Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Skin Involvement in Paediatric Patients with Type 1 Diabetes

Author(s): Stefano Passanisi*, Giuseppina Salzano and Fortunato Lombardo

Volume 18, Issue 4, 2022

Published on: 06 January, 2022

Article ID: e030921196145 Pages: 10

DOI: 10.2174/1573399817666210903153837

Price: $65

Abstract

Skin involvement is an overlooked aspect in the management of paediatric patients with type 1 diabetes. A comprehensive search of published literature using the PubMed database was carried out using the following key terms: “children,” “pediatric/paediatric patients,” “skin,” “skin disorders,” “type 1 diabetes.” Dermatological side effects are frequently observed among diabetic children and adolescents. Insulin-induced lipodystrophies and allergic contact dermatitis caused by insulin pumps or glycaemic sensors are the most common skin reactions in these patients. Furthermore, several diabetes-associated skin diseases such as necrobiosis lipoidica, granuloma annulare, vitiligo, and bullosis diabeticorum may already be present in paediatric patients. Paediatric diabetes specialists should pay attention to their patients’ skin to recognize these disorders, identify the potential causes, and choose the most suitable treatment. Finally, the evaluation of skin concentrations of advanced glycation end-products using non-invasive diagnostic techniques may be used to assess the risk of chronic complications of diabetes as early as adolescence.

Keywords: Advanced glycation end-products, contact dermatitis, granuloma annulare, insulin, lipoatrophy, lipohypertrophy, necrobiosis lipoidica, skin autofluorescence.

[1]
American Diabetes Association.2. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2021. Diabetes care 2021; 44(Suppl 1): S15-33.
[2]
Gomez-Lopera N, Pineda-Trujillo N, Diaz-Valencia PA. Correlating the global increase in type 1 diabetes incidence across age groups with national economic prosperity: A systematic review. World J Diabetes 2019; 10(12): 560-80.
[http://dx.doi.org/10.4239/wjd.v10.i12.560] [PMID: 31915518]
[3]
Stephens E. Insulin therapy in type 1 diabetes. Med Clin North Am 2015; 99(1): 145-56.
[http://dx.doi.org/10.1016/j.mcna.2014.08.016] [PMID: 25456648]
[4]
Chen C, Zhao X-L, Li Z-H, Zhu Z-G, Qian S-H, Flewitt AJ. Current and emerging technology for continuous glucose monitoring. Sensors (Basel) 2017; 17(1): 182.
[http://dx.doi.org/10.3390/s17010182] [PMID: 28106820]
[5]
Marks BE, Wolfsdorf JI. Monitoring of pediatric type 1 diabetes. Front Endocrinol (Lausanne) 2020; 11: 128.
[http://dx.doi.org/10.3389/fendo.2020.00128] [PMID: 32256447]
[6]
Lombardo F, Passanisi S, Tinti D, Messina MF, Salzano G, Rabbone I. High frequency of dermatological complications in children and adolescents with type 1 diabetes: A web-based survey. J Diabetes Sci Technol 2020; 1932296820947072.
[http://dx.doi.org/10.1177/1932296820947072] [PMID: 32757778]
[7]
Burgmann J, Biester T, Grothaus J, Kordonouri O, Ott H. Pediatric diabetes and skin disease (PeDiSkin): A cross-sectional study in 369 children, adolescents and young adults with type 1 diabetes. Pediatr Diabetes 2020; 21(8): 1556-65.
[http://dx.doi.org/10.1111/pedi.13130] [PMID: 32985057]
[8]
Makrantonaki E, Jiang D, Hossini AM, et al. Diabetes mellitus and the skin. Rev Endocr Metab Disord 2016; 17(3): 269-82.
[http://dx.doi.org/10.1007/s11154-016-9373-0] [PMID: 27432328]
[9]
Lima AL, Illing T, Schliemann S, Elsner P. Cutaneous manifestations of diabetes mellitus: A review. Am J Clin Dermatol 2017; 18(4): 541-53.
[http://dx.doi.org/10.1007/s40257-017-0275-z] [PMID: 28374407]
[10]
Monnier VM, Sun W, Gao X, et al. Skin collagen advanced glycation endproducts (AGEs) and the long-term progression of sub- clinical cardiovascular disease in type 1 diabetes. Cardiovasc Diabetol 2015; 14: 118.
[http://dx.doi.org/10.1186/s12933-015-0266-4] [PMID: 26341632]
[11]
Thewjitcharoen Y, Prasartkaew H, Tongsumrit P, et al. Prevalence, risk factors, and clinical characteristics of lipodystrophy in insulin-treated patients with diabetes: An old problem in a new era of modern insulin. Diabetes Metab Syndr Obes 2020; 13: 4609-20.
[http://dx.doi.org/10.2147/DMSO.S282926] [PMID: 33273836]
[12]
De Coninck C, Frid A, Gaspar R, et al. Results and analysis of the 2008-2009 insulin injection technique questionnaire survey. J Diabetes 2010; 2(3): 168-79.
[http://dx.doi.org/10.1111/j.1753-0407.2010.00077.x] [PMID: 20923482]
[13]
Frid AH, Hirsch LJ, Menchior AR, Morel DR, Strauss KW. Worldwide injection technique questionnaire study: Injecting complications and the role of the professional. Mayo Clin Proc 2016; 91(9): 1224-30.
[http://dx.doi.org/10.1016/j.mayocp.2016.06.012] [PMID: 27594186]
[14]
Bari B, Corbeil M-A, Farooqui H, et al. Insulin injection practices in a population of canadians with diabetes: An observational study. Diabetes Ther 2020; 11(11): 2595-609.
[http://dx.doi.org/10.1007/s13300-020-00913-y] [PMID: 32893337]
[15]
Baruah MP, Kalra S, Bose S, Deka J. An audit of insulin usage and insulin injection practices in a large indian cohort. Indian J Endocrinol Metab 2017; 21(3): 443-52.
[http://dx.doi.org/10.4103/ijem.IJEM_548_16] [PMID: 28553603]
[16]
Pozzuoli GM, Laudato M, Barone M, Crisci F, Pozzuoli B. Errors in insulin treatment management and risk of lipohypertrophy. Acta Diabetol 2018; 55(1): 67-73.
[http://dx.doi.org/10.1007/s00592-017-1066-y] [PMID: 29098390]
[17]
Fujikura J, Fujimoto M, Yasue S, et al. Insulin-induced lipohypertrophy: report of a case with histopathology. Endocr J 2005; 52(5): 623-8.
[http://dx.doi.org/10.1507/endocrj.52.623] [PMID: 16284443]
[18]
Tsadik AG, Atey TM, Nedi T, Fantahun B, Feyissa M. Effect of insulin-induced lipodystrophy on glycemic control among children and adolescents with diabetes in tikur anbessa specialized hospital, addis Ababa, Ethiopia. J Diabetes Res 2018; 2018: 4910962.
[http://dx.doi.org/10.1155/2018/4910962] [PMID: 30116742]
[19]
Kordonouri O, Lauterborn R, Deiss D. Lipohypertrophy in young patients with type 1 diabetes. Diabetes Care 2002; 25(3): 634.
[http://dx.doi.org/10.2337/diacare.25.3.634] [PMID: 11874968]
[20]
Omar MA, El-Kafoury AA, El-Araby RI. Lipohypertrophy in children and adolescents with type 1 diabetes and the associated factors. BMC Res Notes 2011; 4: 290.
[http://dx.doi.org/10.1186/1756-0500-4-290] [PMID: 21838879]
[21]
Deeb A, Abdelrahman L, Tomy M, et al. Impact of insulin injection and infusion routines on lipohypertrophy and glycemic control in children and adults with diabetes. Diabetes Ther 2019; 10(1): 259-67.
[http://dx.doi.org/10.1007/s13300-018-0561-7] [PMID: 30617932]
[22]
Gupta SS, Gupta KS, Gathe SS, Bamrah P, Gupta SS. Clinical implications of lipohypertrophy among people with type 1 diabetes in India. Diabetes Technol Ther 2018; 20(7): 483-91.
[http://dx.doi.org/10.1089/dia.2018.0074] [PMID: 29932731]
[23]
Barola A, Tiwari P, Bhansali A, Grover S, Dayal D. Insulin-related lipohypertrophy: Lipogenic action or tissue trauma? Front Endocrinol (Lausanne) 2018; 9: 638. (Lausanne).
[http://dx.doi.org/10.3389/fendo.2018.00638] [PMID: 30425682]
[24]
Conwell LS, Pope E, Artiles AM, Mohanta A, Daneman A, Daneman D. Dermatological complications of continuous subcutaneous insulin infusion in children and adolescents. J Pediatr 2008; 152(5): 622-8.
[http://dx.doi.org/10.1016/j.jpeds.2007.10.006] [PMID: 18410763]
[25]
Seyoum B, Abdulkadir J. Systematic inspection of insulin injection sites for local complications related to incorrect injection technique. Trop Doct 1996; 26(4): 159-61.
[http://dx.doi.org/10.1177/004947559602600406] [PMID: 8937229]
[26]
Binder E, Lange O, Edlinger M, et al. Frequency of dermatological side effects of continuous subcutaneous insulin infusion in children and adolescents with type 1 diabetes. Exp Clin Endocrinol Diabetes 2015; 123(4): 260-4.
[http://dx.doi.org/10.1055/s-0034-1394381] [PMID: 25607337]
[27]
Al Hayek AA, Robert AA, Al Dawish MA. Skin-related complications among adolescents with type 1 diabetes using insulin pump therapy. Clin Med Insights Endocrinol Diabetes 2018; 11: 1179551418798794.
[http://dx.doi.org/10.1177/1179551418798794] [PMID: 30202212]
[28]
Barola A, Tiwari P, Bhansali A. Insulin-mediated lipohypertrophy: an uncommon cause of diabetic ketoacidosis. BMJ Case Rep 2017; 2017: bcr2017220387.
[http://dx.doi.org/10.1136/bcr-2017-220387] [PMID: 28801327]
[29]
DeSalvo DJ, Maahs DM, Messer L, et al. Effect of lipohypertrophy on accuracy of continuous glucose monitoring in patients with type 1 diabetes. Diabetes Care 2015; 38(10): e166-7.
[http://dx.doi.org/10.2337/dc15-1267] [PMID: 26307604]
[30]
Billings JK, Milgraum SS, Gupta AK, Headington JT, Rasmussen JE. Lipoatrophic panniculitis: a possible autoimmune inflammatory disease of fat. Report of three cases. Arch Dermatol 1987; 123(12): 1662-6.
[http://dx.doi.org/10.1001/archderm.1987.01660360090018] [PMID: 3688906]
[31]
Atlan-Gepner C, Bongrand P, Farnarier C, et al. Insulin-induced lipoatrophy in type I diabetes. A possible tumor necrosis factor-alpha-mediated dedifferentiation of adipocytes. Diabetes Care 1996; 19(11): 1283-5.
[http://dx.doi.org/10.2337/diacare.19.11.1283] [PMID: 8908396]
[32]
Lopez X, Castells M, Ricker A, Velazquez EF, Mun E, Goldfine AB. Human insulin analog-induced lipoatrophy. Diabetes Care 2008; 31(3): 442-4.
[http://dx.doi.org/10.2337/dc07-1739] [PMID: 18162498]
[33]
Reeves WG, Allen BR, Tattersall RB. Insulin-induced lipoatrophy: evidence for an immune pathogenesis. BMJ 1980; 280(6230): 1500-3.
[http://dx.doi.org/10.1136/bmj.280.6230.1500] [PMID: 6992934]
[34]
Schernthaner G. Immunogenicity and allergenic potential of animal and human insulins. Diabetes Care 1993; 16(Suppl. 3): 155-65.
[http://dx.doi.org/10.2337/diacare.16.3.155] [PMID: 8299472]
[35]
Arranz A, Andia V, López-Guzmán A. A case of lipoatrophy with Lispro insulin without insulin pump therapy. Diabetes Care 2004; 27(2): 625-6.
[http://dx.doi.org/10.2337/diacare.27.2.625] [PMID: 14747261]
[36]
Ampudia-Blasco FJ, Girbes J, Carmena R. A case of lipoatrophy with insulin glargine: long-acting insulin analogs are not exempt from this complication. Diabetes Care 2005; 28(12): 2983.
[http://dx.doi.org/10.2337/diacare.28.12.2983] [PMID: 16306570]
[37]
Babiker A, Datta V. Lipoatrophy with insulin analogues in type I diabetes. Arch Dis Child 2011; 96(1): 101-2.
[http://dx.doi.org/10.1136/adc.2010.183731] [PMID: 20570843]
[38]
Griffin ME, Feder A, Tamborlane WV. Lipoatrophy associated with lispro insulin in insulin pump therapy: an old complication, a new cause? Diabetes Care 2001; 24(1): 174.
[http://dx.doi.org/10.2337/diacare.24.1.174] [PMID: 11194227]
[39]
Ampudia-Blasco FJ, Hasbum B, Carmena R. A new case of lipoatrophy with lispro insulin in insulin pump therapy: is there any insulin preparation free of complications? Diabetes Care 2003; 26(3): 953-4.
[http://dx.doi.org/10.2337/diacare.26.3.953] [PMID: 12610070]
[40]
Kordonouri O, Biester T, Schnell K, et al. Lipoatrophy in children with type 1 diabetes: an increasing incidence? J Diabetes Sci Technol 2015; 9(2): 206-8.
[http://dx.doi.org/10.1177/1932296814558348] [PMID: 25411060]
[41]
Salgin B, Meissner T, Beyer P, et al. Lipoatrophy is associated with an increased risk of Hashimoto’s thyroiditis and coeliac disease in female patients with type 1 diabetes. Horm Res Paediatr 2013; 79(6): 368-72.
[http://dx.doi.org/10.1159/000351708] [PMID: 23796529]
[42]
Holstein A, Stege H, Kovacs P. Lipoatrophy associated with the use of insulin analogues: a new case associated with the use of insulin glargine and review of the literature. Expert Opin Drug Saf 2010; 9(2): 225-31.
[http://dx.doi.org/10.1517/14740330903496402] [PMID: 20001763]
[43]
Swelheim HT, Westerlaken C, van Pinxteren-Nagler E, Bocca G. Lipoatrophy in a girl with type 1 diabetes: beneficial effects of treatment with a glucocorticoid added to an insulin analog. Diabetes Care 2012; 35(3): e22.
[http://dx.doi.org/10.2337/dc11-2135] [PMID: 22355025]
[44]
Kordonouri O, Biester T, Weidemann J, et al. Lipoatrophy in children, adolescents and adults with insulin pump treatment: Is there a beneficial effect of insulin glulisine? Pediatr Diabetes 2020; 21(7): 1285-91.
[http://dx.doi.org/10.1111/pedi.13094] [PMID: 32738019]
[45]
Kostner L, Anzengruber F, Guillod C, Recher M, Schmid-Grendelmeier P, Navarini AA. Allergic contact dermatitis. Immunol Allergy Clin North Am 2017; 37(1): 141-52.
[http://dx.doi.org/10.1016/j.iac.2016.08.014] [PMID: 27886903]
[46]
Mowad CM, Anderson B, Scheinman P, Pootongkam S, Nedorost S, Brod B. Allergic contact dermatitis: Patient diagnosis and evaluation. J Am Acad Dermatol 2016; 74(6): 1029-40.
[http://dx.doi.org/10.1016/j.jaad.2015.02.1139] [PMID: 27185421]
[47]
Lombardo F, Salzano G, Crisafulli G, et al. Allergic contact dermatitis in pediatric patients with type 1 diabetes: An emerging issue. Diabetes Res Clin Pract 2020; 162: 108089.
[http://dx.doi.org/10.1016/j.diabres.2020.108089] [PMID: 32087268]
[48]
Pyl J, Dendooven E, Van Eekelen I, et al. Prevalence and prevention of contact dermatitis caused by freestyle libre: A monocentric experience. Diabetes Care 2020; 43(4): 918-20.
[http://dx.doi.org/10.2337/dc19-1354] [PMID: 32054722]
[49]
Heinemann L, Kamann S. Adhesives used for diabetes medical devices: A neglected risk with serious consequences? J Diabetes Sci Technol 2016; 10(6): 1211-5.
[http://dx.doi.org/10.1177/1932296816662949] [PMID: 27566734]
[50]
Schwensen JF, Friis UF, Zachariae C, Johansen JD. Sensitization to cyanoacrylates caused by prolonged exposure to a glucose sensor set in a diabetic child. Contact Dermat 2016; 74(2): 124-5.
[http://dx.doi.org/10.1111/cod.12503] [PMID: 26763993]
[51]
Aschenbeck KA, Hylwa SA. A diabetic’s allergy: ethyl cyanoacrylate in glucose sensor adhesive. Dermat Contact Atopic Occup Drug 2017; 28(4): 289-91.
[http://dx.doi.org/10.1097/DER.0000000000000281] [PMID: 28538007]
[52]
Herman A, Aerts O, Baeck M, et al. Allergic contact dermatitis caused by isobornyl acrylate in Freestyle® Libre, a newly introduced glucose sensor. Contact Dermat 2017; 77(6): 367-73.
[http://dx.doi.org/10.1111/cod.12866] [PMID: 28804907]
[53]
Kamann S, Aerts O, Heinemann L. Further evidence of severe allergic contact dermatitis from isobornyl acrylate while using a continuous glucose monitoring system. J Diabetes Sci Technol 2018; 12(3): 630-3.
[http://dx.doi.org/10.1177/1932296818762946] [PMID: 29542347]
[54]
Raison-Peyron N, Mowitz M, Bonardel N, Aerts O, Bruze M. Allergic contact dermatitis caused by isobornyl acrylate in OmniPod, an innovative tubeless insulin pump. Contact Dermat 2018; 79(2): 76-80.
[http://dx.doi.org/10.1111/cod.12995] [PMID: 29635853]
[55]
Passanisi S, Lombardo F, Barbalace A, et al. Allergic contact dermatitis and diabetes medical devices: 2 clinical cases. Contact Dermat 2018; 79(2): 115-7.
[http://dx.doi.org/10.1111/cod.13012] [PMID: 29708580]
[56]
Mine Y, Urakami T, Matsuura D. Allergic contact dermatitis caused by isobornyl acrylate when using the FreeStyle® Libre. J Diabetes Investig 2019; 10(5): 1382-4.
[http://dx.doi.org/10.1111/jdi.13023] [PMID: 30758915]
[57]
Herman A, Mowitz M, Aerts O, et al. Unexpected positive patch test reactions to sesquiterpene lactones in patients sensitized to the glucose sensor FreeStyle Libre. Contact Dermat 2019; 81(5): 354-67.
[http://dx.doi.org/10.1111/cod.13330] [PMID: 31166016]
[58]
Hyry HSI, Liippo JP, Virtanen HM. Allergic contact dermatitis caused by glucose sensors in type 1 diabetes patients. Contact Dermat 2019; 81(3): 161-6.
[http://dx.doi.org/10.1111/cod.13337] [PMID: 31206704]
[59]
Lombardo F, Passanisi S, Caminiti L, et al. High prevalence of skin reactions among pediatric patients with type 1 diabetes using new technologies: The alarming role of colophonium. Diabetes Technol Ther 2020; 22(1): 53-6.
[http://dx.doi.org/10.1089/dia.2019.0236] [PMID: 31464516]
[60]
Herman A, Darrigade A-S, de Montjoye L, Baeck M. Contact dermatitis caused by glucose sensors in diabetic children. Contact Dermat 2020; 82(2): 105-11.
[http://dx.doi.org/10.1111/cod.13429] [PMID: 31657469]
[61]
Ahrensbøll-Friis U, Simonsen AB, Zachariae C, Thyssen JP, Johansen JD. Contact dermatitis caused by glucose sensors, insulin pumps, and tapes: Results from a 5-year period. Contact Dermat 2021; 84(2): 75-81.
[http://dx.doi.org/10.1111/cod.13664] [PMID: 32677709]
[62]
Aerts O, Herman A, Mowitz M, Bruze M, Goossens A. Isobornyl acrylate. Dermatitis 2020; 31(1): 4-12.
[http://dx.doi.org/10.1097/DER.0000000000000549] [PMID: 31913984]
[63]
Foti C, Romita P, Rigano L, et al. Isobornyl acrylate: an impurity in alkyl glucosides. Cutan Ocul Toxicol 2016; 35(2): 115-9.
[PMID: 26095233]
[64]
Vandebuerie L, Aerts C, Goossens A. Allergic contact dermatitis resulting from multiple colophonium-related allergen sources. Contact Dermat 2014; 70(2): 117-9.
[http://dx.doi.org/10.1111/cod.12144] [PMID: 24450825]
[65]
Mowitz M, Herman A, Baeck M, et al. N,N-dimethylacrylamide-A new sensitizer in the FreeStyle Libre glucose sensor. Contact Dermat 2019; 81(1): 27-31.
[http://dx.doi.org/10.1111/cod.13243] [PMID: 30773644]
[66]
Berg AK, Simonsen AB, Svensson J. Perception and possible causes of skin problems to insulin pump and glucose sensor: Results from pediatric focus groups. Diabetes Technol Ther 2018; 20(8): 566-70.
[http://dx.doi.org/10.1089/dia.2018.0089] [PMID: 30044134]
[67]
Weng AT, Zachariae C, Christensen KB, Svensson J, Berg AK. Five-Month follow-up shows no improvement in dermatological complications in children with type 1 diabetes using continuous glucose monitoring systems and insulin pumps. J Diabetes Sci Technol 2021; 15(2): 317-23.
[http://dx.doi.org/10.1177/1932296819882425] [PMID: 31619071]
[68]
Paret M, Barash G, Rachmiel M. “Out of the box” solution for skin problems due to glucose-monitoring technology in youth with type 1 diabetes: real-life experience with fluticasone spray. Acta Diabetol 2020; 57(4): 419-24.
[http://dx.doi.org/10.1007/s00592-019-01446-y] [PMID: 31705297]
[69]
Bonura C, Frontino G, Rigamonti A, et al. Necrobiosis lipoidica diabeticorum: A pediatric case report. Dermatoendocrinol 2014; 6(1): e27790.
[http://dx.doi.org/10.4161/derm.27790] [PMID: 24575162]
[70]
Dissemond J. Images in clinical medicine. Necrobiosis lipoidica diabeticorum. N Engl J Med 2012; 366(26): 2502.
[http://dx.doi.org/10.1056/NEJMicm1109700] [PMID: 22738100]
[71]
De Silva BD, Schofield OM, Walker JD. The prevalence of necrobiosis lipoidica diabeticorum in children with type 1 diabetes. Br J Dermatol 1999; 141(3): 593-4.
[http://dx.doi.org/10.1046/j.1365-2133.1999.03081.x] [PMID: 10583092]
[72]
Pavlović MD, Milenković T, Dinić M, et al. The prevalence of cutaneous manifestations in young patients with type 1 diabetes. Diabetes Care 2007; 30(8): 1964-7.
[http://dx.doi.org/10.2337/dc07-0267] [PMID: 17519431]
[73]
Hammer E, Lilienthal E, Hofer SE, Schulz S, Bollow E, Holl RW. Risk factors for necrobiosis lipoidica in Type 1 diabetes mellitus. Diabet Med 2017; 34(1): 86-92.
[http://dx.doi.org/10.1111/dme.13138] [PMID: 27101431]
[74]
Gottrup F, Karlsmark T. Leg ulcers: uncommon presentations. Clin Dermatol 2005; 23(6): 601-11.
[http://dx.doi.org/10.1016/j.clindermatol.2005.01.018] [PMID: 16325069]
[75]
Hammami H, Youssef S, Jaber K, Dhaoui MR, Doss N. Perforating necrobiosis lipoidica in a girl with type 1 diabetes mellitus: a new case reported. Dermatol Online J 2008; 14(7): 11.
[http://dx.doi.org/10.5070/D370X8Q7VB] [PMID: 18718195]
[76]
Kordonouri O, Maguire AM, Knip M, et al. Other complications and associated conditions with diabetes in children and adolescents. Pediatr Diabetes 2009; 10(Suppl. 12): 204-10.
[http://dx.doi.org/10.1111/j.1399-5448.2009.00573.x] [PMID: 19754631]
[77]
Kavala M, Sudogan S, Zindanci I, et al. Significant improvement in ulcerative necrobiosis lipoidica with hydroxychloroquine. Int J Dermatol 2010; 49(4): 467-9.
[http://dx.doi.org/10.1111/j.1365-4632.2010.04149.x] [PMID: 20465710]
[78]
Patsatsi A, Kyriakou A, Sotiriadis D. Necrobiosis lipoidica: early diagnosis and treatment with tacrolimus. Case Rep Dermatol 2011; 3(1): 89-93.
[http://dx.doi.org/10.1159/000327936] [PMID: 21577369]
[79]
Berking C, Hegyi J, Arenberger P, Ruzicka T, Jemec GBE. Photodynamic therapy of necrobiosis lipoidica-a multicenter study of 18 patients. Dermatology 2009; 218(2): 136-9.
[http://dx.doi.org/10.1159/000182259] [PMID: 19060464]
[80]
Bergqvist E, Bergqvist G. The long-term effect of pulsed dye laser on Necrobiosis Lipoidica: A case study. J Cosmet Laser Ther 2019; 21(1): 17-8.
[http://dx.doi.org/10.1080/14764172.2018.1439966] [PMID: 29461125]
[81]
Suárez-Amor O, Pérez-Bustillo A, Ruiz-González I, Rodríguez- Prieto MA. Necrobiosis lipoidica therapy with biologicals: an ulcerated case responding to etanercept and a review of the literature. Dermatology 2010; 221(2): 117-21.
[http://dx.doi.org/10.1159/000314694] [PMID: 20805688]
[82]
Schmieder SJ, Harper CD, Schmieder GJ. Granuloma annulare. In: StatPearls. Treasure Island (FL): StatPearls Publishing 2020.
[83]
Sehgal VN, Bhattacharya SN, Verma P. Juvenile, insulin-dependent diabetes mellitus, type 1-related dermatoses. J Eur Acad Dermatol Venereol 2011; 25(6): 625-36.
[http://dx.doi.org/10.1111/j.1468-3083.2010.03912.x] [PMID: 21108666]
[84]
Agrawal AK, Kammen BF, Guo H, Donthineni R. An unusual presentation of subcutaneous granuloma annulare in association with juvenile-onset diabetes: case report and literature review. Pediatr Dermatol 2012; 29(2): 202-5.
[http://dx.doi.org/10.1111/j.1525-1470.2011.01638.x] [PMID: 22085091]
[85]
Akyürek N, Atabek ME, Eklioglu BS, Tol H. A rare case of granuloma annulare in a 6-year-old child with type 1 diabetes. J Pediatr Endocrinol Metab 2013; 26(9-10): 811-2.
[http://dx.doi.org/10.1515/jpem-2013-0143] [PMID: 23729613]
[86]
Evans MJ, Blessing K, Gray ES. Pseudorheumatoid nodule (deep granuloma annulare) of childhood: clinicopathologic features of twenty patients. Pediatr Dermatol 1994; 11(1): 6-9.
[http://dx.doi.org/10.1111/j.1525-1470.1994.tb00064.x] [PMID: 8170852]
[87]
Grogg KL, Nascimento AG. Subcutaneous granuloma annulare in childhood: clinicopathologic features in 34 cases. Pediatrics 2001; 107(3): E42.
[http://dx.doi.org/10.1542/peds.107.3.e42] [PMID: 11230623]
[88]
Maschio M, Marigliano M, Sabbion A, et al. A rare case of granuloma annulare in a 5-year-old child with type 1 diabetes and autoimmune thyroiditis. Am J Dermatopathol 2013; 35(3): 385-7.
[http://dx.doi.org/10.1097/DAD.0b013e318272f6c6] [PMID: 23095340]
[89]
Moran J, Lamb J. Localized granuloma annulare and autoimmune thyroid disease. Are they associated? Can Fam Physician 1995; 41: 2143-4.
[PMID: 8680298]
[90]
Harb JN, George EV, Walker A, Schoch JJ. Concomitant granuloma annulare and necrobiosis lipoidica: do they have a related pathogenesis? Clin Exp Dermatol 2019; 44(6): 674-6.
[http://dx.doi.org/10.1111/ced.13844] [PMID: 30506562]
[91]
Chouk C, Litaiem N. Bullosis diabeticorum. In: StatPearls. Treasure Island (FL): StatPearls Publishin 2020.
[92]
Ghosh SK, Bandyopadhyay D, Chatterjee G. Bullosis diabeticorum: A distinctive blistering eruption in diabetes mellitus. Int J Diabetes Dev Ctries 2009; 29(1): 41-2.
[http://dx.doi.org/10.4103/0973-3930.50714] [PMID: 20062563]
[93]
Larsen K, Jensen T, Karlsmark T, Holstein PE. Incidence of bullosis diabeticorum-a controversial cause of chronic foot ulceration. Int Wound J 2008; 5(4): 591-6.
[http://dx.doi.org/10.1111/j.1742-481X.2008.00476.x] [PMID: 19006577]
[94]
Riad H, Al Ansari H, Mansour K, et al. Pruritic vesicular eruption on the lower legs in a diabetic female. Case Rep Dermatol Med 2013; 2013: 641416.
[http://dx.doi.org/10.1155/2013/641416] [PMID: 24194986]
[95]
Mahajan S, Koranne RV, Sharma SK. Cutaneous manifestation of diabetes mellitus. Indian J Dermatol Venereol Leprol 2003; 69(2): 105-8.
[PMID: 17642848]
[96]
Haroon TS. Diabetes and skin-a review. Scott Med J 1974; 19(6): 257-67.
[http://dx.doi.org/10.1177/003693307401900605] [PMID: 4610746]
[97]
Chiriac A, Costache I, Podoleanu C, Naznean A, Stolnicu S. Bullosis diabeticorum in a young child: Case report of a very rare entity and a literature review. Can J Diabetes 2017; 41(2): 129-31.
[http://dx.doi.org/10.1016/j.jcjd.2016.10.005] [PMID: 28017292]
[98]
Sonani H, Abdul Salim S, Garla VV, Wile A, Palabindala V. Bullosis diabeticorum: A rare presentation with immunoglobulin G (IgG) deposition related vasculopathy. Case report and focused review. Am J Case Rep 2018; 19: 52-6.
[http://dx.doi.org/10.12659/AJCR.905452] [PMID: 29332930]
[99]
Tunuguntla A, Patel KN, Peiris AN, Zakaria WN. Bullosis diabeticorum associated with osteomyelitis. Tenn Med 2004; 97(11): 503-4.
[PMID: 15620205]
[100]
Shahi N, Bradley S, Vowden K, Vowden P. Diabetic bullae: a case series and a new model of surgical management. J Wound Care 2014; 23(6): 326-, 328-330.
[http://dx.doi.org/10.12968/jowc.2014.23.6.326] [PMID: 24920203]
[101]
Bergqvist C, Ezzedine K. Vitiligo: A focus on pathogenesis and its therapeutic implications. J Dermatol 2021; 48(3): 252-70.
[http://dx.doi.org/10.1111/1346-8138.15743] [PMID: 33404102]
[102]
Nahhas AF, Braunberger TL, Hamzavi IH. Update on the management of vitiligo. Skin Therapy Lett 2019; 24(3): 1-6.
[PMID: 31095346]
[103]
Kahaly GJ, Hansen MP. Type 1 diabetes associated autoimmunity. Autoimmun Rev 2016; 15(7): 644-8.
[http://dx.doi.org/10.1016/j.autrev.2016.02.017] [PMID: 26903475]
[104]
Zubair R, Hamzavi IH. Phototherapy for vitiligo. Dermatol Clin 2020; 38(1): 55-62.
[http://dx.doi.org/10.1016/j.det.2019.08.005] [PMID: 31753192]
[105]
Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res 2010; 107(9): 1058-70.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.223545] [PMID: 21030723]
[106]
Brownlee M. Negative consequences of glycation. Metabolism 2000; 49(2): 9-13.
[http://dx.doi.org/10.1016/S0026-0495(00)80078-5] [PMID: 10693913]
[107]
Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414(6865): 813-20.
[http://dx.doi.org/10.1038/414813a] [PMID: 11742414]
[108]
Monnier VM, Bautista O, Kenny D, et al. Skin collagen glycation, glycoxidation, and crosslinking are lower in subjects with long-term intensive versus conventional therapy of type 1 diabetes: relevance of glycated collagen products versus HbA1c as markers of diabetic complications. DCCT Skin Collagen Ancillary Study Group. Diabetes Control and Complications Trial. Diabetes 1999; 48(4): 870-80.
[http://dx.doi.org/10.2337/diabetes.48.4.870] [PMID: 10102706]
[109]
Vélayoudom-Céphise F-L, Rajaobelina K, Helmer C, et al. Skin autofluorescence predicts cardio-renal outcome in type 1 diabetes: a longitudinal study. Cardiovasc Diabetol 2016; 15(1): 127.
[http://dx.doi.org/10.1186/s12933-016-0448-8] [PMID: 27585632]
[110]
Rajaobelina K, Farges B, Nov S, et al. Skin autofluorescence and peripheral neuropathy four years later in type 1 diabetes. Diabetes Metab Res Rev 2017; 33(2): 33.
[http://dx.doi.org/10.1002/dmrr.2832] [PMID: 27235334]
[111]
Blanc-Bisson C, Velayoudom-Cephise FL, Cougnard-Gregoire A, et al. Skin autofluorescence predicts major adverse cardiovascular events in patients with type 1 diabetes: a 7-year follow-up study. Cardiovasc Diabetol 2018; 17(1): 82.
[http://dx.doi.org/10.1186/s12933-018-0718-8] [PMID: 29884175]
[112]
Báez EA, Shah S, Felipe D, Maynard J, Lefevre S, Chalew SA. Skin advanced glycation endproducts are elevated at onset of type 1 diabetes in youth. J Pediatr Endocrinol Metab 2015; 28(1-2): 133-7.
[http://dx.doi.org/10.1515/jpem-2014-0086] [PMID: 25153561]
[113]
Shah S, Baez EA, Felipe DL, Maynard JD, Hempe JM, Chalew SA. Advanced glycation endproducts in children with diabetes. J Pediatr 2013; 163(5): 1427-31.
[http://dx.doi.org/10.1016/j.jpeds.2013.06.044] [PMID: 23919908]
[114]
van der Heyden JC, Birnie E, Mul D, Bovenberg S, Veeze HJ, Aanstoot H-J. Increased skin autofluorescence of children and adolescents with type 1 diabetes despite a well-controlled HbA1c: results from a cohort study. BMC Endocr Disord 2016; 16(1): 49.
[http://dx.doi.org/10.1186/s12902-016-0129-3] [PMID: 27613110]
[115]
Felipe DL, Hempe JM, Liu S, et al. Skin intrinsic fluorescence is associated with hemoglobin A(1c )and hemoglobin glycation index but not mean blood glucose in children with type 1 diabetes. Diabetes Care 2011; 34(8): 1816-20.
[http://dx.doi.org/10.2337/dc11-0049] [PMID: 21636794]
[116]
Cho YH, Craig ME, Januszewski AS, et al. Higher skin autofluorescence in young people with Type 1 diabetes and microvascular complications. Diabet Med 2017; 34(4): 543-50.
[http://dx.doi.org/10.1111/dme.13280] [PMID: 27770590]
[117]
Banser A, Naafs JC, Hoorweg-Nijman JJ, van de Garde EM, van der Vorst MM. Advanced glycation end products, measured in skin, vs. HbA1c in children with type 1 diabetes mellitus. Pediatr Diabetes 2016; 17(6): 426-32.
[http://dx.doi.org/10.1111/pedi.12311] [PMID: 26332801]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy