesterase, ATPases and oxidative stress in brain of rats. Toxicology 2007; 234(1-2): 44-50.
[http://dx.doi.org/10.1016/j.tox.2007.01.021] [PMID: 17337106]
[165]
Blandini F, Armentero MT. Animal models of Parkinson’s disease. FEBS J 2012; 279(7): 1156-66.
[http://dx.doi.org/10.1111/j.1742-4658.2012.08491.x] [PMID: 22251459]
[166]
Saleem S, Ahmad M, Ahmad AS, et al. Behavioral and histologic neuroprotection of aqueous garlic extract after reversible focal cerebral ischemia. J Med Food 2006; 9(4): 537-44.
[http://dx.doi.org/10.1089/jmf.2006.9.537] [PMID: 17201642]
[167]
Lewin G, Popov I. Antioxidant effects of aqueous garlic extract. 2nd communication: Inhibition of the Cu(2+)-initiated oxidation of low density lipoproteins. Arzneimittelforschung 1994; 44(5): 604-7.
[PMID: 8024630]
[168]
Lau BH, Lam F, Wang-Cheng R. Effect of an odor-modified garlic preparation on blood lipids. Nutr Res 1987; 7(2): 139-49.
[http://dx.doi.org/10.1016/S0271-5317(87)80026-X]
[169]
Horie T, Murayama T, Mishima T, et al. Protection of liver microsomal membranes from lipid peroxidation by garlic extract. Planta Med 1989; 55(6): 506-8.
[http://dx.doi.org/10.1055/s-2006-962081] [PMID: 2616668]
[170]
Collins T. Endothelial nuclear factor-kappa B and the initiation of the atherosclerotic lesion. Lab Invest 1993; 68(5): 499-508.
[PMID: 8497124]
[171]
Geng Z, Rong Y, Lau BH. S-allyl cysteine inhibits activation of nuclear factor kappa B in human T cells. Free Radic Biol Med 1997; 23(2): 345-50.
[http://dx.doi.org/10.1016/S0891-5849(97)00006-3] [PMID: 9199898]
[172]
Dhawan V, Jain S. Effect of garlic supplementation on oxidized low density lipoproteins and lipid peroxidation in patients of essential hypertension. Mol Cell Biochem 2004; 266(1-2): 109-15.
[http://dx.doi.org/10.1023/B:MCBI.0000049146.89059.53] [PMID: 15646031]
[173]
Munday JS, James KA, Fray LM, Kirkwood SW, Thompson KG. Daily supplementation with aged garlic extract, but not raw garlic, protects low density lipoprotein against in vitro oxidation. Atherosclerosis 1999; 143(2): 399-404.
[http://dx.doi.org/10.1016/S0021-9150(98)00293-7] [PMID: 10217370]
[174]
Dillon SA, Lowe GM, Billington D, Rahman K. Dietary supplementation with aged garlic extract reduces plasma and urine concentrations of 8-iso-prostaglandin F(2 α) in smoking and nonsmoking men and women. J Nutr 2002; 132(2): 168-71.
[http://dx.doi.org/10.1093/jn/132.2.168] [PMID: 11823573]
[175]
Durak I, Aytaç B, Atmaca Y, et al. Effects of garlic extract consumption on plasma and erythrocyte antioxidant parameters in atherosclerotic patients. Life Sci 2004; 75(16): 1959-66.
[http://dx.doi.org/10.1016/j.lfs.2004.04.015] [PMID: 15306163]
[176]
Banerjee SK, Maulik SK. Effect of garlic on cardiovascular disorders: A review. Nutr J 2002; 1(1): 4.
[http://dx.doi.org/10.1186/1475-2891-1-4] [PMID: 12537594]
[177]
Byrne DJ, Neil HA, Vallance DT, Winder AF. A pilot study of garlic consumption shows no significant effect on markers of oxidation or sub-fraction composition of low-density lipoprotein including lipoprotein(a) after allowance for non-compliance and the placebo effect. Clin Chim Acta 1999; 285(1-2): 21-33.
[http://dx.doi.org/10.1016/S0009-8981(99)00063-7] [PMID: 10481920]
[178]
Kuriakose D, Xiao Z. Pathophysiology and Treatment of Stroke: Present Status and Future Perspectives. Int J Mol Sci 2020; 21(20): 7609.
[http://dx.doi.org/10.3390/ijms21207609] [PMID: 33076218]
[179]
Boehme AK, Esenwa C, Elkind MS. Stroke risk factors, genetics, and prevention. Circ Res 2017; 120(3): 472-95.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308398] [PMID: 28154098]
[180]
Oksala NK, Oksala A, Pohjasvaara T, et al. Age related white matter changes predict stroke death in long term follow-up. J Neurol Neurosurg Psychiatry 2009; 80(7): 762-6.
[http://dx.doi.org/10.1136/jnnp.2008.154104] [PMID: 19237385]
[181]
Rosenzweig S, Carmichael ST. Age-dependent exacerbation of white matter stroke outcomes: A role for oxidative damage and inflammatory mediators. Stroke 2013; 44(9): 2579-86.
[http://dx.doi.org/10.1161/STROKEAHA.113.001796] [PMID: 23868277]
[182]
Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments. Neuron 2010; 67(2): 181-98.
[http://dx.doi.org/10.1016/j.neuron.2010.07.002] [PMID: 20670828]
[183]
Khan MM, Ahmad A, Ishrat T, et al. Rutin protects the neural damage induced by transient focal ischemia in rats. Brain Res 2009; 1292: 123-35.
[http://dx.doi.org/10.1016/j.brainres.2009.07.026] [PMID: 19631195]
[184]
Chang C-Y, Ke D-S, Chen J-Y. Essential fatty acids and human brain. Acta Neurol Taiwan 2009; 18(4): 231-41.
[PMID: 20329590]
[185]
Loh KP, Qi J, Tan BKH, Liu XH, Wei BG, Zhu YZ. Leonurine protects middle cerebral artery occluded rats through antioxidant effect and regulation of mitochondrial function. Stroke 2010; 41(11): 2661-8.
[http://dx.doi.org/10.1161/STROKEAHA.110.589895] [PMID: 20947850]
[186]
Rothwell PM, Coull AJ, Giles MF, et al. Change in stroke incidence, mortality, case-fatality, severity, and risk factors in Oxfordshire, UK from 1981 to 2004 (Oxford Vascular Study). Lancet 2004; 363(9425): 1925-33.
[http://dx.doi.org/10.1016/S0140-6736(04)16405-2] [PMID: 15194251]
[187]
Sohrabji F, Bake S, Lewis DK. Age-related changes in brain support cells: Implications for stroke severity. Neurochem Int 2013; 63(4): 291-301.
[http://dx.doi.org/10.1016/j.neuint.2013.06.013] [PMID: 23811611]
[188]
Cervantes MI, de Oca Balderas PM, de Jesús Gutiérrez-Baños J, et al. Comparison of antioxidant activity of hydroethanolic fresh and aged garlic extracts and their effects on cerebral ischemia. Food Chem 2013; 140(1-2): 343-52.
[http://dx.doi.org/10.1016/j.foodchem.2013.02.053] [PMID: 23578652]
[189]
Aguilera P, Chánez-Cárdenas ME, Ortiz-Plata A, et al. Aged garlic extract delays the appearance of infarct area in a cerebral ischemia model, an effect likely conditioned by the cellular antioxidant systems. Phytomedicine 2010; 17(3-4): 241-7.
[http://dx.doi.org/10.1016/j.phymed.2009.06.004] [PMID: 19577455]
[190]
Colín-González AL, Santana RA, Silva-Islas CA, Chánez-Cárdenas ME, Santamaría A, Maldonado PD. The antioxidant mechanisms underlying the aged garlic extract-and S-allylcysteine-induced protection. Oxidative medicine and cellular longevity 2012; 2012
[191]
Ashafaq M, Khan MM, Shadab Raza S, et al. S-allyl cysteine mitigates oxidative damage and improves neurologic deficit in a rat model of focal cerebral ischemia. Nutr Res 2012; 32(2): 133-43.
[http://dx.doi.org/10.1016/j.nutres.2011.12.014] [PMID: 22348462]
[192]
Shi H, Jing X, Wei X, et al. S-allyl cysteine activates the Nrf2-dependent antioxidant response and protects neurons against ischemic injury in vitro and In vivo. J Neurochem 2015; 133(2): 298-308.
[http://dx.doi.org/10.1111/jnc.12986] [PMID: 25393425]
[193]
Lin J-J, Chang T, Cai W-K, et al. Post-injury administration of allicin attenuates ischemic brain injury through sphingosine kinase 2: In vivo and in vitro studies. Neurochem Int 2015; 89: 92-100.
[http://dx.doi.org/10.1016/j.neuint.2015.07.022] [PMID: 26275594]
[194]
Orekhov AN. Direct anti-atherosclerotic therapy; development of natural anti-atherosclerotic drugs preventing cellular cholesterol retention. Curr Pharm Des 2013; 19(33): 5909-28.
[http://dx.doi.org/10.2174/1381612811319330011] [PMID: 23438951]
[195]
Stabler SN, Tejani AM, Huynh F, Fowkes C. Garlic for the prevention of cardiovascular morbidity and mortality in hypertensive patients. Cochrane Database Syst Rev 2012; 2012(8): CD007653.
[http://dx.doi.org/10.1002/14651858.CD007653.pub2] [PMID: 22895963]
[196]
Duda G, Suliburska J, Pupek-Musialik D. Effects of short-term garlic supplementation on lipid metabolism and antioxidant status in hypertensive adults. Pharmacological reports: PR 2008; 60(2): 163-70.
[197]
Wang J, Zhang X, Lan H, Wang W. Effect of garlic supplement in the management of type 2 diabetes mellitus (T2DM): A meta-analysis of randomized controlled trials. Food Nutr Res 2017; 61(1): 1377571.
[http://dx.doi.org/10.1080/16546628.2017.1377571] [PMID: 29056888]
[198]
Siti HN, Kamisah Y, Kamsiah J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascul Pharmacol 2015; 71: 40-56.
[http://dx.doi.org/10.1016/j.vph.2015.03.005] [PMID: 25869516]
[199]
Yu X-H, Zheng X-L, Tang C-K. Nuclear factor-κB activation as a pathological mechanism of lipid metabolism and atherosclerosis Advances in clinical chemistry 70. Elsevier 2015; pp. 1-30.
[200]
Colín-González AL, Ortiz-Plata A, Villeda-Hernández J, et al. Aged garlic extract attenuates cerebral damage and cyclooxygenase-2 induction after ischemia and reperfusion in rats. Plant Foods Hum Nutr 2011; 66(4): 348-54.
[http://dx.doi.org/10.1007/s11130-011-0251-3] [PMID: 21850441]
[201]
Kim MJ, Yoo YC, Kim HJ, et al. aged black garlic exerts anti-inflammatory effects by decreasing no and proinflammatory cytokine production with less cytoxicity in LPS-stimulated raw 264.7 macrophages and LPS-induced septicemia mice. J Med Food 2014; 17(10): 1057-63.
[http://dx.doi.org/10.1089/jmf.2013.3043] [PMID: 25238199]
[202]
Arreola R, Quintero-Fabián S, López-Roa RI, Flores-Gutiérrez EO, Reyes-Grajeda JP, Carrera-Quintanar L, et al. Immunomodulation and anti-inflammatory effects of garlic compounds. Journal of immunology research 2015; 2015
[http://dx.doi.org/10.1155/2015/401630]
[203]
Liu CT, Su HM, Lii CK, Sheen LY. Effect of supplementation with garlic oil on activity of Th1 and Th2 lymphocytes from rats. Planta Med 2009; 75(3): 205-10.
[http://dx.doi.org/10.1055/s-0028-1088396] [PMID: 19137499]
[204]
Förstermann U, Xia N, Li H. Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis. Circ Res 2017; 120(4): 713-35.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.309326] [PMID: 28209797]
[205]
Li H, Horke S, Förstermann U. Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis 2014; 237(1): 208-19.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.09.001] [PMID: 25244505]
[206]
Naderi R, Mohaddes G, Mohammadi M, et al. Preventive effects of garlic (Allium sativum) on oxidative stress and histopathology of cardiac tissue in streptozotocin-induced diabetic rats. Acta Physiol Hung 2015; 102(4): 380-90.
[http://dx.doi.org/10.1556/036.102.2015.4.5] [PMID: 26690030]
[207]
Manoj Kumar V, Henley AK, Nelson CJ, et al. Protective effect of Allium sativum (garlic) aqueous extract against lead-induced oxidative stress in the rat brain, liver, and kidney. Environ Sci Pollut Res Int 2017; 24(2): 1544-52.
[http://dx.doi.org/10.1007/s11356-016-7923-3] [PMID: 27785721]
[208]
Mirpour M, Gholizadeh Siahmazgi Z, Sharifi Kiasaraie M. Antibacterial activity of clove, gall nut methanolic and ethanolic extracts on Streptococcus mutans PTCC 1683 and Streptococcus salivarius PTCC 1448. J Oral Biol Craniofac Res 2015; 5(1): 7-10.
[http://dx.doi.org/10.1016/j.jobcr.2015.02.002] [PMID: 25853041]
[209]
Doggrell SA, Brown L. Rat models of hypertension, cardiac hypertrophy and failure. Cardiovasc Res 1998; 39(1): 89-105.
[http://dx.doi.org/10.1016/S0008-6363(98)00076-5] [PMID: 9764192]
[210]
Al-Qattan KK, Khan I, Alnaqeeb MA, Ali M. Mechanism of garlic (Allium sativum) induced reduction of hypertension in 2K-1C rats: A possible mediation of Na/H exchanger isoform-1. Prostaglandins Leukot Essent Fatty Acids 2003; 69(4): 217-22.
[http://dx.doi.org/10.1016/S0952-3278(03)00087-5] [PMID: 12907130]
[211]
Ganado P, Sanz M, Padilla E, Tejerina T. An in vitro study of different extracts and fractions of Allium sativum (garlic): vascular reactivity. J Pharmacol Sci 2004; 94(4): 434-42.
[http://dx.doi.org/10.1254/jphs.94.434] [PMID: 15107584]
[212]
Ried K, Fakler P. Potential of garlic (Allium sativum) in lowering high blood pressure: mechanisms of action and clinical relevance. Integr Blood Press Control 2014; 7: 71-82.
[http://dx.doi.org/10.2147/IBPC.S51434] [PMID: 25525386]
[213]
Takashima M, Kanamori Y, Kodera Y, Morihara N, Tamura K. Aged garlic extract exerts endothelium-dependent vasorelaxant effect on rat aorta by increasing nitric oxide production. Phytomedicine 2017; 24: 56-61.
[http://dx.doi.org/10.1016/j.phymed.2016.11.016] [PMID: 28160862]
[214]
Aronson D, Rayfield EJ. How hyperglycemia promotes atherosclerosis: molecular mechanisms. Cardiovasc Diabetol 2002; 1(1): 1.
[http://dx.doi.org/10.1186/1475-2840-1-1] [PMID: 12119059]
[215]
Sher A, Fakhar-ul-Mahmood M, Shah SN, Bukhsh S, Murtaza G. Effect of garlic extract on blood glucose level and lipid profile in normal and alloxan diabetic rabbits. Adv Clin Exp Med 2012; 21(6): 705-11.
[PMID: 23457127]
[216]
Hfaiedh N, Murat JC, Elfeki A. Compared ability of garlic (Allium sativum) extract or α-tocopherol + magnesium association to reduce metabolic disorders and oxidative stress in diabetic rats. Phytother Res 2011; 25(6): 821-7.
[http://dx.doi.org/10.1002/ptr.3344] [PMID: 21086547]
[217]
Ahmad MS, Ahmed N. Antiglycation properties of aged garlic extract: possible role in prevention of diabetic complications. J Nutr 2006; 136(3)(Suppl.): 796S-9S.
[http://dx.doi.org/10.1093/jn/136.3.796S] [PMID: 16484566]
[218]
Baluchnejadmojarad T, Roghani M, Homayounfar H, Hosseini M. Beneficial effect of aqueous garlic extract on the vascular reactivity of streptozotocin-diabetic rats. J Ethnopharmacol 2003; 85(1): 139-44.
[http://dx.doi.org/10.1016/S0378-8741(02)00372-0] [PMID: 12576212]
[219]
Przedborski S, Jackson-Lewis V. Mechanisms of MPTP toxicity. Mov Disord 1998; 13(Suppl. 1): 35-8.
[PMID: 9613716]
[220]
Elahy M, Jackaman C, Mamo JC, et al. Blood-brain barrier dysfunction developed during normal aging is associated with inflammation and loss of tight junctions but not with leukocyte recruitment. Immun Ageing 2015; 12: 2.
[http://dx.doi.org/10.1186/s12979-015-0029-9] [PMID: 25784952]
[221]
Nagatsu T, Mogi M, Ichinose H, Togari A. Changes in cytokines and neurotrophins in Parkinson’s disease Advances in Research on Neurodegeneration. Springer 2000; pp. 277-90.
[222]
Verma V, Singh N, Singh Jaggi A. Pregabalin in neuropathic pain: evidences and possible mechanisms. Curr Neuropharmacol 2014; 12(1): 44-56.
[http://dx.doi.org/10.2174/1570159X1201140117162802] [PMID: 24533015]
[223]
Raver SM, Lin S-C. Basal forebrain motivational salience signal enhances cortical processing and decision speed. Front Behav Neurosci 2015; 9: 277.
[http://dx.doi.org/10.3389/fnbeh.2015.00277] [PMID: 26528157]
[224]
Rojas P, Serrano-García N, Medina-Campos ON, Pedraza-Chaverri J, Maldonado PD, Ruiz-Sánchez E. S-Allylcysteine, a garlic compound, protects against oxidative stress in 1-methyl-4-phenylpyridinium-induced parkinsonism in mice. J Nutr Biochem 2011; 22(10): 937-44.
[http://dx.doi.org/10.1016/j.jnutbio.2010.08.005] [PMID: 21190833]
[225]
Liu H, Mao P, Wang J, Wang T, Xie C-H. Allicin protects PC12 cells against 6-OHDA-induced oxidative stress and mitochondrial dysfunction via regulating mitochondrial dynamics. Cell Physiol Biochem 2015; 36(3): 966-79.
[http://dx.doi.org/10.1159/000430271] [PMID: 26087780]
[226]
Tobón-Velasco JC, Vázquez-Victorio G, Macías-Silva M, Cuevas E, Ali SF, Maldonado PD, et al. RETRACTED: S-allyl cysteine protects against 6-hydroxydopamine-induced neurotoxicity in the rat striatum: Involvement of Nrf2 transcription factor activation and modulation of signaling kinase cascades. Elsevier 2012.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.06.040]
[227]
García E, Santana-Martínez R, Silva-Islas CA, et al. S-allyl cysteine protects against MPTP-induced striatal and nigral oxidative neurotoxicity in mice: participation of Nrf2. Free Radic Res 2014; 48(2): 159-67.
[http://dx.doi.org/10.3109/10715762.2013.857019] [PMID: 24147739]
[228]
Zhou H, Qu Z, Mossine VV, et al. Proteomic analysis of the effects of aged garlic extract and its FruArg component on lipopolysaccharide-induced neuroinflammatory response in microglial cells. PLoS One 2014; 9(11): e113531.
[http://dx.doi.org/10.1371/journal.pone.0113531] [PMID: 25420111]
[229]
Ho S-C, Su M-S. Evaluating the anti-neuroinflammatory capacity of raw and steamed garlic as well as five organosulfur compounds. Molecules 2014; 19(11): 17697-714.
[http://dx.doi.org/10.3390/molecules191117697] [PMID: 25365295]
[230]
Nillert N, Pannangrong W, Welbat JU, Chaijaroonkhanarak W, Sripanidkulchai K, Sripanidkulchai B. Neuroprotective effects of aged garlic extract on cognitive dysfunction and neuroinflammation induced by β-amyloid in rats. Nutrients 2017; 9(1): 24.
[http://dx.doi.org/10.3390/nu9010024] [PMID: 28054940]
[231]
Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol 2016; 131(6): 803-20.
[http://dx.doi.org/10.1007/s00401-016-1545-1] [PMID: 27157931]
[232]
Vickers NJ. Animal communication: when i’m calling you, will you answer too? Curr Biol 2017; 27(14): R713-5.
[http://dx.doi.org/10.1016/j.cub.2017.05.064] [PMID: 28743020]
[233]
Mohile NA. How I treat glioblastoma in older patients. J Geriatr Oncol 2016; 7(1): 1-6.
[http://dx.doi.org/10.1016/j.jgo.2015.12.001] [PMID: 26725536]
[234]
Schneider T, Mawrin C, Scherlach C, Skalej M, Firsching R. Gliomas in adults. Dtsch Arztebl Int 2010; 107(45): 799-807.
[PMID: 21124703]
[235]
Rampling R, Erridge S. Management of central nervous system tumours in the elderly. Clin Oncol (R Coll Radiol) 2014; 26(7): 431-7.
[http://dx.doi.org/10.1016/j.clon.2014.03.009] [PMID: 24703159]
[236]
Rainov NG, Burkert W. Spontaneous shrinking of a macroprolactinoma. Neurochirurgia (Stuttg) 1993; 36(1): 17-9.
[PMID: 8446291]
[237]
Verma S, Pandey A. Garlic Treatment to Brain Cancer: An In-silico Evaluation to Explore the Therapeutic Efficacy of Allicin by Inhibition of Brain Aquaporin. J In Silico & In vitro Pharmacol 2017; 3(3): 1-6.
[238]
Haar CP, Hebbar P, Wallace GC IV, et al. Drug resistance in glioblastoma: A mini review. Neurochem Res 2012; 37(6): 1192-200.
[http://dx.doi.org/10.1007/s11064-011-0701-1] [PMID: 22228201]
[239]
Jung Y, Park H, Zhao H-Y, Jeon R, Ryu J-H, Kim W-Y. Systemic approaches identify a garlic-derived chemical, Z-ajoene, as a glioblastoma multiforme cancer stem cell-specific targeting agent. Mol Cells 2014; 37(7): 547-53.
[http://dx.doi.org/10.14348/molcells.2014.0158] [PMID: 25078449]
[240]
Olsson T, Barcellos LF, Alfredsson L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat Rev Neurol 2017; 13(1): 25-36.
[http://dx.doi.org/10.1038/nrneurol.2016.187] [PMID: 27934854]
[241]
Minden SL, Frankel D, Hadden LS, Srinath KP, Perloff JN. Disability in elderly people with multiple sclerosis: An analysis of baseline data from the Sonya Slifka Longitudinal Multiple Sclerosis Study. NeuroRehabilitation 2004; 19(1): 55-67.
[http://dx.doi.org/10.3233/NRE-2004-19107] [PMID: 14988588]
[242]
Tutuncu M, Tang J, Zeid NA, et al. Onset of progressive phase is an age-dependent clinical milestone in multiple sclerosis. Mult Scler 2013; 19(2): 188-98.
[http://dx.doi.org/10.1177/1352458512451510] [PMID: 22736750]
[243]
Scalfari A, Neuhaus A, Daumer M, Ebers GC, Muraro PA. Age and disability accumulation in multiple sclerosis. Neurology 2011; 77(13): 1246-52.
[http://dx.doi.org/10.1212/WNL.0b013e318230a17d] [PMID: 21917763]
[244]
Mahad DH, Trapp BD, Lassmann H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol 2015; 14(2): 183-93.
[http://dx.doi.org/10.1016/S1474-4422(14)70256-X] [PMID: 25772897]
[245]
Andersen HH, Johnsen KB, Moos T. Iron deposits in the chronically inflamed central nervous system and contributes to neurodegeneration. Cell Mol Life Sci 2014; 71(9): 1607-22.
[http://dx.doi.org/10.1007/s00018-013-1509-8] [PMID: 24218010]
[246]
Rist JM, Franklin RJ. Taking ageing into account in remyelination-based therapies for multiple sclerosis. J Neurol Sci 2008; 274(1-2): 64-7.
[http://dx.doi.org/10.1016/j.jns.2008.04.027] [PMID: 18539300]
[247]
Ruckh JM, Zhao JW, Shadrach JL, et al. Rejuvenation of regeneration in the aging central nervous system. Cell Stem Cell 2012; 10(1): 96-103.
[http://dx.doi.org/10.1016/j.stem.2011.11.019] [PMID: 22226359]
[248]
Newbould RD, Nicholas R, Thomas CL, et al. Age independently affects myelin integrity as detected by magnetization transfer magnetic resonance imaging in multiple sclerosis. Neuroimage Clin 2014; 4: 641-8.
[http://dx.doi.org/10.1016/j.nicl.2014.02.004] [PMID: 24936415]
[249]
Westlye LT, Walhovd KB, Dale AM, et al. Life-span changes of the human brain white matter: diffusion tensor imaging (DTI) and volumetry. Cereb Cortex 2010; 20(9): 2055-68.
[http://dx.doi.org/10.1093/cercor/bhp280] [PMID: 20032062]
[250]
Cevenini E, Monti D, Franceschi C. Inflamm-ageing. Curr Opin Clin Nutr Metab Care 2013; 16(1): 14-20.
[http://dx.doi.org/10.1097/MCO.0b013e32835ada13] [PMID: 23132168]
[251]
Escribano BM, Luque E, Aguilar-Luque M, et al. Dose-dependent S-allyl cysteine ameliorates multiple sclerosis disease-related pathology by reducing oxidative stress and biomarkers of dysbiosis in experimental autoimmune encephalomyelitis. Eur J Pharmacol 2017; 815: 266-73.
[http://dx.doi.org/10.1016/j.ejphar.2017.09.025] [PMID: 28939293]
[252]
Zeinali H, Baluchnejadmojarad T, Fallah S, Sedighi M, Moradi N, Roghani M. S-allyl cysteine improves clinical and neuropathological features of experimental autoimmune encephalomyelitis in C57BL/6 mice. Biomed Pharmacother 2018; 97: 557-63.
[http://dx.doi.org/10.1016/j.biopha.2017.10.155] [PMID: 29101799]
[253]
Hollenbach JA, Oksenberg JR. The immunogenetics of multiple sclerosis: A comprehensive review. J Autoimmun 2015; 64: 13-25.
[http://dx.doi.org/10.1016/j.jaut.2015.06.010] [PMID: 26142251]
[254]
Maillet J, Ottaviani S, Tubach F, et al. Anti-Saccharomyces cerevisiae antibodies (ASCA) in spondyloarthritis: Prevalence and associated phenotype. Joint Bone Spine 2016; 83(6): 665-8.
[http://dx.doi.org/10.1016/j.jbspin.2015.10.011] [PMID: 26992953]
[255]
Voorter CE, Drent M, van den Berg-Loonen EM. Severe pulmonary sarcoidosis is strongly associated with the haplotype HLA-DQB1*0602-DRB1*150101. Hum Immunol 2005; 66(7): 826-35.
[http://dx.doi.org/10.1016/j.humimm.2005.04.003] [PMID: 16112030]
[256]
Chauhan B, Santiago L, Hutcheson PS, et al. Evidence for the involvement of two different MHC class II regions in susceptibility or protection in allergic bronchopulmonary aspergillosis. J Allergy Clin Immunol 2000; 106(4): 723-9.
[http://dx.doi.org/10.1067/mai.2000.109913] [PMID: 11031343]
[257]
Benito-León J, Pisa D, Alonso R, Calleja P, Díaz-Sánchez M, Carrasco L. Association between multiple sclerosis and Candida species: evidence from a case-control study. Eur J Clin Microbiol Infect Dis 2010; 29(9): 1139-45.
[http://dx.doi.org/10.1007/s10096-010-0979-y] [PMID: 20556470]
[258]
Pisa D, Alonso R, Jiménez-Jiménez FJ, Carrasco L. Fungal infection in cerebrospinal fluid from some patients with multiple sclerosis. Eur J Clin Microbiol Infect Dis 2013; 32(6): 795-801.
[http://dx.doi.org/10.1007/s10096-012-1810-8] [PMID: 23322279]
[259]
Ramos M, Pisa D, Molina S, Rábano A, Juarranz Á, Carrasco L. Fungal infection in patients with multiple sclerosis. Open Mycol J 2008; 2: 22-8.
[http://dx.doi.org/10.2174/1874437000802010022]
[260]
Laurence M, Benito-León J. Epstein-Barr virus and multiple sclerosis: Updating Pender’s hypothesis. Mult Scler Relat Disord 2017; 16: 8-14.
[http://dx.doi.org/10.1016/j.msard.2017.05.009] [PMID: 28755684]
[261]
Orton SM, Herrera BM, Yee IM, et al. Sex ratio of multiple sclerosis in Canada: A longitudinal study. Lancet Neurol 2006; 5(11): 932-6.
[http://dx.doi.org/10.1016/S1474-4422(06)70581-6] [PMID: 17052660]
[262]
Severance EG, Gressitt KL, Stallings CR, Katsafanas E, Schweinfurth LA, Savage CL, et al. Candida albicans exposures, sex specificity and cognitive deficits in schizophrenia and bipolar disorder. npj Schizophrenia 2016; 2(1): 16018.
[263]
Bowman SM, Free SJ. The structure and synthesis of the fungal cell wall. BioEssays 2006; 28(8): 799-808.
[http://dx.doi.org/10.1002/bies.20441] [PMID: 16927300]
[264]
Vogel DYS, Vereyken EJF, Glim JE, et al. Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status. J Neuroinflammation 2013; 10: 35.
[http://dx.doi.org/10.1186/1742-2094-10-35] [PMID: 23452918]
[265]
Kwok JY, Vaida F, Augst RM, Yu DY, Singh KK. Mannose binding lectin mediated complement pathway in multiple sclerosis. J Neuroimmunol 2011; 239(1-2): 98-100.
[http://dx.doi.org/10.1016/j.jneuroim.2011.08.018] [PMID: 21911261]
[266]
Vega K, Kalkum M. Chitin, chitinase responses, and invasive fungal infections. Int J Microbiol 2012; 2012: 920459.
[http://dx.doi.org/10.1155/2012/920459] [PMID: 22187561]
[267]
Czartoryska B, Fiszer U, Lugowska A. Chitotriosidase Activity in Cerebrospinal Fluid as a Marker of Inflammatory Processes in Neurological Diseases. Chitotriosidase-Aktivität in Liquor Cerebrospinalis als ein Marker des Entzündungsprozesses bei Nervenkrankheiten. J Lab Medicine 2001; 25(3-4): 77-81.
[268]
Sotgiu S, Barone R, Arru G, et al. Intrathecal chitotriosidase and the outcome of multiple sclerosis. Mult Scler 2006; 12(5): 551-7.
[http://dx.doi.org/10.1177/1352458506070614] [PMID: 17086899]
[269]
Verbeek MM, Notting EA, Faas B, Claessens-Linskens R, Jongen PJ. Increased cerebrospinal fluid chitotriosidase index in patients with multiple sclerosis. Acta Neurol Scand 2010; 121(5): 309-14.
[http://dx.doi.org/10.1111/j.1600-0404.2009.01242.x] [PMID: 19925532]
[270]
Linker RA, Lee DH, Ryan S, et al. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain 2011; 134(Pt 3): 678-92.
[http://dx.doi.org/10.1093/brain/awq386] [PMID: 21354971]
[271]
Schulze-Topphoff U, Varrin-Doyer M, Pekarek K, et al. Dimethyl fumarate treatment induces adaptive and innate immune modulation independent of Nrf2. Proc Natl Acad Sci USA 2016; 113(17): 4777-82.
[http://dx.doi.org/10.1073/pnas.1603907113] [PMID: 27078105]
[272]
Atwan A, Ingram JR, Abbott R, et al. Oral fumaric acid esters for psoriasis. Cochrane Database Syst Rev 2015; 2015(8): CD010497.
[PMID: 26258748]
[273]
Liang G, Chai J, Ng HS, Tremlett H. Safety of dimethyl fumarate for multiple sclerosis: A systematic review and meta-analysis. Mult Scler Relat Disord 2020; 46: 102566.
[http://dx.doi.org/10.1016/j.msard.2020.102566] [PMID: 33296968]
[274]
Wang Y, Wei K, Han X, et al. The Antifungal Effect of Garlic Essential Oil on Phytophthora nicotianae and the Inhibitory Component Involved. Biomolecules 2019; 9(10): 632.
[http://dx.doi.org/10.3390/biom9100632] [PMID: 31640228]
[275]
Li WR, Shi QS, Dai HQ, et al. Antifungal activity, kinetics and molecular mechanism of action of garlic oil against Candida albicans. Sci Rep 2016; 6: 22805.
[http://dx.doi.org/10.1038/srep22805] [PMID: 26948845]
[276]
Said MM, Watson C, Grando D. Garlic alters the expression of putative virulence factor genes SIR2 and ECE1 in vulvovaginal C. albicans isolates. Sci Rep 2020; 10(1): 3615.
[http://dx.doi.org/10.1038/s41598-020-60178-0] [PMID: 32107396]
[277]
Watson CJ, Grando D, Fairley CK, et al. The effects of oral garlic on vaginal candida colony counts: A randomised placebo controlled double-blind trial. BJOG 2014; 121(4): 498-506.
[http://dx.doi.org/10.1111/1471-0528.12518] [PMID: 24308540]
[278]
Burian JP, Sacramento LVS, Carlos IZ. Fungal infection control by garlic extracts (Allium sativum L.) and modulation of peritoneal macrophages activity in murine model of sporotrichosis. Braz J Biol 2017; 77(4): 848-55.
[http://dx.doi.org/10.1590/1519-6984.03716] [PMID: 28492800]
[279]
Harman D. Aging: A theory based on free radical and radiation chemistry. J Gerontol 1956; 11(3): 298-300.
[http://dx.doi.org/10.1093/geronj/11.3.298] [PMID: 13332224]
[280]
Keogh MJ, Chinnery PF. Mitochondrial DNA mutations in neurodegeneration. Biochim Biophys Acta 2015; 1847(11): 1401-11.
[http://dx.doi.org/10.1016/j.bbabio.2015.05.015] [PMID: 26014345]
[281]
Borek C. Aging and antioxidants. Fruits and vegetables are powerful armor. Adv Nurse Pract 2006; 14(2): 35-8.
[PMID: 16471305]
[282]
Borek C. Dietary antioxidants and human cancer. Integr Cancer Ther 2004; 3(4): 333-41.
[http://dx.doi.org/10.1177/1534735404270578] [PMID: 15523104]
[283]
Bezerra DP, Militão GCG, de Morais MC, de Sousa DP. The dual antioxidant/prooxidant effect of eugenol and its action in cancer development and treatment. Nutrients 2017; 9(12): E1367.
[http://dx.doi.org/10.3390/nu9121367] [PMID: 29258206]
[284]
Richardson JS. Free radicals in the genesis of Alzheimer’s disease. Ann N Y Acad Sci 1993; 695: 73-6.
[http://dx.doi.org/10.1111/j.1749-6632.1993.tb23031.x] [PMID: 8239316]
[285]
Jama JW, Launer LJ, Witteman JC, et al. Dietary antioxidants and cognitive function in a population-based sample of older persons. The Rotterdam Study. Am J Epidemiol 1996; 144(3): 275-80.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a008922] [PMID: 8686696]
[286]
Beydoun MA, Fanelli-Kuczmarski MT, Kitner-Triolo MH, et al. Dietary antioxidant intake and its association with cognitive function in an ethnically diverse sample of US adults. Psychosom Med 2015; 77(1): 68-82.
[http://dx.doi.org/10.1097/PSY.0000000000000129] [PMID: 25478706]
[287]
Ito Y, Ito M, Takagi N, Saito H, Ishige K. Neurotoxicity induced by amyloid beta-peptide and ibotenic acid in organotypic hippocampal cultures: protection by S-allyl-L-cysteine, a garlic compound. Brain Res 2003; 985(1): 98-107.
[http://dx.doi.org/10.1016/S0006-8993(03)03173-1] [PMID: 12957372]
[288]
Peng Q, Buz’Zard AR, Lau BH. Neuroprotective effect of garlic compounds in amyloid-beta peptide-induced apoptosis in vitro. Med Sci Monit 2002; 8(8): BR328-37.
[PMID: 12165737]
[289]
Numagami Y, Ohnishi ST. S-allylcysteine inhibits free radical production, lipid peroxidation and neuronal damage in rat brain ischemia. J Nutr 2001; 131(3s): 1100S-5S.
[http://dx.doi.org/10.1093/jn/131.3.1100S] [PMID: 11238825]
[290]
Mostafa MG, Mima T, Ohnishi ST, Mori K. S-allylcysteine ameliorates doxorubicin toxicity in the heart and liver in mice. Planta Med 2000; 66(2): 148-51.
[http://dx.doi.org/10.1055/s-2000-11124] [PMID: 10763589]
[291]
Ferrante RJ, Beal MF, Kowall NW. Mechanisms of neuronal degeneration in huntington’s disease. The basal ganglia IV: new ideas and data on structure and function. Boston, MA: Springer US 1994; pp. 149-61.
[http://dx.doi.org/10.1007/978-1-4613-0485-2_15]
[292]
Ferrante RJ, Kowall NW, Cipolloni PB, Storey E, Beal MF. Excitotoxin lesions in primates as a model for Huntington’s disease: histopathologic and neurochemical characterization. Exp Neurol 1993; 119(1): 46-71.
[http://dx.doi.org/10.1006/exnr.1993.1006] [PMID: 8432351]
[293]
Pérez-Severiano F, Rodríguez-Pérez M, Pedraza-Chaverrí J, et al. S-Allylcysteine, a garlic-derived antioxidant, ameliorates quinolinic acid-induced neurotoxicity and oxidative damage in rats. Neurochem Int 2004; 45(8): 1175-83.
[http://dx.doi.org/10.1016/j.neuint.2004.06.008] [PMID: 15380627]
[294]
Goldsworthy MR, Vallence A-M. The role of β-amyloid in alzheimer’s disease-related neurodegeneration. J Neurosci 2013; 33(32): 12910-1.
[http://dx.doi.org/10.1523/JNEUROSCI.2252-13.2013] [PMID: 23926246]
[295]
Oh Y, Kim EY, Kim Y, et al. Neuroprotective effects of overexpressed cyclophilin B against Aβ-induced neurotoxicity in PC12 cells. Free Radic Biol Med 2011; 51(4): 905-20.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.05.036] [PMID: 21683784]
[296]
Peña F, Ordaz B, Balleza-Tapia H, et al. Beta-amyloid protein (25-35) disrupts hippocampal network activity: role of Fyn-kinase. Hippocampus 2010; 20(1): 78-96.
[PMID: 19294646]
[297]
Lu P, Mamiya T, Lu L, et al. Xanthoceraside attenuates amyloid β peptide₂₅₋₃₅-induced learning and memory impairments in mice. Psychopharmacology (Berl) 2012; 219(1): 181-90.
[http://dx.doi.org/10.1007/s00213-011-2386-1] [PMID: 21735075]
[298]
Jung Choi S, Kim MJ, Jin Heo H, et al. Ameliorative effect of 1,2-benzenedicarboxylic acid dinonyl ester against amyloid beta peptide-induced neurotoxicity. Amyloid 2009; 16(1): 15-24.
[http://dx.doi.org/10.1080/13506120802676997] [PMID: 19291510]
[299]
Valencia A, Morán J. Reactive oxygen species induce different cell death mechanisms in cultured neurons. Free Radic Biol Med 2004; 36(9): 1112-25.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.02.013] [PMID: 15082065]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy