Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Bioactive Heterocyclic Compounds as Potential Therapeutics in the Treatment of Gliomas: A Review

Author(s): Reyaz Hassan, Roohi Mohi-ud-din, Mohammad Ovais Dar, Abdul Jalil Shah, Prince Ahad Mir, Majeed Shaikh and Faheem Hyder Pottoo*

Volume 22, Issue 3, 2022

Published on: 01 September, 2021

Page: [551 - 565] Pages: 15

DOI: 10.2174/1871520621666210901112954

Price: $65

Abstract

Cancer is one of the most alarming diseases, with an estimation of 9.6 million deaths in 2018. Glioma occurs in glial cells surrounding nerve cells. The majority of the patients with gliomas have a terminal prognosis, and the ailment has significant sway on patients and their families, be it physical, psychological, or economic wellbeing. As Glioma exhibits, both intra and inter tumour heterogeneity with multidrug resistance and current therapies are ineffective. So the development of safer anti gliomas agents is the need of hour. Bioactive heterocyclic compounds, eithernatural or synthetic, are of potential interest since they have been active against different targets with a wide range of biological activities, including anticancer activities. In addition, they can cross the biological barriers and thus interfere with various signalling pathways to induce cancer cell death. All these advantages make bioactive natural compounds prospective candidates in the management of glioma. In this review, we assessed various bioactive heterocyclic compounds, such as jaceosidin, hispudlin, luteolin, silibinin, cannabidiol, tetrahydrocannabinol, didemnin B, thymoquinone, paclitaxel, doxorubicin, and cucurbitacins for their potential anti-glioma activity. Also, different kinds of chemical reactions to obtain various heterocyclic derivatives, e.g. indole, indazole, benzimidazole, benzoquinone, quinoline, quinazoline, pyrimidine, and triazine, are listed.

Keywords: Cancer, gliomas, flavonoids, cannabinoids, heterocyclic compounds, fatty acid conjugates, terpenoids, temozolomide, pyrimidine-based derivatives, triazine-based derivatives.

Graphical Abstract

[1]
Ostrom, Q.T.; Gittleman, H.; Truitt, G.; Boscia, A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011-2015. Neuro-oncol., 2018, 20(Suppl. 4), iv1-iv86.
[http://dx.doi.org/10.1093/neuonc/noy131] [PMID: 30445539]
[2]
Ostrom, Q.T.; Bauchet, L.; Davis, F.G.; Deltour, I.; Fisher, J.L.; Langer, C.E.; Pekmezci, M.; Schwartzbaum, J.A.; Turner, M.C.; Walsh, K.M.; Wrensch, M.R.; Barnholtz-Sloan, J.S. The epidemiology of glioma in adults: a “state of the science” review. Neuro-oncol., 2014, 16(7), 896-913.
[http://dx.doi.org/10.1093/neuonc/nou087] [PMID: 24842956]
[3]
Zhang, N.; Zhang, L.; Qiu, B.; Meng, L.; Wang, X.; Hou, B.L. Correlation of volume transfer coefficient Ktrans with histopathologic grades of gliomas. J. Magn. Reson. Imaging, 2012, 36(2), 355-363.
[http://dx.doi.org/10.1002/jmri.23675] [PMID: 22581762]
[4]
Ostrom, Q.T.; Gittleman, H.; Liao, P.; Rouse, C.; Chen, Y.; Dowling, J.; Wolinsky, Y.; Kruchko, C.; Barnholtz-Sloan, J. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neuro-oncol., 2014, 16(Suppl. 4), iv1-iv63.
[http://dx.doi.org/10.1093/neuonc/nou223] [PMID: 25304271]
[5]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[6]
Omidi, Y.; Barar, J. Impacts of blood-brain barrier in drug delivery and targeting of brain tumors. Bioimpacts, 2012, 2(1), 5-22.
[PMID: 23678437]
[7]
Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol., 2016, 131(6), 803-820.
[http://dx.doi.org/10.1007/s00401-016-1545-1] [PMID: 27157931]
[8]
Ohgaki, H.; Kleihues, P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J. Neuropathol. Exp. Neurol., 2005, 64(6), 479-489.
[http://dx.doi.org/10.1093/jnen/64.6.479] [PMID: 15977639]
[9]
Bleeker, F.E.; Molenaar, R.J.; Leenstra, S. Recent advances in the molecular understanding of glioblastoma. J. Neurooncol., 2012, 108(1), 11-27.
[http://dx.doi.org/10.1007/s11060-011-0793-0] [PMID: 22270850]
[10]
Furnari, F.B.; Fenton, T.; Bachoo, R.M.; Mukasa, A.; Stommel, J.M.; Stegh, A.; Hahn, W.C.; Ligon, K.L.; Louis, D.N.; Brennan, C.; Chin, L.; DePinho, R.A.; Cavenee, W.K. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev., 2007, 21(21), 2683-2710.
[http://dx.doi.org/10.1101/gad.1596707] [PMID: 17974913]
[11]
Bondy, M.; Wiencke, J.; Wrensch, M.; Kyritsis, A.P. Genetics of primary brain tumors: a review. J. Neurooncol., 1994, 18(1), 69-81.
[http://dx.doi.org/10.1007/BF01324606] [PMID: 8057137]
[12]
Molenaar, R.J.; Radivoyevitch, T.; Maciejewski, J.P.; van Noorden, C.J.; Bleeker, F.E. The driver and passenger effects of isocitrate dehydrogenase 1 and 2 mutations in oncogenesis and survival prolongation. Biochim. Biophys. Acta, 2014, 1846(2), 326-341.
[PMID: 24880135]
[13]
Wang, Z.; Bao, Z.; Yan, W.; You, G.; Wang, Y.; Li, X.; Zhang, W. Isocitrate dehydrogenase 1 (IDH1) mutation-specific microRNA signature predicts favorable prognosis in glioblastoma patients with IDH1 wild type. J. Exp. Clin. Cancer Res., 2013, 32(1), 59.
[http://dx.doi.org/10.1186/1756-9966-32-59] [PMID: 23988086]
[14]
Pottoo, F.H.; Javed, N.; Rahman, J.; Abu-Izneid, T.; Khan, F.A. Targeted delivery of miRNA based therapeuticals in the clinical management of glioblastoma multiforme. Semin. Cancer Biol., 2021, 69, 391-398.
[15]
Gilbert, M.R.; Wang, M.; Aldape, K.D.; Stupp, R.; Hegi, M.E.; Jaeckle, K.A.; Armstrong, T.S.; Wefel, J.S.; Won, M.; Blumenthal, D.T.; Mahajan, A.; Schultz, C.J.; Erridge, S.; Baumert, B.; Hopkins, K.I.; Tzuk-Shina, T.; Brown, P.D.; Chakravarti, A.; Curran, W.J., Jr; Mehta, M.P. Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J. Clin. Oncol., 2013, 31(32), 4085-4091.
[http://dx.doi.org/10.1200/JCO.2013.49.6968] [PMID: 24101040]
[16]
Ballabh, P.; Braun, A.; Nedergaard, M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol. Dis., 2004, 16(1), 1-13.
[http://dx.doi.org/10.1016/j.nbd.2003.12.016] [PMID: 15207256]
[17]
Oberoi, R.K.; Parrish, K.E.; Sio, T.T.; Mittapalli, R.K.; Elmquist, W.F.; Sarkaria, J.N. Strategies to improve delivery of anticancer drugs across the blood-brain barrier to treat glioblastoma. Neuro-oncol., 2016, 18(1), 27-36.
[http://dx.doi.org/10.1093/neuonc/nov164] [PMID: 26359209]
[18]
Zhang, J.; Stevens, M.F.; Bradshaw, T.D. Temozolomide: mechanisms of action, repair and resistance. Curr. Mol. Pharmacol., 2012, 5(1), 102-114.
[http://dx.doi.org/10.2174/1874467211205010102] [PMID: 22122467]
[19]
Ray, S.; Bonafede, M.M.; Mohile, N.A. Treatment patterns, survival, and healthcare costs of patients with malignant gliomas in a large US commercially insured population. Am. Health Drug Benefits, 2014, 7(3), 140-149.
[PMID: 24991398]
[20]
Wahl, M.; Chang, S.M.; Phillips, J.J.; Molinaro, A.M.; Costello, J.F.; Mazor, T.; Alexandrescu, S.; Lupo, J.M.; Nelson, S.J.; Berger, M. Probing the PI3K/mTOR pathway in gliomas: a phase II study of everolimus for recurrent adult low grade gliomas. Cancer, 2017, 123(23), 4631.
[http://dx.doi.org/10.1002/cncr.30909] [PMID: 28759109]
[21]
Cacchione, A.; Lodi, M.; Carai, A.; Miele, E.; Tartaglia, M.; Megaro, G.; Del Baldo, G.; Alessi, I.; Colafati, G.S.; Carboni, A.; Boccuto, L.; Diomedi Camassei, F.; Catanzaro, G.; Po, A.; Ferretti, E.; Pedace, L.; Pizzi, S.; Folgiero, V.; Pezzullo, M.; Corsetti, T.; Secco, D.E.; Cefalo, M.G.; Locatelli, F.; Mastronuzzi, A. Upfront treatment with mTOR inhibitor everolimus in pediatric low-grade gliomas: a single-center experience. Int. J. Cancer, 2020, 148(10), 2522-2534.
[http://dx.doi.org/10.1002/ijc.33438] [PMID: 33320972]
[22]
Yerram, P.; Reiss, S.N.; Modelevsky, L.; Gavrilovic, I.T.; Kaley, T. Evaluation of toxicity of carmustine with or without bevacizumab in patients with recurrent or progressive high grade gliomas. J. Neurooncol., 2019, 145(1), 57-63.
[http://dx.doi.org/10.1007/s11060-019-03266-0] [PMID: 31432377]
[23]
Tamura, R.; Tanaka, T.; Miyake, K.; Yoshida, K.; Sasaki, H. Bevacizumab for malignant gliomas: current indications, mechanisms of action and resistance, and markers of response. Brain Tumor Pathol., 2017, 34(2), 62-77.
[http://dx.doi.org/10.1007/s10014-017-0284-x] [PMID: 28386777]
[24]
Sahebjam, S.; Forsyth, P.A.; Tran, N.D.; Arrington, J.A.; Macaulay, R.; Etame, A.B.; Walko, C.M.; Boyle, T.; Peguero, E.N.; Jaglal, M.; Mokhtari, S.; Enderling, H.; Raghunand, N.; Gatewood, T.; Long, W.; Dzierzeski, J.L.; Evernden, B.; Robinson, T.; Wicklund, M.C.; Kim, S.; Thompson, Z.J.; Chen, D.T.; Chinnaiyan, P.; Yu, H.M. Hypofractionated stereotactic re-irradiation with pembrolizumab and bevacizumab in patients with recurrent high-grade gliomas: results from a phase I study. Neuro-oncol., 2021, 23(4), 677-686.
[http://dx.doi.org/10.1093/neuonc/noaa260] [PMID: 33173935]
[25]
Talacchi, A.; Turazzi, S.; Locatelli, F.; Sala, F.; Beltramello, A.; Alessandrini, F.; Manganotti, P.; Lanteri, P.; Gambin, R.; Ganau, M.; Tramontano, V.; Santini, B.; Gerosa, M. Surgical treatment of high-grade gliomas in motor areas. The impact of different supportive technologies: a 171-patient series. J. Neurooncol., 2010, 100(3), 417-426.
[http://dx.doi.org/10.1007/s11060-010-0193-x] [PMID: 20467787]
[26]
Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; Curschmann, J.; Janzer, R.C.; Ludwin, S.K.; Gorlia, T.; Allgeier, A.; Lacombe, D.; Cairncross, J.G.; Eisenhauer, E.; Mirimanoff, R.O. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med., 2005, 352(10), 987-996.
[http://dx.doi.org/10.1056/NEJMoa043330] [PMID: 15758009]
[27]
Gilbert, M.R.; Dignam, J.J.; Armstrong, T.S.; Wefel, J.S.; Blumenthal, D.T.; Vogelbaum, M.A.; Colman, H.; Chakravarti, A.; Pugh, S.; Won, M.; Jeraj, R.; Brown, P.D.; Jaeckle, K.A.; Schiff, D.; Stieber, V.W.; Brachman, D.G.; Werner-Wasik, M.; Tremont-Lukats, I.W.; Sulman, E.P.; Aldape, K.D.; Curran, W.J., Jr; Mehta, M.P. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N. Engl. J. Med., 2014, 370(8), 699-708.
[http://dx.doi.org/10.1056/NEJMoa1308573] [PMID: 24552317]
[28]
Chinot, O.L.; Wick, W.; Mason, W.; Henriksson, R.; Saran, F.; Nishikawa, R.; Carpentier, A.F.; Hoang-Xuan, K.; Kavan, P.; Cernea, D.; Brandes, A.A.; Hilton, M.; Abrey, L.; Cloughesy, T. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N. Engl. J. Med., 2014, 370(8), 709-722.
[http://dx.doi.org/10.1056/NEJMoa1308345] [PMID: 24552318]
[29]
Stupp, R.; Hegi, M.E.; Gorlia, T.; Erridge, S.C.; Perry, J.; Hong, Y-K.; Aldape, K.D.; Lhermitte, B.; Pietsch, T.; Grujicic, D.; Steinbach, J.P.; Wick, W.; Tarnawski, R.; Nam, D.H.; Hau, P.; Weyerbrock, A.; Taphoorn, M.J.; Shen, C.C.; Rao, N.; Thurzo, L.; Herrlinger, U.; Gupta, T.; Kortmann, R.D.; Adamska, K.; McBain, C.; Brandes, A.A.; Tonn, J.C.; Schnell, O.; Wiegel, T.; Kim, C.Y.; Nabors, L.B.; Reardon, D.A.; van den Bent, M.J.; Hicking, C.; Markivskyy, A.; Picard, M.; Weller, M. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol., 2014, 15(10), 1100-1108.
[http://dx.doi.org/10.1016/S1470-2045(14)70379-1] [PMID: 25163906]
[30]
Cheng, S-Y.; Huang, H.J.; Nagane, M.; Ji, X.D.; Wang, D.; Shih, C.C.; Arap, W.; Huang, C.M.; Cavenee, W.K. Suppression of glioblastoma angiogenicity and tumorigenicity by inhibition of endogenous expression of vascular endothelial growth factor. Proc. Natl. Acad. Sci. USA, 1996, 93(16), 8502-8507.
[http://dx.doi.org/10.1073/pnas.93.16.8502] [PMID: 8710899]
[31]
Kirson, E.D.; Gurvich, Z.; Schneiderman, R.; Dekel, E.; Itzhaki, A.; Wasserman, Y.; Schatzberger, R.; Palti, Y. Disruption of cancer cell replication by alternating electric fields. Cancer Res., 2004, 64(9), 3288-3295.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0083] [PMID: 15126372]
[32]
Friedman, H.S.; Prados, M.D.; Wen, P.Y.; Mikkelsen, T.; Schiff, D.; Abrey, L.E.; Yung, W.K.; Paleologos, N.; Nicholas, M.K.; Jensen, R.; Vredenburgh, J.; Huang, J.; Zheng, M.; Cloughesy, T. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J. Clin. Oncol., 2009, 27(28), 4733-4740.
[http://dx.doi.org/10.1200/JCO.2008.19.8721] [PMID: 19720927]
[33]
Kaur, G.; Verma, N. Nature curing cancer-review on structural modification studies with natural active compounds having anti-tumor efficiency. Biotechnol. Rep. (Amst.), 2015, 6, 64-78.
[http://dx.doi.org/10.1016/j.btre.2015.01.005] [PMID: 28626698]
[34]
Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. Metabolites, 2012, 2(2), 303-336.
[http://dx.doi.org/10.3390/metabo2020303] [PMID: 24957513]
[35]
Mir, R.H.; Masoodi, M.H. Phytochemical screening and liquid chromatography-mass spectrometry studies of ethyl acetate extract of Origanum vulgare. Int. J. Pharm. Investig., 2020, 10(2), 132-135.
[http://dx.doi.org/10.5530/ijpi.2020.2.24]
[36]
Bhat, I.A.; Kabeer, S.W.; Reza, M.I.; Mir, R.H.; Dar, M.O. AdipoRon: a novel insulin sensitizer in various complications and the underlying mechanisms: a review. Curr. Mol. Pharmacol., 2020, 13(2), 94-107.
[http://dx.doi.org/10.2174/1874467212666191022102800] [PMID: 31642417]
[37]
Bhat, M.F.; Hassan, R.; Masoodi, M.H. Nuclear magnetic resonance (NMR) for plant profiling and disease metabolomics-fast tracking plant based drug discovery from northern India. Nucl. Magn. Resonance (NMR),, 2018, 2(1)
[38]
Saha, S.K.; Khuda-Bukhsh, A.R. Molecular approaches towards development of purified natural products and their structurally known derivatives as efficient anti-cancer drugs: current trends. Eur. J. Pharmacol., 2013, 714(1-3), 239-248.
[http://dx.doi.org/10.1016/j.ejphar.2013.06.009] [PMID: 23819913]
[39]
Mohi-Ud-Din, R.; Mir, R.H.; Sawhney, G.; Dar, M.A.; Bhat, Z.A. Possible pathways of hepatotoxicity caused by chemical agents. Curr. Drug Metab., 2019, 20(11), 867-879.
[http://dx.doi.org/10.2174/1389200220666191105121653] [PMID: 31702487]
[40]
Hassan, R.; Masoodi, M.H. Saussurea lappa: A comprehensive review on its pharmacological activity and phytochemistry. Curr. Tradit. Med., 2020, 6(1), 13-23.
[http://dx.doi.org/10.2174/2215083805666190626144909]
[41]
Dar, M.A.; Bhat, M.F.; Hassan, R.; Masoodi, M.H.; Mir, S.R.; Mohiuddin, R. Extensive phytochemistry, comprehensive traditional uses, and critical pharmacological profile of the great Mullein: Verbascum thapsus L. Nat. Prod. J., 2019, 9(3), 158-171.
[http://dx.doi.org/10.2174/2210315508666180821153531]
[42]
Mir, R.H.; Shah, A.J.; Mohi-Ud-Din, R.; Pottoo, F.H.; Dar, M.A.; Jachak, S.M.; Masoodi, M.H. Natural anti-inflammatory compounds as drug candidates in Alzheimer’s disease. Curr. Med. Chem., 2021, 28(23), 4799-4825.
[http://dx.doi.org/10.2174/0929867327666200730213215] [PMID: 32744957]
[43]
Mir, R.H.; Masoodi, M.H. Anti-inflammatory plant polyphenolics and cellular action mechanisms. Curr. Bioact. Compd., 2020, 16(6), 809-817.
[http://dx.doi.org/10.2174/1573407215666190419205317]
[44]
Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem., 2002, 13(10), 572-584.
[http://dx.doi.org/10.1016/S0955-2863(02)00208-5] [PMID: 12550068]
[45]
Ruiz-Cruz, S.; Chaparro-Hernández, S.; Hernández-Ruiz, K.L.; Cira-Chávez, L.A.; Estrada-Alvarado, M.I.; Gassos Ortega, L.; Ornelas-Paz, J.J.; Lopez Mata, M. Flavonoids: important biocompounds in food.In: Flavonoids: from biosynthesis to human health; IntechOpen: London, 2017, pp. 353-370.
[46]
Vidak, M.; Rozman, D.; Komel, R. Effects of flavonoids from food and dietary supplements on glial and glioblastoma multiforme cells. Molecules, 2015, 20(10), 19406-19432.
[http://dx.doi.org/10.3390/molecules201019406] [PMID: 26512639]
[47]
Mir, R.H.; Sawhney, G.; Verma, R.; Ahmad, B.; Kumar, P.; Ranjana, S.; Bhagat, A.; Madishetti, S.; Ahmed, Z.; Jachak, S.M. Oreganum vulgare: In vitro assessment of cytotoxicity, molecular docking studies, antioxidant, and evaluation of anti-inflammatory activity in LPS stimulated RAW 264.7 cells. Med. Chem., 2021, 17(9), 983-993.
[48]
Santos, B.L.; Oliveira, M.N.; Coelho, P.L.; Pitanga, B.P.; da Silva, A.B.; Adelita, T.; Silva, V.D.A.; Costa, M.F.; El-Bachá, R.S.; Tardy, M.; Chneiweiss, H.; Junier, M.P.; Moura-Neto, V.; Costa, S.L. Flavonoids suppress human glioblastoma cell growth by inhibiting cell metabolism, migration, and by regulating extracellular matrix proteins and metalloproteinases expression. Chem. Biol. Interact., 2015, 242, 123-138.
[http://dx.doi.org/10.1016/j.cbi.2015.07.014] [PMID: 26408079]
[49]
Ishige, K.; Schubert, D.; Sagara, Y. Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic. Biol. Med., 2001, 30(4), 433-446.
[http://dx.doi.org/10.1016/S0891-5849(00)00498-6] [PMID: 11182299]
[50]
Mandel, S.; Youdim, M.B. Catechin polyphenols: neurodegeneration and neuroprotection in neurodegenerative diseases. Free Radic. Biol. Med., 2004, 37(3), 304-317.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.04.012] [PMID: 15223064]
[51]
Raso, G.M.; Meli, R.; Di Carlo, G.; Pacilio, M.; Di Carlo, R. Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 expression by flavonoids in macrophage J774A.1. Life Sci., 2001, 68(8), 921-931.
[http://dx.doi.org/10.1016/S0024-3205(00)00999-1] [PMID: 11213362]
[52]
Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn. Rev., 2010, 4(8), 118-126.
[http://dx.doi.org/10.4103/0973-7847.70902] [PMID: 22228951]
[53]
Sznarkowska, A.; Kostecka, A.; Meller, K.; Bielawski, K.P. Inhibition of cancer antioxidant defense by natural compounds. Oncotarget, 2017, 8(9), 15996-16016.
[http://dx.doi.org/10.18632/oncotarget.13723] [PMID: 27911871]
[54]
Khan, M.; Zheng, B.; Yi, F.; Rasul, A.; Gu, Z.; Li, T.; Gao, H.; Qazi, J.I.; Yang, H.; Ma, T. Pseudolaric Acid B induces caspase-dependent and caspase-independent apoptosis in u87 glioblastoma cells. Evid.-based Complement. Altern. Med., 2012,, 2012.
[http://dx.doi.org/10.1155/2012/957568]
[55]
Min, S-W.; Kim, N-J.; Baek, N-I.; Kim, D-H. Inhibitory effect of eupatilin and jaceosidin isolated from Artemisia princeps on carrageenan-induced inflammation in mice. J. Ethnopharmacol., 2009, 125(3), 497-500.
[http://dx.doi.org/10.1016/j.jep.2009.06.001] [PMID: 19505561]
[56]
Lin, Y-C.; Hung, C-M.; Tsai, J-C.; Lee, J-C.; Chen, Y-L.S.; Wei, C-W.; Kao, J-Y.; Way, T-D. Hispidulin potently inhibits human glioblastoma multiforme cells through activation of AMP-activated protein kinase (AMPK). J. Agric. Food Chem., 2010, 58(17), 9511-9517.
[http://dx.doi.org/10.1021/jf1019533] [PMID: 20698539]
[57]
Cheng, W-Y.; Chiao, M-T.; Liang, Y-J.; Yang, Y-C.; Shen, C-C.; Yang, C-Y. Luteolin inhibits migration of human glioblastoma U-87 MG and T98G cells through downregulation of Cdc42 expression and PI3K/AKT activity. Mol. Biol. Rep., 2013, 40(9), 5315-5326.
[http://dx.doi.org/10.1007/s11033-013-2632-1] [PMID: 23677714]
[58]
Sim, G-S.; Lee, B-C.; Cho, H.S.; Lee, J.W.; Kim, J-H.; Lee, D-H.; Kim, J-H.; Pyo, H-B.; Moon, D.C.; Oh, K-W.; Yun, Y.P.; Hong, J.T. Structure activity relationship of antioxidative property of flavonoids and inhibitory effect on matrix metalloproteinase activity in UVA-irradiated human dermal fibroblast. Arch. Pharm. Res., 2007, 30(3), 290-298.
[http://dx.doi.org/10.1007/BF02977608] [PMID: 17424933]
[59]
Chakrabarti, M.; Ray, S.K. Anti-tumor activities of luteolin and silibinin in glioblastoma cells: overexpression of miR-7-1-3p augmented luteolin and silibinin to inhibit autophagy and induce apoptosis in glioblastoma in vivo. Apoptosis, 2016, 21(3), 312-328.
[http://dx.doi.org/10.1007/s10495-015-1198-x] [PMID: 26573275]
[60]
Wang, Q.; Wang, H.; Jia, Y.; Pan, H.; Ding, H. Luteolin induces apoptosis by ROS/ER stress and mitochondrial dysfunction in gliomablastoma. Cancer Chemother. Pharmacol., 2017, 79(5), 1031-1041.
[http://dx.doi.org/10.1007/s00280-017-3299-4] [PMID: 28393257]
[61]
Kim, K.W.; Choi, C.H.; Kim, T.H.; Kwon, C.H.; Woo, J.S.; Kim, Y.K. Silibinin inhibits glioma cell proliferation via Ca2+/ROS/MAPK-dependent mechanism in vitro and glioma tumor growth in vivo. Neurochem. Res., 2009, 34(8), 1479-1490.
[http://dx.doi.org/10.1007/s11064-009-9935-6] [PMID: 19263218]
[62]
Momeny, M.; Malehmir, M.; Zakidizaji, M.; Ghasemi, R.; Ghadimi, H.; Shokrgozar, M.A.; Emami, A.H.; Nafissi, S.; Ghavamzadeh, A.; Ghaffari, S.H. Silibinin inhibits invasive properties of human glioblastoma U87MG cells through suppression of cathepsin B and nuclear factor kappa B-mediated induction of matrix metalloproteinase 9. Anticancer Drugs, 2010, 21(3), 252-260.
[http://dx.doi.org/10.1097/CAD.0b013e3283340cd7] [PMID: 20166242]
[63]
Son, Y.G.; Kim, E.H.; Kim, J.Y.; Kim, S.U.; Kwon, T.K.; Yoon, A-R.; Yun, C-O.; Choi, K.S. Silibinin sensitizes human glioma cells to TRAIL-mediated apoptosis via DR5 up-regulation and down-regulation of c-FLIP and survivin. Cancer Res., 2007, 67(17), 8274-8284.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0407] [PMID: 17804742]
[64]
Velasco, G.; Carracedo, A.; Blázquez, C.; Lorente, M.; Aguado, T.; Haro, A.; Sánchez, C.; Galve-Roperh, I.; Guzmán, M. Cannabinoids and gliomas. Mol. Neurobiol., 2007, 36(1), 60-67.
[http://dx.doi.org/10.1007/s12035-007-0002-5] [PMID: 17952650]
[65]
Dumitru, C.A.; Sandalcioglu, I.E.; Karsak, M. Cannabinoids in glioblastoma therapy: new applications for old drugs. Front. Mol. Neurosci., 2018, 11, 159.
[http://dx.doi.org/10.3389/fnmol.2018.00159] [PMID: 29867351]
[66]
Lah, T.T.; Novak, M.; Pena Almidon, M.A.; Marinelli, O.; Žvar Baškovič, B.; Majc, B.; Mlinar, M.; Bošnjak, R.; Breznik, B.; Zomer, R.; Nabissi, M. Cannabigerol is a potential therapeutic agent in a novel combined therapy for glioblastoma. Cells, 2021, 10(2), 340.
[http://dx.doi.org/10.3390/cells10020340] [PMID: 33562819]
[67]
Blázquez, C.; Casanova, M.L.; Planas, A.; Gómez Del Pulgar, T.; Villanueva, C.; Fernández-Aceñero, M.J.; Aragonés, J.; Huffman, J.W.; Jorcano, J.L.; Guzmán, M. Inhibition of tumor angiogenesis by cannabinoids. FASEB J., 2003, 17(3), 529-531.
[http://dx.doi.org/10.1096/fj.02-0795fje] [PMID: 12514108]
[68]
De Jesús, M.L.; Hostalot, C.; Garibi, J.M.; Sallés, J.; Meana, J.J.; Callado, L.F. Opposite changes in cannabinoid CB1 and CB2 receptor expression in human gliomas. Neurochem. Int., 2010, 56(6-7), 829-833.
[http://dx.doi.org/10.1016/j.neuint.2010.03.007] [PMID: 20307616]
[69]
Parolaro, D.; Massi, P. Cannabinoids as potential new therapy for the treatment of gliomas. Expert Rev. Neurother., 2008, 8(1), 37-49.
[http://dx.doi.org/10.1586/14737175.8.1.37] [PMID: 18088200]
[70]
Shinkai, Y.; Rathbun, G.; Lam, K.P.; Oltz, E.M.; Stewart, V.; Mendelsohn, M.; Charron, J.; Datta, M.; Young, F.; Stall, A.M. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell, 1992, 68(5), 855-867.
[http://dx.doi.org/10.1016/0092-8674(92)90029-C] [PMID: 1547487]
[71]
Guzmán, M.; Sánchez, C.; Galve-Roperh, I. Cannabinoids and cell fate. Pharmacol. Ther., 2002, 95(2), 175-184.
[http://dx.doi.org/10.1016/S0163-7258(02)00256-5] [PMID: 12182964]
[72]
Massi, P.; Vaccani, A.; Bianchessi, S.; Costa, B.; Macchi, P.; Parolaro, D. The non-psychoactive cannabidiol triggers caspase activation and oxidative stress in human glioma cells. Cell. Mol. Life Sci., 2006, 63(17), 2057-2066.
[http://dx.doi.org/10.1007/s00018-006-6156-x] [PMID: 16909207]
[73]
Velasco, G.; Sánchez, C.; Guzmán, M. Anticancer mechanisms of cannabinoids. Curr. Oncol., 2016, 23(2), S23-S32.
[http://dx.doi.org/10.3747/co.23.3080] [PMID: 27022311]
[74]
Solinas, M.; Massi, P.; Cinquina, V.; Valenti, M.; Bolognini, D.; Gariboldi, M.; Monti, E.; Rubino, T.; Parolaro, D. Cannabidiol, a non-psychoactive cannabinoid compound, inhibits proliferation and invasion in U87-MG and T98G glioma cells through a multitarget effect. PLoS One, 2013, 8(10)e76918
[http://dx.doi.org/10.1371/journal.pone.0076918] [PMID: 24204703]
[75]
Fernández-Ruiz, J.; Romero, J.; Velasco, G.; Tolón, R.M.; Ramos, J.A.; Guzmán, M. Cannabinoid CB2 receptor: a new target for controlling neural cell survival? Trends Pharmacol. Sci., 2007, 28(1), 39-45.
[http://dx.doi.org/10.1016/j.tips.2006.11.001] [PMID: 17141334]
[76]
Soroceanu, L.; Murase, R.; Limbad, C.; Singer, E.; Allison, J.; Adrados, I.; Kawamura, R.; Pakdel, A.; Fukuyo, Y.; Nguyen, D.; Khan, S.; Arauz, R.; Yount, G.L.; Moore, D.H.; Desprez, P.Y.; McAllister, S.D. Id-1 is a key transcriptional regulator of glioblastoma aggressiveness and a novel therapeutic target. Cancer Res., 2013, 73(5), 1559-1569.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-1943] [PMID: 23243024]
[77]
Hernán Pérez de la Ossa, D.; Lorente, M.; Gil-Alegre, M.E.; Torres, S.; García-Taboada, E.; Aberturas, M.R.; Molpeceres, J.; Velasco, G.; Torres-Suárez, A.I. Local delivery of cannabinoid-loaded microparticles inhibits tumor growth in a murine xenograft model of glioblastoma multiforme. PLoS One, 2013, 8(1)e54795
[http://dx.doi.org/10.1371/journal.pone.0054795] [PMID: 23349970]
[78]
Torres, S.; Lorente, M.; Rodríguez-Fornés, F.; Hernández-Tiedra, S.; Salazar, M.; García-Taboada, E.; Barcia, J.; Guzmán, M.; Velasco, G. A combined preclinical therapy of cannabinoids and temozolomide against glioma. Mol. Cancer Ther., 2011, 10(1), 90-103.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0688] [PMID: 21220494]
[79]
Kumar, M.S.; Adki, K.M. Marine natural products for multi-targeted cancer treatment: a future insight. Biomed. Pharmacother., 2018, 105, 233-245.
[http://dx.doi.org/10.1016/j.biopha.2018.05.142] [PMID: 29859466]
[80]
Simmons, T.L.; Andrianasolo, E.; McPhail, K.; Flatt, P.; Gerwick, W.H. Marine natural products as anticancer drugs. Mol. Cancer Ther., 2005, 4(2), 333-342.
[PMID: 15713904]
[81]
Khalifa, S.A.M.; Elias, N.; Farag, M.A.; Chen, L.; Saeed, A.; Hegazy, M.F.; Moustafa, M.S.; Abd El-Wahed, A.; Al-Mousawi, S.M.; Musharraf, S.G.; Chang, F.R.; Iwasaki, A.; Suenaga, K.; Alajlani, M.; Göransson, U.; El-Seedi, H.R. Marine natural products: a source of novel anticancer drugs. Mar. Drugs, 2019, 17(9), 491.
[http://dx.doi.org/10.3390/md17090491] [PMID: 31443597]
[82]
Jimenez, P.C.; Wilke, D.V.; Costa-Lotufo, L.V. Marine drugs for cancer: surfacing biotechnological innovations from the oceans. Clinics (São Paulo), 2018, 73(Suppl. 1)e482s
[http://dx.doi.org/10.6061/clinics/2018/e482s] [PMID: 30133563]
[83]
Chen, M.; Chai, W.; Song, T.; Ma, M.; Lian, X-Y.; Zhang, Z. Anti-glioma natural products downregulating tumor glycolytic enzymes from marine actinomycete Streptomyces sp. ZZ406. Sci. Rep., 2018, 8(1), 72.
[http://dx.doi.org/10.1038/s41598-017-18484-7] [PMID: 29311676]
[84]
Lu, Y.; Li, H.; Wang, M.; Liu, Y.; Feng, Y.; Liu, K.; Tang, H. Cytotoxic polyhydroxysteroidal glycosides from starfish Culcita novaeguineae. Mar. Drugs, 2018, 16(3), 92.
[http://dx.doi.org/10.3390/md16030092] [PMID: 29534028]
[85]
Tang, H-F.; Yi, Y-H.; Li, L.; Sun, P.; Zhang, S-Q.; Zhao, Y-P. Bioactive asterosaponins from the starfish Culcita novaeguineae. J. Nat. Prod., 2005, 68(3), 337-341.
[http://dx.doi.org/10.1021/np0401617] [PMID: 15787432]
[86]
Quang, T.H.; Lee, D-S.; Han, S.J.; Kim, I.C.; Yim, J.H.; Kim, Y-C.; Oh, H. Steroids from the cold water starfish Ctenodiscus crispatus with cytotoxic and apoptotic effects on human hepatocellular carcinoma and glioblastoma cells. Bull. Korean Chem. Soc., 2014, 35(8), 2335.
[http://dx.doi.org/10.5012/bkcs.2014.35.8.2335]
[87]
Rinehart, K.L., Jr; Gloer, J.B.; Hughes, R.G., Jr; Renis, H.E.; McGovren, J.P.; Swynenberg, E.B.; Stringfellow, D.A.; Kuentzel, S.L.; Li, L.H. Didemnins: antiviral and antitumor depsipeptides from a caribbean tunicate. Science, 1981, 212(4497), 933-935.
[http://dx.doi.org/10.1126/science.7233187] [PMID: 7233187]
[88]
Le Tourneau, C.; Raymond, E.; Faivre, S. Aplidine: a paradigm of how to handle the activity and toxicity of a novel marine anticancer poison. Curr. Pharm. Des., 2007, 13(33), 3427-3439.
[http://dx.doi.org/10.2174/138161207782360555] [PMID: 18045196]
[89]
Jóźwiak, M.; Filipowska, A.; Fiorino, F.; Struga, M. Anticancer activities of fatty acids and their heterocyclic derivatives. Eur. J. Pharmacol., 2020, 871172937
[http://dx.doi.org/10.1016/j.ejphar.2020.172937] [PMID: 31958454]
[90]
Wang, J.; Luo, T.; Li, S.; Zhao, J. The powerful applications of polyunsaturated fatty acids in improving the therapeutic efficacy of anticancer drugs; Taylor & Francis: UK, 2012.
[http://dx.doi.org/10.1517/17425247.2011.618183]
[91]
Gu, Z.; Shan, K.; Chen, H.; Chen, Y.Q. n-3 Polyunsaturated fatty acids and their role in cancer chemoprevention. Curr. Pharmacol. Rep., 2015, 1(5), 283-294.
[http://dx.doi.org/10.1007/s40495-015-0043-9] [PMID: 26457243]
[92]
Wani, M.C.; Taylor, H.L.; Wall, M.E.; Coggon, P.; McPhail, A.T. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc., 1971, 93(9), 2325-2327.
[http://dx.doi.org/10.1021/ja00738a045] [PMID: 5553076]
[93]
Sparreboom, A.; van Tellingen, O.; Nooijen, W.J.; Beijnen, J.H. Tissue distribution, metabolism and excretion of paclitaxel in mice. Anticancer Drugs, 1996, 7(1), 78-86.
[http://dx.doi.org/10.1097/00001813-199601000-00009] [PMID: 8742102]
[94]
Schiff, P.B.; Horwitz, S.B. Taxol stabilizes microtubules in mouse fibroblast cells. Proc. Natl. Acad. Sci. USA, 1980, 77(3), 1561-1565.
[http://dx.doi.org/10.1073/pnas.77.3.1561] [PMID: 6103535]
[95]
Yvon, A-M.C.; Wadsworth, P.; Jordan, M.A. Taxol suppresses dynamics of individual microtubules in living human tumor cells. Mol. Biol. Cell, 1999, 10(4), 947-959.
[http://dx.doi.org/10.1091/mbc.10.4.947] [PMID: 10198049]
[96]
Ke, X-Y.; Zhao, B-J.; Zhao, X.; Wang, Y.; Huang, Y.; Chen, X-M.; Zhao, B-X.; Zhao, S-S.; Zhang, X.; Zhang, Q. The therapeutic efficacy of conjugated linoleic acid - paclitaxel on glioma in the rat. Biomaterials, 2010, 31(22), 5855-5864.
[http://dx.doi.org/10.1016/j.biomaterials.2010.03.079] [PMID: 20430438]
[97]
Binaschi, M.; Bigioni, M.; Cipollone, A.; Rossi, C.; Goso, C.; Maggi, C.A.; Capranico, G.; Animati, F. Anthracyclines: selected new developments. Curr. Med. Chem. Anticancer Agents, 2001, 1(2), 113-130.
[http://dx.doi.org/10.2174/1568011013354723] [PMID: 12678762]
[98]
Young, R.C.; Ozols, R.F.; Myers, C.E. The anthracycline antineoplastic drugs. N. Engl. J. Med., 1981, 305(3), 139-153.
[http://dx.doi.org/10.1056/NEJM198107163050305] [PMID: 7017406]
[99]
Zunino, F.; Di Marco, A. The inhibition in vitro of DNA polymerase and RNA polymerases by daunomycin and adriamycin. Biochem. Pharmacol., 1975, 24(2), 309-311.
[100]
Mielczarek-Puta, M.; Struga, M.; Roszkowski, P. Synthesis and anticancer effects of conjugates of doxorubicin and unsaturated fatty acids (LNA and DHA). Med. Chem. Res., 2019, 28(12), 2153-2164.
[http://dx.doi.org/10.1007/s00044-019-02443-0]
[101]
Gali-Muhtasib, H.U.; Abou Kheir, W.G.; Kheir, L.A.; Darwiche, N.; Crooks, P.A. Molecular pathway for thymoquinone-induced cell-cycle arrest and apoptosis in neoplastic keratinocytes. Anticancer Drugs, 2004, 15(4), 389-399.
[http://dx.doi.org/10.1097/00001813-200404000-00012] [PMID: 15057144]
[102]
Khan, M.A.; Tania, M.; Wei, C.; Mei, Z.; Fu, S.; Cheng, J.; Xu, J.; Fu, J. Thymoquinone inhibits cancer metastasis by downregulating TWIST1 expression to reduce epithelial to mesenchymal transition. Oncotarget, 2015, 6(23), 19580-19591.
[http://dx.doi.org/10.18632/oncotarget.3973] [PMID: 26023736]
[103]
Peng, L.; Liu, A.; Shen, Y.; Xu, H-Z.; Yang, S-Z.; Ying, X-Z.; Liao, W.; Liu, H-X.; Lin, Z-Q.; Chen, Q-Y.; Cheng, S.W.; Shen, W.D. Antitumor and anti-angiogenesis effects of thymoquinone on osteosarcoma through the NF-κB pathway. Oncol. Rep., 2013, 29(2), 571-578.
[http://dx.doi.org/10.3892/or.2012.2165] [PMID: 23232982]
[104]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[105]
Kundu, J.; Chun, K-S.; Aruoma, O.I.; Kundu, J.K. Mechanistic perspectives on cancer chemoprevention/chemotherapeutic effects of thymoquinone. Mutat. Res. Fundam. Mol. Mech. Mutagen., 2014, 768, 22-34.
[http://dx.doi.org/10.1016/j.mrfmmm.2014.05.003] [PMID: 25847385]
[106]
Yi, T.; Cho, S-G.; Yi, Z.; Pang, X.; Rodriguez, M.; Wang, Y.; Sethi, G.; Aggarwal, B.B.; Liu, M. Thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing AKT and extracellular signal-regulated kinase signaling pathways. Mol. Cancer Ther., 2008, 7(7), 1789-1796.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0124] [PMID: 18644991]
[107]
Darakhshan, S.; Bidmeshki Pour, A.; Hosseinzadeh Colagar, A.; Sisakhtnezhad, S. Thymoquinone and its therapeutic potentials. Pharmacol. Res., 2015, 95-96, 138-158.
[http://dx.doi.org/10.1016/j.phrs.2015.03.011] [PMID: 25829334]
[108]
Majdalawieh, A.F.; Fayyad, M.W.; Nasrallah, G.K. Anti-cancer properties and mechanisms of action of thymoquinone, the major active ingredient of Nigella sativa. Crit. Rev. Food Sci. Nutr., 2017, 57(18), 3911-3928.
[http://dx.doi.org/10.1080/10408398.2016.1277971] [PMID: 28140613]
[109]
Premkumar, D.R.; Jane, E.P.; Agostino, N.R.; DiDomenico, J.D.; Pollack, I.F. Bortezomib-induced sensitization of malignant human glioma cells to vorinostat-induced apoptosis depends on reactive oxygen species production, mitochondrial dysfunction, Noxa upregulation, Mcl-1 cleavage, and DNA damage. Mol. Carcinog., 2013, 52(2), 118-133.
[http://dx.doi.org/10.1002/mc.21835] [PMID: 22086447]
[110]
Chambliss, O.L.; Jones, C.M. Cucurbitacins: specific insect attractants in Cucurbitaceae. Science, 1966, 153(3742), 1392-1393.
[http://dx.doi.org/10.1126/science.153.3742.1392] [PMID: 17814391]
[111]
Lee, D.H.; Iwanski, G.B.; Thoennissen, N.H. Cucurbitacin: ancient compound shedding new light on cancer treatment. ScientificWorldJournal, 2010, 10, 413-418.
[http://dx.doi.org/10.1100/tsw.2010.44] [PMID: 20209387]
[112]
Miro, M. Cucurbitacins and their pharmacological effects. Phytother. Res., 1995, 9(3), 159-168.
[http://dx.doi.org/10.1002/ptr.2650090302]
[113]
Chen, W.; Leiter, A.; Yin, D.; Meiring, M.; Louw, V.J.; Koeffler, H.P. Cucurbitacin B inhibits growth, arrests the cell cycle, and potentiates antiproliferative efficacy of cisplatin in cutaneous squamous cell carcinoma cell lines. Int. J. Oncol., 2010, 37(3), 737-743.
[PMID: 20664943]
[114]
Chen, Y-W.; Chen, K-H.; Huang, P-I.; Chen, Y-C.; Chiou, G-Y.; Lo, W-L.; Tseng, L-M.; Hsu, H-S.; Chang, K-W.; Chiou, S-H. Cucurbitacin I suppressed stem-like property and enhanced radiation-induced apoptosis in head and neck squamous carcinoma-derived CD44(+)ALDH1(+) cells. Mol. Cancer Ther., 2010, 9(11), 2879-2892.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0504] [PMID: 21062915]
[115]
Rivat, C.; Rodrigues, S.; Bruyneel, E.; Piétu, G.; Robert, A.; Redeuilh, G.; Bracke, M.; Gespach, C.; Attoub, S. Implication of STAT3 signaling in human colonic cancer cells during intestinal trefoil factor 3 (TFF3) - and vascular endothelial growth factor-mediated cellular invasion and tumor growth. Cancer Res., 2005, 65(1), 195-202.
[PMID: 15665295]
[116]
Lui, V.W.; Yau, D.M.; Wong, E.Y.; Ng, Y-K.; Lau, C.P-K.; Ho, Y.; Chan, J.P.; Hong, B.; Ho, K.; Cheung, C.S.; Tsang, C.M.; Tsao, S.W.; Chan, A.T. Cucurbitacin I elicits anoikis sensitization, inhibits cellular invasion and in vivo tumor formation ability of nasopharyngeal carcinoma cells. Carcinogenesis, 2009, 30(12), 2085-2094.
[http://dx.doi.org/10.1093/carcin/bgp253] [PMID: 19843642]
[117]
Tang, J-Z.; Kong, X-J.; Banerjee, A.; Muniraj, N.; Pandey, V.; Steiner, M.; Perry, J.K.; Zhu, T.; Liu, D-X.; Lobie, P.E. STAT3α is oncogenic for endometrial carcinoma cells and mediates the oncogenic effects of autocrine human growth hormone. Endocrinology, 2010, 151(9), 4133-4145.
[http://dx.doi.org/10.1210/en.2010-0273] [PMID: 20668024]
[118]
Shohat, B.; Gitter, S.; Levie, B.; Lavie, D. The combined effect of cucurbitacins and X-ray treatment on transplanted tumors in mice. Cancer Res., 1965, 25(10), 1828-1835.
[PMID: 5859207]
[119]
Boykin, C.; Zhang, G.; Chen, Y.H.; Zhang, R.W.; Fan, X.E.; Yang, W.M.; Lu, Q. Cucurbitacin IIa: a novel class of anti-cancer drug inducing non-reversible actin aggregation and inhibiting survivin independent of JAK2/STAT3 phosphorylation. Br. J. Cancer, 2011, 104(5), 781-789.
[http://dx.doi.org/10.1038/bjc.2011.10] [PMID: 21304528]
[120]
Sun, J.; Blaskovich, M.A.; Jove, R.; Livingston, S.K.; Coppola, D.; Sebti, S.M. Cucurbitacin Q: a selective STAT3 activation inhibitor with potent antitumor activity. Oncogene, 2005, 24(20), 3236-3245.
[http://dx.doi.org/10.1038/sj.onc.1208470] [PMID: 15735720]
[121]
Yin, D.; Wakimoto, N.; Xing, H.; Lu, D.; Huynh, T.; Wang, X.; Black, K.L.; Koeffler, H.P. Cucurbitacin B markedly inhibits growth and rapidly affects the cytoskeleton in glioblastoma multiforme. Int. J. Cancer, 2008, 123(6), 1364-1375.
[http://dx.doi.org/10.1002/ijc.23648] [PMID: 18561312]
[122]
Chadha, N.; Silakari, O. Indoles as therapeutics of interest in medicinal chemistry: Bird’s eye view. Eur. J. Med. Chem., 2017, 134, 159-184.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.003] [PMID: 28412530]
[123]
Sestito, S.; Nesi, G.; Daniele, S.; Martelli, A.; Digiacomo, M.; Borghini, A.; Pietra, D.; Calderone, V.; Lapucci, A.; Falasca, M.; Parrella, P.; Notarangelo, A.; Breschi, M.C.; Macchia, M.; Martini, C.; Rapposelli, S. Design and synthesis of 2-oxindole based multi-targeted inhibitors of PDK1/Akt signaling pathway for the treatment of glioblastoma multiforme. Eur. J. Med. Chem., 2015, 105, 274-288.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.020] [PMID: 26498573]
[124]
Daniele, S.; Sestito, S.; Pietrobono, D.; Giacomelli, C.; Chiellini, G.; Di Maio, D.; Marinelli, L.; Novellino, E.; Martini, C.; Rapposelli, S. Dual inhibition of PDK1 and Aurora Kinase A: an effective strategy to induce differentiation and apoptosis of human glioblastoma multiforme stem cells. ACS Chem. Neurosci., 2017, 8(1), 100-114.
[http://dx.doi.org/10.1021/acschemneuro.6b00251] [PMID: 27797168]
[125]
Sestito, S.; Daniele, S.; Nesi, G.; Zappelli, E.; Di Maio, D.; Marinelli, L.; Digiacomo, M.; Lapucci, A.; Martini, C.; Novellino, E.; Rapposelli, S. Locking PDK1 in DFG-out conformation through 2-oxo-indole containing molecules: another tools to fight glioblastoma. Eur. J. Med. Chem., 2016, 118, 47-63.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.003] [PMID: 27123901]
[126]
Cherry, A.E.; Haas, B.R.; Naydenov, A.V.; Fung, S.; Xu, C.; Swinney, K.; Wagenbach, M.; Freeling, J.; Canton, D.A.; Coy, J.; Horne, E.A.; Rickman, B.; Vicente, J.J.; Scott, J.D.; Ho, R.J.; Liggitt, D.; Wordeman, L.; Stella, N. ST-11: a new brain-penetrant microtubule-destabilizing agent with therapeutic potential for glioblastoma multiforme. Mol. Cancer Ther., 2016, 15(9), 2018-2029.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0800] [PMID: 27325686]
[127]
Overmeyer, J.H.; Young, A.M.; Bhanot, H.; Maltese, W.A. A chalcone-related small molecule that induces methuosis, a novel form of non-apoptotic cell death, in glioblastoma cells. Mol. Cancer, 2011, 10(1), 69.
[http://dx.doi.org/10.1186/1476-4598-10-69] [PMID: 21639944]
[128]
Aranda, S.; Laguna, A.; de la Luna, S. DYRK family of protein kinases: evolutionary relationships, biochemical properties, and functional roles. FASEB J., 2011, 25(2), 449-462.
[http://dx.doi.org/10.1096/fj.10-165837] [PMID: 21048044]
[129]
Cerecetto, H.; Gerpe, A.; González, M.; Arán, V.J.; de Ocáriz, C.O. Pharmacological properties of indazole derivatives: recent developments. Mini Rev. Med. Chem., 2005, 5(10), 869-878.
[http://dx.doi.org/10.2174/138955705774329564] [PMID: 16250831]
[130]
Denya, I.; Malan, S.F.; Joubert, J. Indazole derivatives and their therapeutic applications: a patent review (2013-2017). Expert Opin. Ther. Pat., 2018, 28(6), 441-453.
[http://dx.doi.org/10.1080/13543776.2018.1472240] [PMID: 29718740]
[131]
Keri, R.S.; Hiremathad, A.; Budagumpi, S.; Nagaraja, B.M. Comprehensive review in current developments of benzimidazole‐α based medicinal chemistry. Chem. Biol. Drug Des., 2015, 86(1), 19-65.
[http://dx.doi.org/10.1111/cbdd.12462] [PMID: 25352112]
[132]
Sardiello, M.; Palmieri, M.; di Ronza, A.; Medina, D.L.; Valenza, M.; Gennarino, V.A.; Di Malta, C.; Donaudy, F.; Embrione, V.; Polishchuk, R.S.; Banfi, S.; Parenti, G.; Cattaneo, E.; Ballabio, A. A gene network regulating lysosomal biogenesis and function. Science, 2009, 325(5939), 473-477.
[http://dx.doi.org/10.1126/science.1174447] [PMID: 19556463]
[133]
Maceyka, M.; Harikumar, K.B.; Milstien, S.; Spiegel, S. Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol., 2012, 22(1), 50-60.
[http://dx.doi.org/10.1016/j.tcb.2011.09.003] [PMID: 22001186]
[134]
Kim, K.H.; Kim, D.; Park, J.Y.; Jung, H.J.; Cho, Y-H.; Kim, H.K.; Han, J.; Choi, K-Y.; Kwon, H.J. NNC 55-0396, a T-type Ca2+ channel inhibitor, inhibits angiogenesis via suppression of hypoxia-inducible factor-1α signal transduction. J. Mol. Med. (Berl.), 2015, 93(5), 499-509.
[http://dx.doi.org/10.1007/s00109-014-1235-1] [PMID: 25471482]
[135]
Khidr, L.; Chen, P.L.RB the conductor that orchestrates life, death and differentiation. Oncogene, 2006, 25(38), 5210-5219.
[http://dx.doi.org/10.1038/sj.onc.1209612] [PMID: 16936739]
[136]
Dandawate, P.R.; Vyas, A.C.; Padhye, S.B.; Singh, M.W.; Baruah, J.B. Perspectives on medicinal properties of benzoquinone compounds. Mini Rev. Med. Chem., 2010, 10(5), 436-454.
[http://dx.doi.org/10.2174/138955710791330909] [PMID: 20370705]
[137]
Bolton, J.L.; Trush, M.A.; Penning, T.M.; Dryhurst, G.; Monks, T.J. Role of quinones in toxicology. Chem. Res. Toxicol., 2000, 13(3), 135-160.
[http://dx.doi.org/10.1021/tx9902082] [PMID: 10725110]
[138]
Zappavigna, S.; Scuotto, M.; Cossu, A.M.; Ingrosso, D.; De Rosa, M.; Schiraldi, C.; Filosa, R.; Caraglia, M. The 1,4 benzoquinone-featured 5-lipoxygenase inhibitor RF-Id induces apoptotic death through downregulation of IAPs in human glioblastoma cells. J. Exp. Clin. Cancer Res., 2016, 35(1), 167.
[http://dx.doi.org/10.1186/s13046-016-0440-x] [PMID: 27770821]
[139]
de Moraes, T.A.; Filha, M.J.; Camara, C.A.; Silva, T.M.; Soares, B.M.; Bomfim, I.S.; Pessoa, C.; Ximenes, G.C.; Silva, Junior V.A. Synthesis and cytotoxic evaluation of a series of 2-amino-naphthoquinones against human cancer cells. Molecules, 2014, 19(9), 13188-13199.
[http://dx.doi.org/10.3390/molecules190913188] [PMID: 25162959]
[140]
Romão, L.; do Canto, V.P.; Netz, P.A.; Moura-Neto, V.; Pinto, Â.C.; Follmer, C. Conjugation with polyamines enhances the antitumor activity of naphthoquinones against human glioblastoma cells. Anticancer Drugs, 2018, 29(6), 520-529.
[http://dx.doi.org/10.1097/CAD.0000000000000619] [PMID: 29561308]
[141]
Jiang, C-S.; Wang, X-M.; Zhang, S-Q.; Meng, L-S.; Zhu, W-H.; Xu, J.; Lu, S-M. Discovery of 4-benzoylamino-N-(prop-2-yn-1-yl)benzamides as novel microRNA-21 inhibitors. Bioorg. Med. Chem., 2015, 23(19), 6510-6519.
[http://dx.doi.org/10.1016/j.bmc.2015.08.007] [PMID: 26344589]
[142]
Hammarström, L.G.; Harmel, R.K.; Granath, M.; Ringom, R.; Gravenfors, Y.; Färnegårdh, K.; Svensson, P.H.; Wennman, D.; Lundin, G.; Roddis, Y.; Kitambi, S.S.; Bernlind, A.; Lehmann, F.; Ernfors, P. The oncolytic efficacy and in vivo pharmacokinetics of [2-(4-chlorophenyl) quinolin-4-yl](piperidine-2-yl) methanol (vacquinol-1) are governed by distinct stereochemical features. J. Med. Chem., 2016, 59(18), 8577-8592.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01009] [PMID: 27607569]
[143]
Kraus, J-L.; Conti, F.; Madonna, S.; Tchoghandjian, A.; Beclin, C. Alternative responses of primary tumor cells and glioblastoma cell lines to N,N-bis-(8-hydroxyquinoline-5-yl methyl)-benzyl substituted amines: cell death versus P53-independent senescence. Int. J. Oncol., 2010, 37(6), 1463-1470.
[PMID: 21042714]
[144]
Madonna, S.; Béclin, C.; Laras, Y.; Moret, V.; Marcowycz, A.; Lamoral-Theys, D.; Dubois, J.; Barthelemy-Requin, M.; Lenglet, G.; Depauw, S.; Cresteil, T.; Aubert, G.; Monnier, V.; Kiss, R.; David-Cordonnier, M.H.; Kraus, J.L. Structure-activity relationships and mechanism of action of antitumor bis 8-hydroxyquinoline substituted benzylamines. Eur. J. Med. Chem., 2010, 45(2), 623-638.
[http://dx.doi.org/10.1016/j.ejmech.2009.11.006] [PMID: 19931949]
[145]
Glozak, M.A.; Seto, E. Histone deacetylases and cancer. Oncogene, 2007, 26(37), 5420-5432.
[http://dx.doi.org/10.1038/sj.onc.1210610] [PMID: 17694083]
[146]
Ropero, S.; Esteller, M. The role of Histone Deacetylases (HDACs) in human cancer. Mol. Oncol., 2007, 1(1), 19-25.
[http://dx.doi.org/10.1016/j.molonc.2007.01.001] [PMID: 19383284]
[147]
Balasubramanian, G.; Kilambi, N.; Rathinasamy, S.; Rajendran, P.; Narayanan, S.; Rajagopal, S. Quinolone-based HDAC inhibitors. J. Enzyme Inhib. Med. Chem., 2014, 29(4), 555-562.
[http://dx.doi.org/10.3109/14756366.2013.827675] [PMID: 25019596]
[148]
Köprülü, T.K.; Ökten, S.; Tekin, Ş.; Çakmak, O. Biological evaluation of some quinoline derivatives with different functional groups as anticancer agents. J. Biochem. Mol. Toxicol., 2019, 33(3)e22260
[http://dx.doi.org/10.1002/jbt.22260] [PMID: 30431695]
[149]
Kwak, S-H.; Shin, S.; Lee, J-H.; Shim, J-K.; Kim, M.; Lee, S-D.; Lee, A.; Bae, J.; Park, J-H.; Abdelrahman, A.; Müller, C.E.; Cho, S.K.; Kang, S.G.; Bae, M.A.; Yang, J.Y.; Ko, H.; Goddard, W.A., III; Kim, Y.C. Synthesis and structure-activity relationships of quinolinone and quinoline-based P2X7 receptor antagonists and their anti-sphere formation activities in glioblastoma cells. Eur. J. Med. Chem., 2018, 151, 462-481.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.023] [PMID: 29649742]
[150]
Xu, H.; Wang, M.; Wu, F.; Zhuo, L.; Huang, W.; She, N. Discovery of N-substituted-3-phenyl-1,6-naphthyridinone derivatives bearing quinoline moiety as selective type II c-Met kinase inhibitors against VEGFR-2. Bioorg. Med. Chem., 2020, 28(12)115555
[http://dx.doi.org/10.1016/j.bmc.2020.115555] [PMID: 32503697]
[151]
Castellano, S.; Taliani, S.; Viviano, M.; Milite, C.; Da Pozzo, E.; Costa, B.; Barresi, E.; Bruno, A.; Cosconati, S.; Marinelli, L.; Greco, G.; Novellino, E.; Sbardella, G.; Da Settimo, F.; Martini, C. Structure-activity relationship refinement and further assessment of 4-phenylquinazoline-2-carboxamide translocator protein ligands as antiproliferative agents in human glioblastoma tumors. J. Med. Chem., 2014, 57(6), 2413-2428.
[http://dx.doi.org/10.1021/jm401721h] [PMID: 24580635]
[152]
Elkamhawy, A.; Viswanath, A.N.I.; Pae, A.N.; Kim, H.Y.; Heo, J-C.; Park, W-K.; Lee, C-O.; Yang, H.; Kim, K.H.; Nam, D-H.; Seol, H.J.; Cho, H.; Roh, E.J. Discovery of potent and selective cytotoxic activity of new quinazoline-ureas against TMZ-resistant glioblastoma multiforme (GBM). Eur. J. Med. Chem., 2015, 103, 210-222.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.001] [PMID: 26355532]
[153]
De Robertis, A.; Valensin, S.; Rossi, M.; Tunici, P.; Verani, M.; De Rosa, A.; Giordano, C.; Varrone, M.; Nencini, A.; Pratelli, C.; Benicchi, T.; Bakker, A.; Hill, J.; Sangthongpitag, K.; Pendharkar, V.; Liu, B.; Ng, F.M.; Then, S.W.; Jing Tai, S.; Cheong, S.M.; He, X.; Caricasole, A.; Salerno, M. Identification and characterization of a small-molecule inhibitor of Wnt signaling in glioblastoma cells. Mol. Cancer Ther., 2013, 12(7), 1180-1189.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-1176-T] [PMID: 23619303]
[154]
Lin, S.; Wang, C.; Ji, M.; Wu, D.; Lv, Y.; Zhang, K.; Dong, Y.; Jin, J.; Chen, J.; Zhang, J.; Sheng, L.; Li, Y.; Chen, X.; Xu, H. Discovery and optimization of 2-amino-4-methylquinazoline derivatives as highly potent phosphatidylinositol 3-kinase inhibitors for cancer treatment. J. Med. Chem., 2018, 61(14), 6087-6109.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00416] [PMID: 29927604]
[155]
Peyressatre, M.; Arama, D.P.; Laure, A.; González-Vera, J.A.; Pellerano, M.; Masurier, N.; Lisowski, V.; Morris, M.C. Identification of quinazolinone analogs targeting CDK5 kinase activity and glioblastoma cell proliferation. Front Chem., 2020, 8, 691.
[http://dx.doi.org/10.3389/fchem.2020.00691] [PMID: 32974274]
[156]
Jain, K.S.; Arya, N.; Inamdar, N.N.; Auti, P.B.; Unawane, S.A.; Puranik, H.H.; Sanap, M.S.; Inamke, A.D.; Mahale, V.J.; Prajapati, C.S.; Shishoo, C.J. The chemistry and bio-medicinal significance of pyrimidines & condensed pyrimidines. Curr. Top. Med. Chem., 2016, 16(28), 3133-3174.
[http://dx.doi.org/10.2174/1568026616666160609100410] [PMID: 27291985]
[157]
Taglieri, L.; Saccoliti, F.; Nicolai, A.; Peruzzi, G.; Madia, V.N.; Tudino, V.; Messore, A.; Di Santo, R.; Artico, M.; Taurone, S.; Salvati, M.; Costi, R.; Scarpa, S. Discovery of a pyrimidine compound endowed with antitumor activity. Invest. New Drugs, 2020, 38(1), 39-49.
[http://dx.doi.org/10.1007/s10637-019-00762-y] [PMID: 30900116]
[158]
Gilles, P.; Kashyap, R.S.; Freitas, M.J.; Ceusters, S.; Van Asch, K.; Janssens, A.; De Jonghe, S.; Persoons, L.; Cobbaut, M.; Daelemans, D.; Van Lint, J.; Voet, A.R.D.; De Borggraeve, W.M. Design, synthesis and biological evaluation of pyrazolo[3,4-d]pyrimidine-based protein kinase D inhibitors. Eur. J. Med. Chem., 2020, 205112638
[http://dx.doi.org/10.1016/j.ejmech.2020.112638] [PMID: 32835918]
[159]
Singla, P.; Luxami, V.; Paul, K. Triazine as a promising scaffold for its versatile biological behavior. Eur. J. Med. Chem., 2015, 102, 39-57.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.037] [PMID: 26241876]
[160]
Norman, M.H.; Andrews, K.L.; Bo, Y.Y.; Booker, S.K.; Caenepeel, S.; Cee, V.J.; D’Angelo, N.D.; Freeman, D.J.; Herberich, B.J.; Hong, F-T.; Jackson, C.L.; Jiang, J.; Lanman, B.A.; Liu, L.; McCarter, J.D.; Mullady, E.L.; Nishimura, N.; Pettus, L.H.; Reed, A.B.; Miguel, T.S.; Smith, A.L.; Stec, M.M.; Tadesse, S.; Tasker, A.; Aidasani, D.; Zhu, X.; Subramanian, R.; Tamayo, N.A.; Wang, L.; Whittington, D.A.; Wu, B.; Wu, T.; Wurz, R.P.; Yang, K.; Zalameda, L.; Zhang, N.; Hughes, P.E. Selective class I phosphoinositide 3-kinase inhibitors: optimization of a series of pyridyltriazines leading to the identification of a clinical candidate, AMG 511. J. Med. Chem., 2012, 55(17), 7796-7816.
[http://dx.doi.org/10.1021/jm300846z] [PMID: 22897589]
[161]
Rewcastle, G.W.; Gamage, S.A.; Flanagan, J.U.; Frederick, R.; Denny, W.A.; Baguley, B.C.; Kestell, P.; Singh, R.; Kendall, J.D.; Marshall, E.S.; Lill, C.L.; Lee, W.J.; Kolekar, S.; Buchanan, C.M.; Jamieson, S.M.; Shepherd, P.R. Synthesis and biological evaluation of novel analogues of the pan class I phosphatidylinositol 3-kinase (PI3K) inhibitor 2-(difluoromethyl)-1-[4,6-di(4-morpholinyl)-1,3,5-triazin-2-yl]-1H-benzimidazole (ZSTK474). J. Med. Chem., 2011, 54(20), 7105-7126.
[http://dx.doi.org/10.1021/jm200688y] [PMID: 21882832]
[162]
Dao, P.; Lietha, D.; Etheve-Quelquejeu, M.; Garbay, C.; Chen, H. Synthesis of novel 1,2,4-triazine scaffold as FAK inhibitors with antitumor activity. Bioorg. Med. Chem. Lett., 2017, 27(8), 1727-1730.
[http://dx.doi.org/10.1016/j.bmcl.2017.02.072] [PMID: 28284808]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy