Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Research Progress in Predicting DNA Methylation Modifications and the Relation with Human Diseases

Author(s): Chunyan Ao, Lin Gao* and Liang Yu*

Volume 29, Issue 5, 2022

Published on: 28 January, 2022

Page: [822 - 836] Pages: 15

DOI: 10.2174/0929867328666210917115733

Price: $65

Abstract

DNA methylation is an important mode of regulation in epigenetic mechanisms, and it is one of the research foci in the field of epigenetics. DNA methylation modification affects a series of biological processes, such as eukaryotic cell growth, differentiation, and transformation mechanisms, by regulating gene expression. In this review, we systematically summarized the DNA methylation databases, prediction tools for DNA methylation modification, machine learning algorithms for predicting DNA methylation modification, and the relationship between DNA methylation modification and diseases such as hypertension, Alzheimer's disease, diabetic nephropathy, and cancer. An in-depth understanding of DNA methylation mechanisms can promote accurate prediction of DNA methylation modifications and the treatment and diagnosis of related diseases.

Keywords: DNA methylation, database, prediction tool, human diseases, Alzheimer's disease, cancer.

[1]
Jasiulionis, M.G. Abnormal epigenetic regulation of immune system during aging. Front. Immunol., 2018, 9, 197.
[http://dx.doi.org/10.3389/fimmu.2018.00197]
[2]
Chen, K.; Zhao, B.S.; He, C. Nucleic acid modifications in regulation of gene expression. Cell Chem. Biol., 2016, 23(1), 74-85.
[http://dx.doi.org/10.1016/j.chembiol.2015.11.007] [PMID: 26933737]
[3]
Roberts, R.J.; Vincze, T.; Posfai, J.; Macelis, D. REBASE-a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res., 2015, 43(Database issue), D298-D299.
[http://dx.doi.org/10.1093/nar/gku1046] [PMID: 25378308]
[4]
Blow, M.J.; Clark, T.A.; Daum, C.G.; Deutschbauer, A.M.; Fomenkov, A.; Fries, R.; Froula, J.; Kang, D.D.; Malmstrom, R.R.; Morgan, R.D.; Posfai, J.; Singh, K.; Visel, A.; Wetmore, K.; Zhao, Z.; Rubin, E.M.; Korlach, J.; Pennacchio, L.A.; Roberts, R.J. The epigenomic landscape of prokaryotes. PLoS Genet., 2016, 12(2)e1005854
[http://dx.doi.org/10.1371/journal.pgen.1005854] [PMID: 26870957]
[5]
Fu, Y.; Luo, G-Z.; Chen, K.; Deng, X.; Yu, M.; Han, D.; Hao, Z.; Liu, J.; Lu, X.; Dore, L.C.; Weng, X.; Ji, Q.; Mets, L.; He, C. N6-methyldeoxyadenosine marks active transcription start sites in Chlamydomonas. Cell, 2015, 161(4), 879-892.
[http://dx.doi.org/10.1016/j.cell.2015.04.010] [PMID: 25936837]
[6]
Lyko, F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat. Rev. Genet., 2018, 19(2), 81-92.
[http://dx.doi.org/10.1038/nrg.2017.80] [PMID: 29033456]
[7]
Hattman, S. DNA-[adenine] methylation in lower eukaryotes. Biochemistry (Mosc.), 2005, 70(5), 550-558.
[http://dx.doi.org/10.1007/s10541-005-0148-6] [PMID: 15948708]
[8]
Wei, L.; Luan, S.; Nagai, L.A.E.; Su, R.; Zou, Q. Exploring sequence-based features for the improved prediction of DNA N4-methylcytosine sites in multiple species. Bioinformatics, 2019, 35(8), 1326-1333.
[http://dx.doi.org/10.1093/bioinformatics/bty824] [PMID: 30239627]
[9]
Linn, S.; Arber, W. Host specificity of DNA produced by Escherichia coli, X. In vitro restriction of phage fd replicative form. Proc. Natl. Acad. Sci. USA, 1968, 59(4), 1300-1306.
[http://dx.doi.org/10.1073/pnas.59.4.1300] [PMID: 4870862]
[10]
Campbell, J.L.; Kleckner, N.E. coli oriC and the DNA a gene promoter are sequestered from dam methyltransferase following the passage of the chromosomal replication fork. Cell, 1990, 62(5), 967-979.
[http://dx.doi.org/10.1016/0092-8674(90)90271-F] [PMID: 1697508]
[11]
Vasu, K.; Nagaraja, V. Diverse functions of restriction-modification systems in addition to cellular defense. Microb. Mol. Biol. Rev., 2013, 77(1), 53-72.
[12]
Tao, Y.; Xi, S.; Shan, J.; Maunakea, A.; Che, A.; Briones, V.; Lee, E.Y.; Geiman, T.; Huang, J.; Stephens, R.; Leighty, R.M. Lsh, chromatin remodeling family member, modulates genome-wide cytosine methylation patterns at nonrepeat sequences. Proceed Natl. Acad. Sci., 2011, 108(14), 5626-5631.
[http://dx.doi.org/10.1073/pnas.1017000108]
[13]
Scarano, M.I.; Strazzullo, M.; Matarazzo, M.R.; D’Esposito, M. DNA methylation 40 years later: Its role in human health and disease. J. Cell. Physiol., 2005, 204(1), 21-35.
[14]
Alvarez, J.R.; Skachkov, D.; Massey, S.E.; Kalitsov, A.; Velev, J.P. Mapping Base Modifications in DNA by Transverse-Current Sequencing. Phys. Rev. Appl., 2018, 9(2)
[http://dx.doi.org/10.1103/PhysRevApplied.9.024024]
[15]
Wang, X.; Song, Y.; Song, M.; Wang, Z.; Li, T.; Wang, H. Fluorescence polarization combined capillary electrophoresis immunoassay for the sensitive detection of genomic DNA methylation. Anal. Chem., 2009, 81(19), 7885-7891.
[http://dx.doi.org/10.1021/ac901681k] [PMID: 19788313]
[16]
Ziller, M.J.; Hansen, K.D.; Meissner, A.; Aryee, M.J. Coverage recommendations for methylation analysis by whole-genome bisulfite sequencing. Nat. Methods, 2015, 12(3), 230-232.
[http://dx.doi.org/10.1038/nmeth.3152] [PMID: 25362363]
[17]
Meissner, A.; Gnirke, A.; Bell, G.W.; Ramsahoye, B.; Lander, E.S.; Jaenisch, R. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res., 2005, 33(18), 5868-5877.
[http://dx.doi.org/10.1093/nar/gki901] [PMID: 16224102]
[18]
Krais, A.M.; Cornelius, M.G.; Schmeiser, H.H. Genomic N6-methyladenine determination by MEKC with LIF. Electrophoresis, 2010, 31(21), 3548-3551.
[http://dx.doi.org/10.1002/elps.201000357]
[19]
Clark, S.J.; Smallwood, S.A.; Lee, H.J.; Krueger, F.; Reik, W.; Kelsey, G. Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing (scBS-seq). Nat. Protoc., 2017, 12(3), 534-547.
[http://dx.doi.org/10.1038/nprot.2016.187] [PMID: 28182018]
[20]
Taiwo, O.; Wilson, G.A.; Morris, T.; Seisenberger, S.; Reik, W.; Pearce, D.; Beck, S.; Butcher, L.M. Methylome analysis using MeDIP-seq with low DNA concentrations. Nat. Protoc., 2012, 7(4), 617-636.
[http://dx.doi.org/10.1038/nprot.2012.012] [PMID: 22402632]
[21]
Flusberg, B.A.; Webster, D.R.; Lee, J.H.; Travers, K.J.; Olivares, E.C.; Clark, T.A.; Korlach, J.; Turner, S.W. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods, 2010, 7(6), 461-465.
[http://dx.doi.org/10.1038/nmeth.1459] [PMID: 20453866]
[22]
Grunau, C.; Renault, E.; Rosenthal, A.; Roizes, G.; Meth, D.B. MethDB-a public database for DNA methylation data. Nucleic Acids Res., 2001, 29(1), 270-274.
[http://dx.doi.org/10.1093/nar/29.1.270] [PMID: 11125109]
[23]
Amoreira, C.; Hindermann, W.; Grunau, C. An improved version of the DNA Methylation database (MethDB). Nucleic Acids Res., 2003, 31(1), 75-77.
[http://dx.doi.org/10.1093/nar/gkg093] [PMID: 12519951]
[24]
Ye, P.; Luan, Y.; Chen, K.; Liu, Y.; Xiao, C.; Xie, Z. MethSMRT: an integrative database for DNA N6-methyladenine and N4-methylcytosine generated by single-molecular real-time sequencing. Nucleic Acids Res., 2017, 45(D1), D85-D89.
[http://dx.doi.org/10.1093/nar/gkw950] [PMID: 27924023]
[25]
Liu, Z-Y.; Xing, J-F.; Chen, W.; Luan, M-W.; Xie, R.; Huang, J.; Xie, S-Q.; Xiao, C-L. MDR: an integrative DNA N6-methyladenine and N4-methylcytosine modification database for Rosaceae. Hortic. Res., 2019, 6, 78.
[http://dx.doi.org/10.1038/s41438-019-0160-4] [PMID: 31240103]
[26]
Sood, A.J.; Viner, C.; Hoffman, M.M. DNAmod: the DNA modification database. J. Cheminform., 2019, 11(1), 30.
[http://dx.doi.org/10.1186/s13321-019-0349-4] [PMID: 31016417]
[27]
Xin, Y.; Chanrion, B.; O’Donnell, A.H.; Milekic, M.; Costa, R.; Ge, Y.; Haghighi, F.G.; Methylome, D.B. MethylomeDB: a database of DNA methylation profiles of the brain. Nucleic Acids Res., 2012, 40(Database issue), D1245-D1249.
[http://dx.doi.org/10.1093/nar/gkr1193] [PMID: 22140101]
[28]
Chen, W.; Yang, H.; Feng, P.; Ding, H.; Lin, H. iDNA4mC: identifying DNA N4-methylcytosine sites based on nucleotide chemical properties. Bioinformatics, 2017, 33(22), 3518-3523.
[http://dx.doi.org/10.1093/bioinformatics/btx479] [PMID: 28961687]
[29]
He, W.; Jia, C.; Zou, Q. 4mCPred: machine learning methods for DNA N4-methylcytosine sites prediction. Bioinformatics, 2019, 35(4), 593-601.
[http://dx.doi.org/10.1093/bioinformatics/bty668] [PMID: 30052767]
[30]
Manavalan, B.; Basith, S.; Shin, T.H.; Wei, L.; Lee, G. Meta-4mCpred: A sequence-based meta-predictor for accurate DNA 4mC site prediction using effective feature representation. Mol. Ther. Nucleic Acids, 2019, 16, 733-744.
[http://dx.doi.org/10.1016/j.omtn.2019.04.019] [PMID: 31146255]
[31]
Manavalan, B.; Basith, S.; Shin, T.H.; Lee, D.Y.; Wei, L.; Lee, G. 4mCpred-EL: an ensemble learning framework for identification of DNA N4-methylcytosine sites in the mouse genome. Cells, 2019, 8(11)E1332
[http://dx.doi.org/10.3390/cells8111332] [PMID: 31661923]
[32]
Wu, X.; Wei, Y.; Jiang, T.; Wang, Y.; Jiang, S. A Micro-aggregation algorithm based on density partition method for anonymizing biomedical data. Curr. Bioinform., 2019, 14(7), 667-675.
[http://dx.doi.org/10.2174/1574893614666190416152025]
[33]
Hasan, M.M.; Manavalan, B.; Khatun, M.S.; Kurata, H. i4mC-ROSE, a bioinformatics tool for the identification of DNA N4-methylcytosine sites in the Rosaceae genome. Int. J. Biol. Macromol., 2020, 157, 752-758.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.009] [PMID: 31805335]
[34]
Hasan, M.M.; Manavalan, B.; Shoombuatong, W.; Khatun, M.S.; Kurata, H. i4mC-Mouse: improved identification of DNA N4-methylcytosine sites in the mouse genome using multiple encoding schemes. Comput. Struct. Biotechnol. J., 2020, 18, 906-912.
[http://dx.doi.org/10.1016/j.csbj.2020.04.001] [PMID: 32322372]
[35]
Yang, J.; Lang, K.; Zhang, G.; Fan, X.; Chen, Y.; Pian, C. SOMM4mC: a second-order Markov model for DNA N4-methylcytosine site prediction in six species. Bioinformatics, 2020, 36(14), 4103-4105.
[http://dx.doi.org/10.1093/bioinformatics/btaa507] [PMID: 32413127]
[36]
Lv, Z.; Wang, D.; Ding, H.; Zhong, B.; Xu, L. Escherichia coli, D.N.A. N-4-methycytosine site prediction accuracy improved by light gradient boosting machine feature selection technology. IEEE Access, 2020, 8, 14851-14859.
[http://dx.doi.org/10.1109/ACCESS.2020.2966576]
[37]
Tang, Q.; Kang, J.; Yuan, J.; Tang, H.; Li, X.; Lin, H.; Huang, J.; Chen, W. DNA4mC-LIP: a linear integration method to identify N4-methylcytosine site in multiple species. Bioinformatics, 2020, 36(11), 3327-3335.
[http://dx.doi.org/10.1093/bioinformatics/btaa143] [PMID: 32108866]
[38]
Khanal, J.; Nazari, I.; Tayara, H.; Chong, K.T. 4mCCNN: Identification of N4-methylcytosine sites in prokaryotes using convolutional neural network. IEEE Access, 2019, 7, 145455-145461.
[http://dx.doi.org/10.1109/ACCESS.2019.2943169]
[39]
Zeng, R.; Liao, M. Developing a multi-layer deep learning based predictive model to identify DNA N4-methylcytosine modifications. Front. Bioeng. Biotechnol., 2020, 8, 274.
[http://dx.doi.org/10.3389/fbioe.2020.00274] [PMID: 32373597]
[40]
Zeng, F.; Fang, G.; Yao, L. A deep neural network for identifying DNA N4-methylcytosine sites. Front. Genet., 2020, 11, 209.
[http://dx.doi.org/10.3389/fgene.2020.00209] [PMID: 32211035]
[41]
Chen, W.; Lv, H.; Nie, F.; Lin, H. i6mA-Pred: identifying DNA N6-methyladenine sites in the rice genome. Bioinformatics, 2019, 35(16), 2796-2800.
[http://dx.doi.org/10.1093/bioinformatics/btz015] [PMID: 30624619]
[42]
Basith, S.; Manavalan, B.; Shin, T.H.; Lee, G. SDM6A: a web-based integrative machine-learning framework for predicting 6mA sites in the rice genome. Mol. Ther. Nucleic Acids, 2019, 18, 131-141.
[http://dx.doi.org/10.1016/j.omtn.2019.08.011] [PMID: 31542696]
[43]
Kong, L.; Zhang, L. i6mA-DNCP: computational identification of DNA N6-methyladenine sites in the rice genome using optimized dinucleotide-based features. Genes (Basel), 2019, 10(10)E828
[http://dx.doi.org/10.3390/genes10100828] [PMID: 31635172]
[44]
Le, N.Q.K. iN6-methylat (5-step): identifying DNA N6-methyladenine sites in rice genome using continuous bag of nucleobases via Chou’s 5-step rule. Mol. Genet. Genomics, 2019, 294(5), 1173-1182.
[http://dx.doi.org/10.1007/s00438-019-01570-y] [PMID: 31055655]
[45]
Lv, H.; Dao, F-Y.; Guan, Z-X.; Zhang, D.; Tan, J-X.; Zhang, Y.; Chen, W.; Lin, H. iDNA6mA-rice: a computational tool for detecting N6-methyladenine sites in rice. Front. Genet., 2019, 10, 793.
[http://dx.doi.org/10.3389/fgene.2019.00793] [PMID: 31552096]
[46]
Tahir, M.; Tayara, H.; Chong, K.T. iDNA6mA (5-step rule): identification of DNA N6-methyladenine sites in the rice genome by intelligent computational model via Chou’s 5-step rule. Chemom. Intell. Lab. Syst., 2019, 189, 96-101.
[http://dx.doi.org/10.1016/j.chemolab.2019.04.007]
[47]
Yu, H.; Dai, Z. SNNRice6mA: a deep learning method for predicting DNA N6-methyladenine sites in rice genome. Front. Genet., 2019, 10, 1071.
[http://dx.doi.org/10.3389/fgene.2019.01071] [PMID: 31681441]
[48]
Huang, Q.; Zhang, J.; Wei, L.; Guo, F.; Zou, Q. 6mA-RicePred: A method for identifying DNA N6-methyladenine sites in the rice genome based on feature fusion. Front. Plant Sci., 2020, 11, 4.
[http://dx.doi.org/10.3389/fpls.2020.00004] [PMID: 32076430]
[49]
Pian, C.; Zhang, G.; Li, F.; Fan, X. MM-6mAPred: identifying DNA N6-methyladenine sites based on Markov model. Bioinformatics, 2020, 36(2), 388-392.
[PMID: 31297537]
[50]
Liu, Z.; Dong, W.; Jiang, W.; He, Z. csDMA: an improved bioinformatics tool for identifying DNA 6 mA modifications via Chou’s 5-step rule. Sci. Rep., 2019, 9(1), 13109.
[http://dx.doi.org/10.1038/s41598-019-49430-4] [PMID: 31511570]
[51]
Wahab, A.; Ali, S.D.; Tayara, H.; Chong, K.T. iIM-CNN: intelligent identifier of 6mA sites on different species by using convolution neural network. IEEE Access, 2019, 7, 178577-178583.
[http://dx.doi.org/10.1109/ACCESS.2019.2958618]
[52]
Luo, Y.; Liao, X.; Wu, F-X.; Wang, J. Computational approaches for transcriptome assembly based on sequencing technologies. Curr. Bioinform., 2020, 15(1), 2-16.
[http://dx.doi.org/10.2174/1574893614666190410155603]
[53]
Feng, P.; Yang, H.; Ding, H.; Lin, H.; Chen, W.; Chou, K-C. iDNA6mA-PseKNC: Identifying DNA N6-methyla-denosine sites by incorporating nucleotide physicochemical properties into PseKNC. Genomics, 2019, 111(1), 96-102.
[http://dx.doi.org/10.1016/j.ygeno.2018.01.005] [PMID: 29360500]
[54]
Hasan, M.M.; Manavalan, B.; Shoombuatong, W.; Khatun, M.S.; Kurata, H. i6mA-Fuse: improved and robust prediction of DNA 6 mA sites in the Rosaceae genome by fusing multiple feature representation. Plant Mol. Biol., 2020, 103(1-2), 225-234.
[http://dx.doi.org/10.1007/s11103-020-00988-y] [PMID: 32140819]
[55]
Xu, H.; Hu, R.; Jia, P.; Zhao, Z. 6mA-Finder: a novel online tool for predicting DNA N6-methyladenine sites in genomes. Bioinformatics, 2020, 36(10), 3257-3259.
[http://dx.doi.org/10.1093/bioinformatics/btaa113] [PMID: 32091591]
[56]
Down, T.A.; Rakyan, V.K.; Turner, D.J.; Flicek, P.; Li, H.; Kulesha, E.; Gräf, S.; Johnson, N.; Herrero, J.; Tomazou, E.M.; Thorne, N.P.; Bäckdahl, L.; Herberth, M.; Howe, K.L.; Jackson, D.K.; Miretti, M.M.; Marioni, J.C.; Birney, E.; Hubbard, T.J.P.; Durbin, R.; Tavaré, S.; Beck, S. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat. Biotechnol., 2008, 26(7), 779-785.
[http://dx.doi.org/10.1038/nbt1414] [PMID: 18612301]
[57]
Aryee, M.J.; Jaffe, A.E.; Corrada-Bravo, H.; Ladd-Acosta, C.; Feinberg, A.P.; Hansen, K.D.; Irizarry, R.A. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics, 2014, 30(10), 1363-1369.
[http://dx.doi.org/10.1093/bioinformatics/btu049] [PMID: 24478339]
[58]
Bhasin, M.; Zhang, H.; Reinherz, E.L.; Reche, P.A. Prediction of methylated CpGs in DNA sequences using a support vector machine. FEBS Lett., 2005, 579(20), 4302-4308.
[http://dx.doi.org/10.1016/j.febslet.2005.07.002] [PMID: 16051225]
[59]
Fang, F.; Fan, S.; Zhang, X.; Zhang, M.Q. Predicting methylation status of CpG islands in the human brain. Bioinformatics, 2006, 22(18), 2204-2209.
[http://dx.doi.org/10.1093/bioinformatics/btl377] [PMID: 16837523]
[60]
Liu, Z.; Xiao, X.; Qiu, W-R.; Chou, K-C. iDNA-Methyl: identifying DNA methylation sites via pseudo trinucleotide composition. Anal. Biochem., 2015, 474, 69-77.
[http://dx.doi.org/10.1016/j.ab.2014.12.009] [PMID: 25596338]
[61]
Pan, G.; Jiang, L.; Tang, J.; Guo, F. A novel computational method for detecting DNA methylation sites with DNA sequence information and physicochemical properties. Int. J. Mol. Sci., 2018, 19(2), 511.
[http://dx.doi.org/10.3390/ijms19020511] [PMID: 29419752]
[62]
Angermueller, C.; Lee, H.J.; Reik, W.; Stegle, O. DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning. Genome Biol., 2017, 18(1), 67.
[http://dx.doi.org/10.1186/s13059-017-1189-z] [PMID: 28395661]
[63]
Zhang, L.; Xiao, X.; Xu, Z-C. iPromoter-5mC: a novel fusion decision predictor for the identification of 5-methylcytosine sites in genome-wide DNA promoters. Front. Cell Dev. Biol., 2020, 8, 614-614.
[http://dx.doi.org/10.3389/fcell.2020.00614] [PMID: 32850787]
[64]
Sharma, P.; Gupta, A.; Aggarwal, A.; Gupta, D.; Khanna, A.; Hassanien, A.E.; de Albuquerque, V.H.C. The health of things for classification of protein structure using improved grey wolf optimization. J. Supercomput., 2020, 76(2), 1226-1241.
[http://dx.doi.org/10.1007/s11227-018-2639-4]
[65]
Kustatscher, G.; Grabowski, P.; Schrader, T.A.; Passmore, J.B.; Schrader, M.; Rappsilber, J. Co-regulation map of the human proteome enables identification of protein functions. Nat. Biotechnol., 2019, 37(11), 1361-1371.
[http://dx.doi.org/10.1038/s41587-019-0298-5] [PMID: 31690884]
[66]
Liu, K.; Chen, W. iMRM: a platform for simultaneously identifying multiple kinds of RNA modifications. Bioinformatics, 2020, 36(11), 3336-3342.
[http://dx.doi.org/10.1093/bioinformatics/btaa155] [PMID: 32134472]
[67]
Liu, Q.; Chen, J.; Wang, Y.; Li, S.; Jia, C.; Song, J.; Li, F. DeepTorrent: a deep learning-based approach for predicting DNA N4-methylcytosine sites. Brief. Bioinform., 2021, 22(3), bbaa124.
[PMID: 32608476]
[68]
Breiman, L. Random forests. Mach. Learn., 2001, 45(1), 5-32.
[http://dx.doi.org/10.1023/A:1010933404324]
[69]
Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn., 1995, 20(3), 273-297.
[http://dx.doi.org/10.1007/BF00994018]
[70]
Quinlau, R. Induction of decision trees. Mach. Learn., 1986, 1(1), S1-S106.
[71]
LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature, 2015, 521(7553), 436-444.
[http://dx.doi.org/10.1038/nature14539] [PMID: 26017442]
[72]
Burges, C.J.C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov., 1998, 2(2), 121-167.
[http://dx.doi.org/10.1023/A:1009715923555]
[73]
Liu, Y.; Wang, M.; Xi, J.; Luo, F.; Li, A. PTM-ssMP: a web server for predicting different types of post-translational modification sites using novel site-specific modification profile. Int. J. Biol. Sci., 2018, 14(8), 946-956.
[http://dx.doi.org/10.7150/ijbs.24121] [PMID: 29989096]
[74]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K-C. pSuc-Lys: Predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach. J. Theor. Biol., 2016, 394, 223-230.
[http://dx.doi.org/10.1016/j.jtbi.2016.01.020] [PMID: 26807806]
[75]
Sun, X.; Jin, T.; Chen, C.; Cui, X.; Ma, Q.; Yu, B. RBPro-RF: Use Chou’s 5-steps rule to predict RNA-binding proteins via random forest with elastic net. Chemom. Intell. Lab. Syst., 2020, 197103919
[http://dx.doi.org/10.1016/j.chemolab.2019.103919]
[76]
Liaw, A.; Wiener, M. Classification and regression by randomForest. R News, 2002, 2(3), 18-22.
[77]
Li, J.; Liu, L.; Cui, Q.; Zhou, Y. Comparisons of MicroRNA set enrichment analysis tools on cancer de-regulated miRNAs from TCGA expression datasets. Curr. Bioinform., 2020, 15(10), 1104-1112.
[http://dx.doi.org/10.2174/1574893615666200224095041]
[78]
Szulwach, K.E.; Jin, P. Integrating DNA methylation dynamics into a framework for understanding epigenetic codes. BioEssays, 2014, 36(1), 107-117.
[http://dx.doi.org/10.1002/bies.201300090]
[79]
Bakusic, J.; Schaufeli, W.; Claes, S.; Godderis, L. Stress, burnout and depression: a systematic review on DNA methylation mechanisms. J. Psychosom. Res., 2017, 92, 34-44.
[http://dx.doi.org/10.1016/j.jpsychores.2016.11.005] [PMID: 27998510]
[80]
Dong, C.; Chen, J.; Zheng, J.; Liang, Y.; Yu, T.; Liu, Y.; Gao, F.; Long, J.; Chen, H.; Zhu, Q.; He, Z.; Hu, S.; He, C.; Lin, J.; Tang, Y.; Zhu, H. 5-Hydroxymethylcytosine signatures in circulating cell-free DNA as diagnostic and predictive biomarkers for coronary artery disease. Clin. Epigenetics, 2020, 12(1), 17.
[http://dx.doi.org/10.1186/s13148-020-0810-2] [PMID: 31964422]
[81]
Armstrong, M.J.; Jin, Y.; Allen, E.G.; Jin, P. Diverse and dynamic DNA modifications in brain and diseases. Hum. Mol. Genet., 2019, 28(R2), R241-R253.
[PMID: 31348493]
[82]
Xiao, C-L.; Zhu, S.; He, M.; Chen, D.; Zhang, Q.; Chen, Y.; Yu, G.; Liu, J.; Xie, S-Q.; Luo, F.; Liang, Z.; Wang, D-P.; Bo, X-C.; Gu, X-F.; Wang, K.; Yan, G-R. N6-Methyladenine DNA Modification in the Human Genome. Mol. Cell, 2018, 71(2), 306-318.
[http://dx.doi.org/10.1016/j.molcel.2018.06.015] [PMID: 30017583]
[83]
Xie, Q.; Wu, T.P.; Gimple, R.C.; Li, Z.; Prager, B.C.; Wu, Q.; Yu, Y.; Wang, P.; Wang, Y.; Gorkin, D.U.; Zhang, C.; Dowiak, A.V.; Lin, K.; Zeng, C.; Sui, Y.; Kim, L.J.Y.; Miller, T.E.; Jiang, L.; Lee, C.H.; Huang, Z.; Fang, X.; Zhai, K.; Mack, S.C.; Sander, M.; Bao, S.; Kerstetter-Fogle, A.E.; Sloan, A.E.; Xiao, A.Z.; Rich, J.N. N6-methyladenine DNA Modification in Glioblastoma. Cell, 2018, 175(5), 1228-1243.
[http://dx.doi.org/10.1016/j.cell.2018.10.006] [PMID: 30392959]
[84]
Kumamoto, T.; Yamada, K.; Yoshida, S.; Aoki, K.; Hirooka, S.; Eto, K.; Yanaga, K.; Yoshida, K. Impairment of DYRK2 by DNMT1 mediated transcription augments carcinogenesis in human colorectal cancer. Int. J. Oncol., 2020, 56(6), 1529-1539.
[http://dx.doi.org/10.3892/ijo.2020.5020] [PMID: 32236621]
[85]
Zhang, T.; Wei, X.; Li, Z.; Shi, F.; Xia, Z.; Lian, M.; Chen, L.; Zhang, H. Natural scene nutrition information acquisition and analysis based on deep learning. Curr. Bioinform., 2020, 15(7), 662-670.
[http://dx.doi.org/10.2174/1574893614666190723121610]
[86]
Friso, S.; Carvajal, C.A.; Fardella, C.E.; Olivieri, O. Epigenetics and arterial hypertension: the challenge of emerging evidence. Transl. Res., 2015, 165(1), 154-165.
[http://dx.doi.org/10.1016/j.trsl.2014.06.007] [PMID: 25035152]
[87]
Kundu, A.; Anand, A. Computational study of ADD1 gene polymorphism associated with hypertension. Cell Biochem. Biophys., 2013, 65(1), 13-19.
[http://dx.doi.org/10.1007/s12013-012-9398-2] [PMID: 22810272]
[88]
Zhang, L-N.; Liu, P-P.; Wang, L.; Yuan, F.; Xu, L.; Xin, Y.; Fei, L-J.; Zhong, Q-L.; Huang, Y.; Xu, L.; Hao, L-M.; Qiu, X-J.; Le, Y.; Ye, M.; Duan, S. Lower ADD1 gene promoter DNA methylation increases the risk of essential hypertension. PLoS One, 2013, 8(5)e63455
[http://dx.doi.org/10.1371/journal.pone.0063455] [PMID: 23691048]
[89]
Kato, N.; Loh, M.; Takeuchi, F.; Verweij, N.; Wang, X.; Zhang, W.; Kelly, T.N.; Saleheen, D.; Lehne, B.; Leach, I.M.; Drong, A.W.; Abbott, J.; Wahl, S.; Tan, S-T.; Scott, W.R.; Campanella, G.; Chadeau-Hyam, M.; Afzal, U.; Ahluwalia, T.S.; Bonder, M.J.; Chen, P.; Dehghan, A.; Edwards, T.L.; Esko, T.; Go, M.J.; Harris, S.E.; Hartiala, J.; Kasela, S.; Kasturiratne, A.; Khor, C-C.; Kleber, M.E.; Li, H.; Yu Mok, Z.; Nakatochi, M.; Sapari, N.S.; Saxena, R.; Stewart, A.F.R.; Stolk, L.; Tabara, Y.; Teh, A.L.; Wu, Y.; Wu, J-Y.; Zhang, Y.; Aits, I.; Da Silva Couto Alves, A.; Das, S.; Dorajoo, R.; Hopewell, J.C.; Kim, Y.K.; Koivula, R.W.; Luan, J.; Lyytikäinen, L-P.; Nguyen, Q.N.; Pereira, M.A.; Postmus, I.; Raitakari, O.T.; Scannell Bryan, M.; Scott, R.A.; Sorice, R.; Tragante, V.; Traglia, M.; White, J.; Yamamoto, K.; Zhang, Y.; Adair, L.S.; Ahmed, A.; Akiyama, K.; Asif, R.; Aung, T.; Barroso, I.; Bjonnes, A.; Braun, T.R.; Cai, H.; Chang, L-C.; Chen, C-H.; Cheng, C-Y.; Chong, Y-S.; Collins, R.; Courtney, R.; Davies, G.; Delgado, G.; Do, L.D.; Doevendans, P.A.; Gansevoort, R.T.; Gao, Y-T.; Grammer, T.B.; Grarup, N.; Grewal, J.; Gu, D.; Wander, G.S.; Hartikainen, A-L.; Hazen, S.L.; He, J.; Heng, C-K.; Hixson, J.E.; Hofman, A.; Hsu, C.; Huang, W.; Husemoen, L.L.N.; Hwang, J-Y.; Ichihara, S.; Igase, M.; Isono, M.; Justesen, J.M.; Katsuya, T.; Kibriya, M.G.; Kim, Y.J.; Kishimoto, M.; Koh, W-P.; Kohara, K.; Kumari, M.; Kwek, K.; Lee, N.R.; Lee, J.; Liao, J.; Lieb, W.; Liewald, D.C.M.; Matsubara, T.; Matsushita, Y.; Meitinger, T.; Mihailov, E.; Milani, L.; Mills, R.; Mononen, N.; Müller-Nurasyid, M.; Nabika, T.; Nakashima, E.; Ng, H.K.; Nikus, K.; Nutile, T.; Ohkubo, T.; Ohnaka, K.; Parish, S.; Paternoster, L.; Peng, H.; Peters, A.; Pham, S.T.; Pinidiyapathirage, M.J.; Rahman, M.; Rakugi, H.; Rolandsson, O.; Ann Rozario, M.; Ruggiero, D.; Sala, C.F.; Sarju, R.; Shimokawa, K.; Snieder, H.; Sparsø, T.; Spiering, W.; Starr, J.M.; Stott, D.J.; Stram, D.O.; Sugiyama, T.; Szymczak, S.; Tang, W.H.W.; Tong, L.; Trompet, S.; Turjanmaa, V.; Ueshima, H.; Uitterlinden, A.G.; Umemura, S.; Vaarasmaki, M.; van Dam, R.M.; van Gilst, W.H.; van Veldhuisen, D.J.; Viikari, J.S.; Waldenberger, M.; Wang, Y.; Wang, A.; Wilson, R.; Wong, T-Y.; Xiang, Y-B.; Yamaguchi, S.; Ye, X.; Young, R.D.; Young, T.L.; Yuan, J-M.; Zhou, X.; Asselbergs, F.W.; Ciullo, M.; Clarke, R.; Deloukas, P.; Franke, A.; Franks, P.W.; Franks, S.; Friedlander, Y.; Gross, M.D.; Guo, Z.; Hansen, T.; Jarvelin, M-R.; Jørgensen, T.; Jukema, J.W.; Kähönen, M.; Kajio, H.; Kivimaki, M.; Lee, J-Y.; Lehtimäki, T.; Linneberg, A.; Miki, T.; Pedersen, O.; Samani, N.J.; Sørensen, T.I.A.; Takayanagi, R.; Toniolo, D.; Ahsan, H.; Allayee, H.; Chen, Y-T.; Danesh, J.; Deary, I.J.; Franco, O.H.; Franke, L.; Heijman, B.T.; Holbrook, J.D.; Isaacs, A.; Kim, B-J.; Lin, X.; Liu, J.; März, W.; Metspalu, A.; Mohlke, K.L.; Sanghera, D.K.; Shu, X-O.; van Meurs, J.B.J.; Vithana, E.; Wickremasinghe, A.R.; Wijmenga, C.; Wolffenbuttel, B.H.W.; Yokota, M.; Zheng, W.; Zhu, D.; Vineis, P.; Kyrtopoulos, S.A.; Kleinjans, J.C.S.; McCarthy, M.I.; Soong, R.; Gieger, C.; Scott, J.; Teo, Y-Y.; He, J.; Elliott, P.; Tai, E.S.; van der Harst, P.; Kooner, J.S.; Chambers, J.C. Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation. Nat. Genet., 2015, 47(11), 1282-1293.
[http://dx.doi.org/10.1038/ng.3405] [PMID: 26390057]
[90]
Meric, M.; Soylu, K.; Avci, B.; Yuksel, S.; Gulel, O.; Yenercag, M.; Coksevim, M.; Uzun, A. Evaluation of plasma chemerin levels in patients with non-dipper blood pressure patterns. Med. Sci. Monit., 2014, 20, 698-705.
[http://dx.doi.org/10.12659/MSM.890784] [PMID: 24769499]
[91]
Guo, Y.; Pei, Y.; Li, K.; Cui, W.; Zhang, D. DNA N6-methyladenine modification in hypertension. Aging (Albany NY), 2020, 12(7), 6276-6291.
[http://dx.doi.org/10.18632/aging.103023] [PMID: 32283543]
[92]
Van Cauwenberghe, C.; Van Broeckhoven, C.; Sleegers, K. The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet. Med., 2016, 18(5), 421-430.
[http://dx.doi.org/10.1038/gim.2015.117] [PMID: 26312828]
[93]
Keogh-Brown, M.R.; Jensen, H.T.; Arrighi, H.M.; Smith, R.D. The impact of Alzheimer’s disease on the Chinese economy. EBioMedicine, 2015, 4, 184-190.
[http://dx.doi.org/10.1016/j.ebiom.2015.12.019] [PMID: 26981556]
[94]
Chouliaras, L.; Mastroeni, D.; Delvaux, E.; Grover, A.; Kenis, G.; Hof, P.R.; Steinbusch, H.W.M.; Coleman, P.D.; Rutten, B.P.F.; van den Hove, D.L.A. Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer’s disease patients. Neurobiol. Aging, 2013, 34(9), 2091-2099.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.02.021] [PMID: 23582657]
[95]
Coppieters, N.; Dieriks, B.V.; Lill, C.; Faull, R.L.M.; Curtis, M.A.; Dragunow, M. Global changes in DNA methylation and hydroxymethylation in Alzheimer’s disease human brain. Neurobiol. Aging, 2014, 35(6), 1334-1344.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.11.031] [PMID: 24387984]
[96]
Bradley-Whitman, M.A.; Lovell, M.A. Epigenetic changes in the progression of Alzheimer’s disease. Mech. Ageing Dev., 2013, 134(10), 486-495.
[http://dx.doi.org/10.1016/j.mad.2013.08.005] [PMID: 24012631]
[97]
Lashley, T.; Gami, P.; Valizadeh, N.; Li, A.; Revesz, T.; Balazs, R. Alterations in global DNA methylation and hydroxymethylation are not detected in Alzheimer’s disease. Neuropathol. Appl. Neurobiol., 2015, 41(4), 497-506.
[http://dx.doi.org/10.1111/nan.12183]
[98]
Ellison, E.M.; Abner, E.L.; Lovell, M.A. Multiregional analysis of global 5-methylcytosine and 5-hydroxymethylcytosine throughout the progression of Alzheimer’s disease. J. Neurochem., 2017, 140(3), 383-394.
[99]
Bakulski, K.M.; Dolinoy, D.C.; Sartor, M.A.; Paulson, H.L.; Konen, J.R.; Lieberman, A.P.; Albin, R.L.; Hu, H.; Rozek, L.S. Genome-wide DNA methylation differences between late-onset Alzheimer’s disease and cognitively normal controls in human frontal cortex. J. Alzheimers Dis., 2012, 29(3), 571-588.
[http://dx.doi.org/10.3233/JAD-2012-111223] [PMID: 22451312]
[100]
De Jager, P.L.; Srivastava, G.; Lunnon, K.; Burgess, J.; Schalkwyk, L.C.; Yu, L.; Eaton, M.L.; Keenan, B.T.; Ernst, J.; McCabe, C.; Tang, A.; Raj, T.; Replogle, J.; Brodeur, W.; Gabriel, S.; Chai, H.S.; Younkin, C.; Younkin, S.G.; Zou, F.; Szyf, M.; Epstein, C.B.; Schneider, J.A.; Bernstein, B.E.; Meissner, A.; Ertekin-Taner, N.; Chibnik, L.B.; Kellis, M.; Mill, J.; Bennett, D.A. Alzheimer’s disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat. Neurosci., 2014, 17(9), 1156-1163.
[http://dx.doi.org/10.1038/nn.3786] [PMID: 25129075]
[101]
Humphries, C.E.; Kohli, M.A.; Nathanson, L.; Whitehead, P.; Beecham, G.; Martin, E.; Mash, D.C.; Pericak-Vance, M.A.; Gilbert, J. Integrated whole transcriptome and DNA methylation analysis identifies gene networks specific to late-onset Alzheimer’s disease. J. Alzheimers Dis., 2015, 44(3), 977-987.
[http://dx.doi.org/10.3233/JAD-141989] [PMID: 25380588]
[102]
Watson, C.T.; Roussos, P.; Garg, P.; Ho, D.J.; Azam, N.; Katsel, P.L.; Haroutunian, V.; Sharp, A.J. Genome-wide DNA methylation profiling in the superior temporal gyrus reveals epigenetic signatures associated with Alzheimer’s disease. Genome Med., 2016, 8(1), 5.
[http://dx.doi.org/10.1186/s13073-015-0258-8] [PMID: 26803900]
[103]
de Mello, V.D.F.; Pulkkinen, L.; Lalli, M.; Kolehmainen, M.; Pihlajamäki, J.; Uusitupa, M. DNA methylation in obesity and type 2 diabetes. Ann. Med., 2014, 46(3), 103-113.
[http://dx.doi.org/10.3109/07853890.2013.857259] [PMID: 24779963]
[104]
Murea, M.; Ma, L.; Freedman, B.I. Genetic and environmental factors associated with type 2 diabetes and diabetic vascular complications. Rev. Diabet. Stud., 2012, 9(1), 6-22.
[http://dx.doi.org/10.1900/RDS.2012.9.6] [PMID: 22972441]
[105]
Poirier, L.A.; Brown, A.T.; Fink, L.M.; Wise, C.K.; Randolph, C.J.; Delongchamp, R.R.; Fonseca, V.A. Blood S-adenosylmethionine concentrations and lymphocyte methylenetetrahydrofolate reductase activity in diabetes mellitus and diabetic nephropathy. Metabolism, 2001, 50(9), 1014-1018.
[http://dx.doi.org/10.1053/meta.2001.25655] [PMID: 11555831]
[106]
Volkmar, M.; Dedeurwaerder, S.; Cunha, D.A.; Ndlovu, M.N.; Defrance, M.; Deplus, R.; Calonne, E.; Volkmar, U.; Igoillo-Esteve, M.; Naamane, N.; Del Guerra, S.; Masini, M.; Bugliani, M.; Marchetti, P.; Cnop, M.; Eizirik, D.L.; Fuks, F. DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. EMBO J., 2012, 31(6), 1405-1426.
[http://dx.doi.org/10.1038/emboj.2011.503]
[107]
Arroyo-Jousse, V.; García-Díaz, D.F.; Pérez-Bravo, F. Global DNA methylation and homocysteine levels are lower in type 1 diabetes patients. Rev. Med. Chil., 2015, 143(5), 562-568.
[http://dx.doi.org/10.4067/S0034-98872015000500002] [PMID: 26203566]
[108]
Kim, M. DNA methylation: a cause and consequence of type 2 diabetes. Genomics Inform., 2019, 17(4), e38-e38.
[http://dx.doi.org/10.5808/GI.2019.17.4.e38] [PMID: 31896238]
[109]
Shridhar, K.; Walia, G.K.; Aggarwal, A.; Gulati, S.; Geetha, A.V.; Prabhakaran, D.; Dhillon, P.K.; Rajaraman, P. DNA methylation markers for oral pre-cancer progression: a critical review. Oral Oncol., 2016, 53, 1-9.
[http://dx.doi.org/10.1016/j.oraloncology.2015.11.012] [PMID: 26690652]
[110]
Balgkouranidou, I.; Liloglou, T.; Lianidou, E.S. Lung cancer epigenetics: emerging biomarkers. Biomarkers Med., 2013, 7(1), 49-58.
[http://dx.doi.org/10.2217/bmm.12.111]
[111]
Ooki, A.; Yamashita, K.; Kikuchi, S.; Sakuramoto, S.; Katada, N.; Kokubo, K.; Kobayashi, H.; Kim, M.S.; Sidransky, D.; Watanabe, M. Potential utility of HOP homeobox gene promoter methylation as a marker of tumor aggressiveness in gastric cancer. Oncogene, 2010, 29(22), 3263-3275.
[http://dx.doi.org/10.1038/onc.2010.76] [PMID: 20228841]
[112]
Dong, W.; Wang, L.; Chen, X.; Sun, P.; Wu, Y.J.D.d. sciences, Upregulation and CpG island hypomethylation of the TRF2 gene in human gastric cancer. Biomarkers Med., 2010, 55(4), 997-1003.
[113]
Kwon, O-H.; Park, J-L.; Kim, M.; Kim, J-H.; Lee, H-C.; Kim, H-J.; Noh, S-M.; Song, K-S.; Yoo, H-S.; Paik, S-G.; Kim, S-Y.; Kim, Y.S. Aberrant up-regulation of LAMB3 and LAMC2 by promoter demethylation in gastric cancer. Biochem. Biophys. Res. Commun., 2011, 406(4), 539-545.
[http://dx.doi.org/10.1016/j.bbrc.2011.02.082] [PMID: 21345334]
[114]
Li, L-C.; Okino, S.T.; Dahiya, R. DNA methylation in prostate cancer. Biochim. Biophys. Acta (BBA) –. Rev. Can., 2004, 1704(2), 87-102.
[115]
Yegnasubramanian, S.; Kowalski, J.; Gonzalgo, M.L.; Zahurak, M.; Piantadosi, S.; Walsh, P.C.; Bova, G.S.; De Marzo, A.M.; Isaacs, W.B.; Nelson, W.G.J.C.R. Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res.,, 2004, 64(6), 1975-1986.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3972]
[116]
Chen, H.; Ye, F.; Zhang, J.; Lu, W.; Cheng, Q.; Xie, X. Loss of OPCML expression and the correlation with CpG island methylation and LOH in ovarian serous carcinoma. Eur. J. Gynaecol. Oncol., 2007, 28(6), 464-467.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy