Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Research Article

The Role of D2-like Dopaminergic Receptor in Dopamine-mediated Modulation of Th17-cells in Multiple Sclerosis

Author(s): Mikhail Melnikov*, Anastasiya Sviridova, Vladimir Rogovskii, Vladimir Kudrin, Vladimir Murugin, Alexey Boyko and Mikhail Pashenkov

Volume 20, Issue 8, 2022

Published on: 24 March, 2022

Page: [1632 - 1639] Pages: 8

DOI: 10.2174/1570159X19666210823103859

Price: $65

Abstract

Background: Dopamine is one of the main mediators capable regulate the neuroimmune interaction and is involved in multiple sclerosis (MS) pathogenesis.

Objective: The aim of this study was to clarify the role of dopamine and its receptors in modulation of Th17-cells in MS.

Methods: 34 relapsing-remitting MS patients and 23 healthy subjects were examined. To assess the effect of dopamine on Th17-cells, CD4+ T-cells were cultured in the presence of dopamine and antagonist or agonist of D1- or D2-like dopaminergic receptors and stimulated with anti-CD3/CD28- microbeads. The levels of cytokines in supernatants were assessed by ELISA.

Results: Production of interleukin-17 (IL-17), interferon-γ (IFN-γ), granulocyte-colony stimulating factor (GM-CSF), and IL-21 by CD4+ T-cells as well as dopamine were comparable between the groups. Dopamine suppressed cytokine secretion by activated СD4+ T-cells in both groups. Blockade of D1-like dopaminergic receptor with a specific antagonist SCH23390 did not affect dopaminemediated cytokine suppression. In contrast, blockade of D2-like dopaminergic receptor by sulpiride decreased dopamine's inhibitory effect on IL-17 secretion in both groups and GM-CSF and IL-21 production in MS patients. Blockade of D1-like dopaminergic receptor directly inhibited IL-17, IFN- γ, GM-CSF in both groups and IL-21 production in healthy subjects, while blockade of D2-like dopaminergic receptor had no effect on cytokine secretion. Finally, activation of D2-like dopaminergic receptor with a specific agonist quinpirole decreased cytokine production in both groups.

Conclusion: These data suggest an inhibitory role of dopamine on Th17-cells in MS, which could be mediated by the activation of the D2-like dopaminergic receptor.

Keywords: Dopamine, dopaminergic receptors, Th17-cells, multiple sclerosis, neuroimmunology, neuropharmacology.

« Previous
Graphical Abstract

[1]
Boyko, A.; Melnikov, M. Prevalence and incidence of multiple sclerosis in russian federation: 30 years of studies. Brain Sci., 2020, 10(5), 305.
[http://dx.doi.org/10.3390/brainsci10050305]
[2]
Melnikov, M.; Rogovskii, V.; Boyko, A.; Pashenkov, M. The influence of biogenic amines on Th17-mediated immune response in multi-ple sclerosis. Mult. Scler. Relat. Disord., 2018, 21, 19-23.
[http://dx.doi.org/10.1016/j.msard.2018.02.012] [PMID: 29454152]
[3]
Carandini, T.; Cercignani, M.; Galimberti, D.; Scarpini, E.; Bozzali, M. The distinct roles of monoamines in multiple sclerosis: a bridge between the immune and nervous systems? Brain Behav Immun., 2021, 1 S0889-1591(21)00095-7.
[http://dx.doi.org/10.1016/j.bbi.2021.02.030]
[4]
Hodo, T.W.; de Aquino, M.T.P.; Shimamoto, A.; Shanker, A. Critical neurotransmitters in the neuroimmune network. Front. Immunol., 1869, 2020(21), 11.
[http://dx.doi.org/10.3389/fimmu.2020.01869] [PMID: 32973771]
[5]
Milovanovic, J.; Arsenijevic, A.; Stojanovic, B. Interleukin-17 in chronic inflammatory neurological diseases. Front. Immunol., 2020, 11, 947.
[http://dx.doi.org/10.3389/fimmu.2020.00947]
[6]
Kebir, H.; Kreymborg, K.; Ifergan, I.; Dodelet-Devillers, A.; Cayrol, R.; Bernard, M.; Giuliani, F.; Arbour, N.; Becher, B.; Prat, A. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat. Med., 2007, 13(10), 1173-1175.
[http://dx.doi.org/10.1038/nm1651] [PMID: 17828272]
[7]
Lovett-Racke, A.E.; Yang, Y.; Racke, M.K. Th1 versus Th17: are T cell cytokines relevant in multiple sclerosis? Biochim. Biophys. Acta, 2011, 1812(2), 246-251.
[http://dx.doi.org/10.1016/j.bbadis.2010.05.012] [PMID: 20600875]
[8]
Brucklacher-Waldert, V.; Stuerner, K.; Kolster, M.; Wolthausen, J.; Tolosa, E. Phenotypical and functional characterization of T helper 17 cells in multiple sclerosis. Brain, 2009, 132(Pt 12), 3329-3341.
[http://dx.doi.org/10.1093/brain/awp289] [PMID: 19933767]
[9]
Melnikov, M.; Belousova, O.; Murugin, V. Pashenkov, М.; Boyко, A. The role of dopamine in modulation of Th-17 immune response in multiple sclerosis. J. Neuroimmunol., 2016, 292(292), 97-101.
[http://dx.doi.org/10.1016/j.jneuroim.2016.01.020] [PMID: 26943966]
[10]
Moser, T.; Akgün, K.; Proschmann, U.; Sellner, J.; Ziemssen, T. The role of TH17 cells in multiple sclerosis: Therapeutic implications. Autoimmun. Rev., 2020, 19(10), 102647.
[http://dx.doi.org/10.1016/j.autrev.2020.102647] [PMID: 32801039]
[11]
Levite, M.; Marino, F.; Cosentino, M. Dopamine, T cells and multiple sclerosis (MS). J. Neural Transm. (Vienna), 2017, 124(5), 525-542.
[http://dx.doi.org/10.1007/s00702-016-1640-4]
[12]
Ferreira, T.B.; Barros, P.O.; Teixeira, B.; Cassano, T.; Centurião, N.; Kasahara, T.M.; Hygino, J.; Vasconcelos, C.C.; Filho, H.A.; Al-varenga, R.; Wing, A.C.; Andrade, R.M.; Andrade, A.F.; Bento, C.A. Dopamine favors expansion of glucocorticoid-resistant IL-17-producing T cells in multiple sclerosis. Brain Behav. Immun., 2014, 41, 182-190.
[http://dx.doi.org/10.1016/j.bbi.2014.05.013] [PMID: 24882215]
[13]
Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; Fujihara, K.; Galetta, S.L.; Hartung, H.P.; Kappos, L.; Lublin, F.D.; Marrie, R.A.; Miller, A.E.; Miller, D.H.; Montalban, X.; Mowry, E.M.; Sorensen, P.S.; Tintoré, M.; Traboulsee, A.L.; Trojano, M.; Uitdehaag, B.M.J.; Vukusic, S.; Waubant, E.; Weinshenker, B.G.; Reingold, S.C.; Cohen, J.A. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol., 2018, 17(2), 162-173.
[http://dx.doi.org/10.1016/S1474-4422(17)30470-2] [PMID: 29275977]
[14]
Kurtzke, J.F. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology, 1983, 33(11), 1444-1452.
[http://dx.doi.org/10.1212/WNL.33.11.1444] [PMID: 6685237]
[15]
Beck, A.T.; Ward, C.H.; Mendelson, M.; Mock, J.; Erbaugh, J. An inventory for measuring depression. Arch. Gen. Psychiatry, 1961, 4, 561-571.
[http://dx.doi.org/10.1001/archpsyc.1961.01710120031004] [PMID: 13688369]
[16]
Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc., 2005, 53(4), 695-699.
[http://dx.doi.org/10.1111/j.1532-5415.2005.53221.x] [PMID: 15817019]
[17]
Sviridova, A.; Rogovskii, V.; Kudrin, V.; Pashenkov, M.; Boyko, A.; Melnikov, M. The role of 5-HT2B-receptors in fluoxetine-mediated modulation of Th17- and Th1-cells in multiple sclerosis. J. Neuroimmunol., 2021, 356, 577608.
[http://dx.doi.org/10.1016/j.jneuroim.2021.577608]
[18]
Besser, M.J.; Ganor, Y.; Levite, M. Dopamine by itself activates either D2, D3 or D1/D5 dopaminergic receptors in normal human T-cells and triggers the selective secretion of either IL-10, TNFalpha or both. J. Neuroimmunol., 2005, 169(1-2), 161-171.
[http://dx.doi.org/10.1016/j.jneuroim.2005.07.013] [PMID: 16150496]
[19]
van Langelaar, J.; van der Vuurst de Vries, R.M.; Janssen, M. T helper 17.1 cells associate with multiple sclerosis disease activity: per-spectives for early intervention. Brain, 2018, 141(5), 1334-1349.
[http://dx.doi.org/10.1093/brain/awy069]
[20]
Melnikov, M.; Sharanova, S.; Sviridova, A. The influence of glatiramer acetate on Th17-immune response in multiple sclerosis. PLoS One, 2020, 15(10), e0240305.
[http://dx.doi.org/10.1371/journal.pone.0240305]
[21]
Cosentino, M.; Zaffaroni, M.; Marino, F.; Bombelli, R.; Ferrari, M.; Rasini, E.; Lecchini, S.; Ghezzi, A.; Frigo, G. Catecholamine produc-tion and tyrosine hydroxylase expression in peripheral blood mononuclear cells from multiple sclerosis patients: effect of cell stimulation and possible relevance for activation-induced apoptosis. J. Neuroimmunol., 2002, 133(1-2), 233-240.
[http://dx.doi.org/10.1016/S0165-5728(02)00372-7] [PMID: 12446028]
[22]
Rajda, C.; Bencsik, K.; Vécsei, L.L.; Bergquist, J. Catecholamine levels in peripheral blood lymphocytes from multiple sclerosis patients. J. Neuroimmunol., 2002, 124(1-2), 93-100.
[http://dx.doi.org/10.1016/S0165-5728(02)00002-4] [PMID: 11958826]
[23]
Cosentino, M.; Marino, F.; Bombelli, R.; Ferrari, M.; Rasini, E.; Lecchini, S.; Frigo, G. Stimulation with phytohaemagglutinin induces the synthesis of catecholamines in human peripheral blood mononuclear cells: role of protein kinase C and contribution of intracellular calci-um. J. Neuroimmunol., 2002, 125(1-2), 125-133.
[http://dx.doi.org/10.1016/S0165-5728(02)00019-X] [PMID: 11960648]
[24]
Zaffaroni, M.; Marino, F.; Bombelli, R.; Rasini, E.; Monti, M.; Ferrari, M.; Ghezzi, A.; Comi, G.; Lecchini, S.; Cosentino, M. Therapy with interferon-beta modulates endogenous catecholamines in lymphocytes of patients with multiple sclerosis. Exp. Neurol., 2008, 214(2), 315-321.
[http://dx.doi.org/10.1016/j.expneurol.2008.08.015] [PMID: 18824168]
[25]
Matt, S.M.; Gaskill, P.J. Where is dopamine and how do immune cells see it? Dopamine-mediated immune cell function in health and disease. J. Neuroimmune Pharmacol., 2020, 15(1), 114-164.
[http://dx.doi.org/10.1007/s11481-019-09851-4] [PMID: 31077015]
[26]
Nakano, K.; Higashi, T.; Hashimoto, K.; Takagi, R.; Tanaka, Y.; Matsushita, S. Antagonizing dopamine D1-like receptor inhibits Th17 cell differentiation: preventive and therapeutic effects on experimental autoimmune encephalomyelitis. Biochem. Biophys. Res. Commun., 2008, 373(2), 286-291.
[http://dx.doi.org/10.1016/j.bbrc.2008.06.012]
[27]
Huang, Y.; Chen, C.C.; Wang, T.T.; Qiu, Y.H.; Peng, Y.P. Dopamine receptors modulate T lymphocytes via inhibition of cAMP-CREB signaling pathway. Neuroendocrinol. Lett., 2016, 37(7), 491-500.
[PMID: 28326743]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy