Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Recent Developments in the Practical Application of Novel Carboxylic Acid Bioisosteres

Author(s): Conor Horgan and Timothy P. O’Sullivan*

Volume 29, Issue 13, 2022

Published on: 03 January, 2022

Page: [2203 - 2234] Pages: 32

DOI: 10.2174/0929867328666210820112126

Price: $65

Abstract

Background: The carboxylic acid moiety is an important functional group which features in the pharmacophore of some 450 drugs. Unfortunately, some carboxylic acid-containing drugs have been withdrawn from market due to unforeseen toxicity issues. Other issues associated with the carboxylate moiety include reduced metabolic stability or limited passive diffusion across biological membranes. Medicinal chemists often turn to bioisosteres to circumvent such obstacles.

Objective: The aim of this review is to provide a summary of the various applications of novel carboxylic acid bioisosteres which have appeared in the literature since 2013.

Results: We have summarised the most recent developments in carboxylic acid bioisosterism. In particular, we focus on the changes in bioactivity, selectivity or physicochemical properties brought about by these substitutions, as well as the advantages and disadvantages of each isostere.

Conclusion: The topics discussed herein highlight the continued interest in carboxylate bioisosteres. The development of novel carboxylic acid substitutes which display improved pharmacological profiles is a testament to the innovation and creativity required to overcome the challenges faced in modern drug design.

Keywords: Isosteres, bioisosterism, carboxylic acids, drug design, acidity, lipophilicity.

[1]
Langmuir, I. Isomorphism, isosterism and covalence. J. Am. Chem. Soc., 1919, 41(10), 1543-1559.
[http://dx.doi.org/10.1021/ja02231a009]
[2]
Grimm, H.G. About the structure and size of the non-metal hydrides. Z. Elektrochem., 1925, 31(9), 474-480.
[3]
Erlenmeyer, H.; Berger, E.; Leo, M. Relationship between the structure of antigens and the specificity of antibodies. Helv. Chim. Acta, 1933, 16(1), 733-738.
[http://dx.doi.org/10.1002/hlca.19330160199]
[4]
Friedman, H.L. Influence of isosteric replacements upon biological activity. NASNRS, 1951, 206, 295-358.
[5]
Burger, A. Isosterism and bioisosterism in drug design. In: Progress in Drug Research/Fortschritte der Arzneimittelforschung/Progrès des Recherches Pharmaceutiques; Jucker, E., Ed.; Birkhäuser Basel: Basel, 1991; pp. 287-371.
[http://dx.doi.org/10.1007/978-3-0348-7139-6_7]
[6]
Lima, L.M.; Barreiro, E.J. Beyond bioisosterism: New concepts in drug discovery. In: Comprehensive Medicinal Chemistry III, Vol 1: General Perspective - the Future of Drug Discovery; Elsevier: Amsterdam, 2017; p. 186-210.
[7]
Patani, G.A.; LaVoie, E.J. Bioisosterism: A Rational Approach in Drug Design. Chem. Rev., 1996, 96(8), 3147-3176.
[http://dx.doi.org/10.1021/cr950066q] [PMID: 11848856]
[8]
Meanwell, N.A. The influence of bioisosteres in drug design: Tactical applications to address developability problems. Tactics in Contemporary Drug Design; Meanwell, N.A., Ed.; Springer: Berlin, Heidelberg, 2015, Vol. 9, pp. 283-381.
[http://dx.doi.org/10.1007/7355_2013_29]
[9]
Hamada, Y.; Kiso, Y. The application of bioisosteres in drug design for novel drug discovery: Focusing on acid protease inhibitors. Expert Opin. Drug Discov., 2012, 7(10), 903-922.
[http://dx.doi.org/10.1517/17460441.2012.712513] [PMID: 22873630]
[10]
Huedo, P.; Kumar, V.P.; Horgan, C.; Yero, D.; Daura, X.; Gibert, I.; O’Sullivan, T.P. Sulfonamide-based diffusible signal factor analogs interfere with quorum sensing in Stenotrophomonas maltophilia and Burkholderia cepacia. Future Med. Chem., 2019, 11(13), 1565-1582.
[http://dx.doi.org/10.4155/fmc-2019-0015] [PMID: 31469336]
[11]
Kalgutkar, A.S.; Scott Daniels, J. Carboxylic acids and their bioisosteres. Metabolism, pharmacokinetics and toxicity of functional groups: Impact of chemical building blocks on admet; The Royal Society of Chemistry: Cambridge, 2010, pp. 99-167.
[http://dx.doi.org/10.1039/9781849731102-00099]
[12]
Böcker, A.; Bonneau, P.R.; Hucke, O.; Jakalian, A.; Edwards, P.J. Development of specific “drug-like property” rules for carboxylate-containing oral drug candidates. ChemMedChem, 2010, 5(12), 2102-2113.
[http://dx.doi.org/10.1002/cmdc.201000355] [PMID: 20979082]
[13]
Lassila, T.; Hokkanen, J.; Aatsinki, S-M.; Mattila, S.; Turpeinen, M.; Tolonen, A. Toxicity of carboxylic acid-containing drugs: the role of acyl migration and coa conjugation investigated. Chem. Res. Toxicol., 2015, 28(12), 2292-2303.
[http://dx.doi.org/10.1021/acs.chemrestox.5b00315] [PMID: 26558897]
[14]
Sawamura, R.; Okudaira, N.; Watanabe, K.; Murai, T.; Kobayashi, Y.; Tachibana, M.; Ohnuki, T.; Masuda, K.; Honma, H.; Kurihara, A.; Okazaki, O. Predictability of idiosyncratic drug toxicity risk for carboxylic acid-containing drugs based on the chemical stability of acyl glucuronide. Drug Metab. Dispos., 2010, 38(10), 1857-1864.
[http://dx.doi.org/10.1124/dmd.110.034173] [PMID: 20606003]
[15]
Miners, J.O.; Mackenzie, P.I. Drug glucuronidation in humans. Pharmacol. Ther., 1991, 51(3), 347-369.
[http://dx.doi.org/10.1016/0163-7258(91)90065-T] [PMID: 1792239]
[16]
Boelsterli, U.A. Acyl glucuronides: Mechanistic role in drug toxicity? Curr. Drug Metab., 2011, 12(3), 213-214.
[http://dx.doi.org/10.2174/138920011795101831] [PMID: 21395537]
[17]
Walles, M.; Brown, A.P.; Zimmerlin, A.; End, P. New perspectives on drug-induced liver injury risk assessment of acyl glucuronides. Chem. Res. Toxicol., 2020, 33(7), 1551-1560.
[http://dx.doi.org/10.1021/acs.chemrestox.0c00131] [PMID: 32525307]
[18]
Fung, M.; Thornton, A.; Mybeck, K.; Wu, J.H-h.; Hornbuckle, K.; Muniz, E. Evaluation of the characteristics of safety withdrawal of prescription drugs from worldwide pharmaceutical markets-1960 to 1999. Drug Inf. J., 2001, 35(1), 293-317.
[http://dx.doi.org/10.1177/009286150103500134]
[19]
Croom, E. Chapter three - metabolism of xenobiotics of human environments. Prog. Mol. Biol. Transl. Sci; Hodgson, E., Ed.; Academic Press, 2012, Vol. 112, pp. 31-88.
[20]
Láznícek, M.; Láznícková, A. The effect of lipophilicity on the protein binding and blood cell uptake of some acidic drugs. J. Pharm. Biomed. Anal., 1995, 13(7), 823-828.
[http://dx.doi.org/10.1016/0731-7085(95)01504-E] [PMID: 8562605]
[21]
Lamberth, C.; Dinges, J. Different roles of carboxylic functions in pharmaceuticals and agrochemicals. In: Bioactive Carboxylic Compound Classes; Wiley-VCH: Weinheim, 2016; pp. 1-11.
[http://dx.doi.org/10.1002/9783527693931.ch1]
[22]
Hitchcock, S.A.; Pennington, L.D. Structure-brain exposure relationships. J. Med. Chem., 2006, 49(26), 7559-7583.
[http://dx.doi.org/10.1021/jm060642i] [PMID: 17181137]
[23]
Pajouhesh, H.; Lenz, G.R. Medicinal chemical properties of successful central nervous system drugs. NeuroRx, 2005, 2(4), 541-553.
[http://dx.doi.org/10.1602/neurorx.2.4.541] [PMID: 16489364]
[24]
Ballatore, C.; Huryn, D.M.; Smith, A.B. III Carboxylic acid (bio)isosteres in drug design. ChemMedChem, 2013, 8(3), 385-395.
[http://dx.doi.org/10.1002/cmdc.201200585] [PMID: 23361977]
[25]
Allen, F.H.; Groom, C.R.; Liebeschuetz, J.W.; Bardwell, D.A.; Olsson, T.S.G.; Wood, P.A. The hydrogen bond environments of 1H-tetrazole and tetrazolate rings: the structural basis for tetrazole-carboxylic acid bioisosterism. J. Chem. Inf. Model., 2012, 52(3), 857-866.
[http://dx.doi.org/10.1021/ci200521k] [PMID: 22303876]
[26]
Herr, R.J. 5-Substituted-1H-tetrazoles as carboxylic acid isosteres: Medicinal chemistry and synthetic methods. Bioorg. Med. Chem., 2002, 10(11), 3379-3393.
[http://dx.doi.org/10.1016/S0968-0896(02)00239-0] [PMID: 12213451]
[27]
Myznikov, L.V.; Hrabalek, A.; Koldobskii, G.I. Drugs in the tetrazole series. Chem. Heterocycl. Compd., 2007, 43(1), 1-9.
[http://dx.doi.org/10.1007/s10593-007-0001-5]
[28]
Frija, L.M.T.; Reva, I.D.; Gómez-Zavaglia, A.; Cristiano, M.L.S.; Fausto, R. UV-induced photochemistry of matrix-isolated 1-phenyl-4-allyl-tetrazolone. Photochem. Photobiol. Sci., 2007, 6(11), 1170-1176.
[http://dx.doi.org/10.1039/b703961a] [PMID: 17973049]
[29]
Kees, K.L.; Caggiano, T.J.; Steiner, K.E.; Fitzgerald, J.J., Jr; Kates, M.J.; Christos, T.E.; Kulishoff, J.M., Jr; Moore, R.D.; McCaleb, M.L. Studies on new acidic azoles as glucose-lowering agents in obese, diabetic db/db mice. J. Med. Chem., 1995, 38(4), 617-628.
[http://dx.doi.org/10.1021/jm00004a008] [PMID: 7861410]
[30]
Han, S.Y.; Lee, J.W.; Kim, H.J.; Kim, Y.J.; Lee, S.W.; Gyoung, Y.S. A facile one-pot synthesis of 1-substituted tetrazole-5-thiones and 1-substituted 5-alkyl(aryl)sulfanyl-tetrazoles from organic isothiocyanates. Bull. Korean Chem. Soc., 2012, 33(1), 55-59.
[http://dx.doi.org/10.5012/bkcs.2012.33.1.55]
[31]
Duncton, M.A.J.; Murray, R.B.; Park, G.; Singh, R. Tetrazolone as an acid bioisostere: application to marketed drugs containing a carboxylic acid. Org. Biomol. Chem., 2016, 14(39), 9343-9347.
[http://dx.doi.org/10.1039/C6OB01646D] [PMID: 27714239]
[32]
Murray, R. An evaluation of the disposition of r941000, a tetrazolone-telmisartan analog: A case study of the suitability of tetrazolone as a carboxylic acid bioisostere. Master of Science (MS) Thesis, San José State University. 2015.
[33]
Tiz, D.B.; Skok, Ž.; Durcik, M.; Tomašič, T.; Mašič, L.P.; Ilaš, J.; Zega, A.; Draskovits, G.; Révész, T.; Nyerges, Á.; Pál, C.; Cruz, C.D.; Tammela, P.; Žigon, D.; Kikelj, D.; Zidar, N. An optimised series of substituted N-phenylpyrrolamides as DNA gyrase B inhibitors. Eur. J. Med. Chem., 2019, 167, 269-290.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.004] [PMID: 30776691]
[34]
Zidar, N.; Macut, H.; Tomašič, T.; Brvar, M.; Montalvão, S.; Tammela, P.; Solmajer, T.; Peterlin Mašič, L.; Ilaš, J.; Kikelj, D. N-phenyl-4,5-dibromopyrrolamides and N-phenylindolamides as ATP competitive DNA gyrase B inhibitors: design, synthesis, and evaluation. J. Med. Chem., 2015, 58(15), 6179-6194.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00775] [PMID: 26126187]
[35]
Stensbøl, T.B.; Uhlmann, P.; Morel, S.; Eriksen, B.L.; Felding, J.; Kromann, H.; Hermit, M.B.; Greenwood, J.R.; Braüner-Osborne, H.; Madsen, U.; Junager, F.; Krogsgaard-Larsen, P.; Begtrup, M.; Vedsø, P. Novel 1-hydroxyazole bioisosteres of glutamic acid. Synthesis, protolytic properties, and pharmacology. J. Med. Chem., 2002, 45(1), 19-31.
[http://dx.doi.org/10.1021/jm010303j] [PMID: 11754576]
[36]
Krall, J.; Kongstad, K.T.; Nielsen, B.; Sørensen, T.E.; Balle, T.; Jensen, A.A.; Frølund, B. 5-(Piperidin-4-yl)-3-hydroxypyrazole: A novel scaffold for probing the orthosteric γ-aminobutyric acid type A receptor binding site. ChemMedChem, 2014, 9(11), 2475-2485.
[http://dx.doi.org/10.1002/cmdc.201402248] [PMID: 25156407]
[37]
Jørgensen, L.; Nielsen, B.; Pickering, D.S.; Kristensen, A.S.; Frydenvang, K.; Madsen, U.; Clausen, R.P. Analogues of 3-hydroxyisoxazole-containing glutamate receptor ligands based on the 3-hydroxypyrazole-moiety: Design, synthesis and pharmacological characterization. Neurochem. Res., 2014, 39(10), 1895-1905.
[http://dx.doi.org/10.1007/s11064-014-1332-0] [PMID: 24848194]
[38]
Petersen, J.G.; Bergmann, R.; Krogsgaard-Larsen, P.; Balle, T.; Frølund, B. Probing the orthosteric binding site of GABAA receptors with heterocyclic GABA carboxylic acid bioisosteres. Neurochem. Res., 2014, 39(6), 1005-1015.
[http://dx.doi.org/10.1007/s11064-013-1226-6] [PMID: 24362592]
[39]
Grewal, A.S.; Bhardwaj, S.; Pandita, D.; Lather, V.; Sekhon, B.S. Updates on aldose reductase inhibitors for management of diabetic complications and non-diabetic diseases. Mini Rev. Med. Chem., 2016, 16(2), 120-162.
[http://dx.doi.org/10.2174/1389557515666150909143737] [PMID: 26349493]
[40]
Papastavrou, N.; Chatzopoulou, M.; Pegklidou, K.; Nicolaou, I. 1-Hydroxypyrazole as a bioisostere of the acetic acid moiety in a series of aldose reductase inhibitors. Bioorg. Med. Chem., 2013, 21(17), 4951-4957.
[http://dx.doi.org/10.1016/j.bmc.2013.06.062] [PMID: 23891165]
[41]
Papastavrou, N.; Chatzopoulou, M.; Ballekova, J.; Cappiello, M.; Moschini, R.; Balestri, F.; Patsilinakos, A.; Ragno, R.; Stefek, M.; Nicolaou, I. Enhancing activity and selectivity in a series of pyrrol-1-yl-1-hydroxypyrazole-based aldose reductase inhibitors: The case of trifluoroacetylation. Eur. J. Med. Chem., 2017, 130, 328-335.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.053] [PMID: 28259841]
[42]
Nicolaou, I.; Demopoulos, V.J. Substituted pyrrol-1-ylacetic acids that combine aldose reductase enzyme inhibitory activity and ability to prevent the nonenzymatic irreversible modification of proteins from monosaccharides. J. Med. Chem., 2003, 46(3), 417-426.
[http://dx.doi.org/10.1021/jm0209477] [PMID: 12540241]
[43]
Hao, X.; Qin, X.; Zhang, X.; Ma, B.; Qi, G.; Yu, T.; Han, Z.; Zhu, C. Identification of quinoxalin-2(1H)-one derivatives as a novel class of multifunctional aldose reductase inhibitors. Future Med. Chem., 2019, 11(23), 2989-3004.
[http://dx.doi.org/10.4155/fmc-2019-0194] [PMID: 31659919]
[44]
Calí, P.; Begtrup, M. Synthesis of 1-hydroxypyrazole glycine derivatives. Tetrahedron, 2002, 58(8), 1595-1605.
[http://dx.doi.org/10.1016/S0040-4020(02)00021-2]
[45]
Clausen, R.P.; Hansen, K.B.; Calí, P.; Nielsen, B.; Greenwood, J.R.; Begtrup, M.; Egebjerg, J.; Bräuner-Osborne, H. The respective N-hydroxypyrazole analogues of the classical glutamate receptor ligands ibotenic acid and (RS)-2-amino-2-(3-hydroxy-5-methyl-4-isoxazolyl)acetic acid. Eur. J. Pharmacol., 2004, 499(1-2), 35-44.
[http://dx.doi.org/10.1016/j.ejphar.2004.07.049] [PMID: 15363949]
[46]
Jørgensen, C.G.; Bräuner-Osborne, H.; Nielsen, B.; Kehler, J.; Clausen, R.P.; Krogsgaard-Larsen, P.; Madsen, U. Novel 5-substituted 1-pyrazolol analogues of ibotenic acid: Synthesis and pharmacology at glutamate receptors. Bioorg. Med. Chem., 2007, 15(10), 3524-3538.
[http://dx.doi.org/10.1016/j.bmc.2007.02.047] [PMID: 17376693]
[47]
Clausen, R.P.; Christensen, C.; Hansen, K.B.; Greenwood, J.R.; Jørgensen, L.; Micale, N.; Madsen, J.C.; Nielsen, B.; Egebjerg, J.; Bräuner-Osborne, H.; Traynelis, S.F.; Kristensen, J.L. N-Hydroxypyrazolyl glycine derivatives as selective N-methyl-D-aspartic acid receptor ligands. J. Med. Chem., 2008, 51(14), 4179-4187.
[http://dx.doi.org/10.1021/jm800025e] [PMID: 18578474]
[48]
Frølund, B.; Kristiansen, U.; Brehm, L.; Hansen, A.B.; Krogsgaard-Larsen, P.; Falch, E. Partial GABAA receptor agonists. Synthesis and in vitro pharmacology of a series of nonannulated analogs of 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol. J. Med. Chem., 1995, 38(17), 3287-3296.
[http://dx.doi.org/10.1021/jm00017a014] [PMID: 7650683]
[49]
Frølund, B.; Tagmose, L.; Liljefors, T.; Stensbøl, T.B.; Engblom, C.; Kristiansen, U.; Krogsgaard-Larsen, P. A novel class of potent 3-isoxazolol GABA(A) antagonists: Design, synthesis, and pharmacology. J. Med. Chem., 2000, 43(26), 4930-4933.
[http://dx.doi.org/10.1021/jm000371q] [PMID: 11150163]
[50]
Krall, J.; Balle, T.; Krogsgaard-Larsen, N.; Sørensen, T.E.; Krogsgaard-Larsen, P.; Kristiansen, U.; Frølund, B. GABAA receptor partial agonists and antagonists: Structure, binding mode, and pharmacology. Adv. Pharmacol; Rudolph, U., Ed.; Academic Press: Cambridge, Massachusetts, 2015, Vol. 72, pp. 201-227.
[http://dx.doi.org/10.1016/bs.apha.2014.10.003]
[51]
Møller, H.A.; Sander, T.; Kristensen, J.L.; Nielsen, B.; Krall, J.; Bergmann, M.L.; Christiansen, B.; Balle, T.; Jensen, A.A.; Frølund, B. Novel 4-(piperidin-4-yl)-1-hydroxypyrazoles as γ-aminobutyric acid(A) receptor ligands: Synthesis, pharmacology, and structure-activity relationships. J. Med. Chem., 2010, 53(8), 3417-3421.
[http://dx.doi.org/10.1021/jm100106r] [PMID: 20355712]
[52]
Petersen, J.G.; Bergmann, R.; Møller, H.A.; Jørgensen, C.G.; Nielsen, B.; Kehler, J.; Frydenvang, K.; Kristensen, J.; Balle, T.; Jensen, A.A.; Kristiansen, U.; Frølund, B. Synthesis and biological evaluation of 4-(aminomethyl)-1-hydroxypyrazole analogues of muscimol as γ-aminobutyric acid(a) receptor agonists. J. Med. Chem., 2013, 56(3), 993-1006.
[http://dx.doi.org/10.1021/jm301473k] [PMID: 23294161]
[53]
Krall, J.; Jensen, C.H.; Sørensen, T.E.; Nielsen, B.; Jensen, A.A.; Sander, T.; Balle, T.; Frølund, B. Exploring the orthosteric binding site of the γ-aminobutyric acid type A receptor using 4-(Piperidin-4-yl)-1-hydroxypyrazoles 3- or 5-imidazolyl substituted: Design, synthesis, and pharmacological evaluation. J. Med. Chem., 2013, 56(16), 6536-6540.
[http://dx.doi.org/10.1021/jm4006466] [PMID: 23855889]
[54]
Mortensen, M.; Krall, J.; Kongstad, K.T.; Brygger, B.M.; Lenzi, O.; Francotte, P.; Sørensen, T.E.; Nielsen, B.; Jensen, A.A.; Smart, T.G.; Frølund, B. Developing New 4-PIOL and 4-PHP analogues for photoinactivation of γ-aminobutyric acid type a receptors. ACS Chem. Neurosci., 2019, 10(11), 4669-4684.
[http://dx.doi.org/10.1021/acschemneuro.9b00478] [PMID: 31589403]
[55]
Bonandi, E.; Christodoulou, M.S.; Fumagalli, G.; Perdicchia, D.; Rastelli, G.; Passarella, D. The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discov. Today, 2017, 22(10), 1572-1581.
[http://dx.doi.org/10.1016/j.drudis.2017.05.014] [PMID: 28676407]
[56]
Sainas, S.; Pippione, A.C.; Giraudo, A.; Martina, K.; Bosca, F.; Rolando, B.; Barge, A.; Ducime, A.; Federico, A.; Grossert, S.J.; White, R.L.; Boschi, D.; Lolli, M.L. Regioselective N-alkylation of ethyl 4-benzyloxy-1,2,3-triazolecarboxylate: a useful tool for the synthesis of carboxylic acid bioisosteres. J. Heterocycl. Chem., 2019, 56(2), 501-519.
[57]
Giraudo, A.; Krall, J.; Nielsen, B.; Sørensen, T.E.; Kongstad, K.T.; Rolando, B.; Boschi, D.; Frølund, B.; Lolli, M.L. 4-Hydroxy-1,2,3-triazole moiety as bioisostere of the carboxylic acid function: A novel scaffold to probe the orthosteric γ-aminobutyric acid receptor binding site. Eur. J. Med. Chem., 2018, 158, 311-321.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.094] [PMID: 30223119]
[58]
Pippione, A.C.; Dosio, F.; Ducime, A.; Federico, A.; Martina, K.; Sainas, S.; Frølund, B.; Gooyit, M.; Janda, K.D.; Boschi, D.; Lolli, M.L. Substituted 4-hydroxy-1,2,3-triazoles: synthesis, characterization and first drug design applications through bioisosteric modulation and scaffold hopping approaches. MedChemComm, 2015, 6(7), 1285-1292.
[http://dx.doi.org/10.1039/C5MD00182J]
[59]
Sainas, S.; Temperini, P.; Farnsworth, J.C.; Yi, F.; Møllerud, S.; Jensen, A.A.; Nielsen, B.; Passoni, A.; Kastrup, J.S.; Hansen, K.B.; Boschi, D.; Pickering, D.S.; Clausen, R.P.; Lolli, M.L. Use of the 4-hydroxytriazole moiety as a bioisosteric tool in the development of ionotropic glutamate receptor ligands. J. Med. Chem., 2019, 62(9), 4467-4482.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01986] [PMID: 30943028]
[60]
Flanagan, J.U.; Yosaatmadja, Y.; Teague, R.M.; Chai, M.Z.L.; Turnbull, A.P.; Squire, C.J. Crystal structures of three classes of non-steroidal anti-inflammatory drugs in complex with aldo-keto reductase 1C3. PLoS One, 2012, 7(8), e43965.
[http://dx.doi.org/10.1371/journal.pone.0043965] [PMID: 22937138]
[61]
Pouplana, R.; Pérez, C.; Sánchez, J.; Lozano, J.J.; Puig-Parellada, P. The structural and electronical factors that contribute affinity for the time-dependent inhibition of PGHS-1 by indomethacin, diclofenac and fenamates. J. Comput. Aided Mol. Des., 1999, 13(3), 297-313.
[http://dx.doi.org/10.1023/A:1008094616324] [PMID: 10216835]
[62]
Pippione, A.C.; Carnovale, I.M.; Bonanni, D.; Sini, M.; Goyal, P.; Marini, E.; Pors, K.; Adinolfi, S.; Zonari, D.; Festuccia, C.; Wahlgren, W.Y.; Friemann, R.; Bagnati, R.; Boschi, D.; Oliaro-Bosso, S.; Lolli, M.L. Potent and selective aldo-keto reductase 1C3 (AKR1C3) inhibitors based on the benzoisoxazole moiety: Application of a bioisosteric scaffold hopping approach to flufenamic acid. Eur. J. Med. Chem., 2018, 150, 930-945.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.040] [PMID: 29602039]
[63]
Pippione, A.C.; Giraudo, A.; Bonanni, D.; Carnovale, I.M.; Marini, E.; Cena, C.; Costale, A.; Zonari, D.; Pors, K.; Sadiq, M.; Boschi, D.; Oliaro-Bosso, S.; Lolli, M.L. Hydroxytriazole derivatives as potent and selective aldo-keto reductase 1C3 (AKR1C3) inhibitors discovered by bioisosteric scaffold hopping approach. Eur. J. Med. Chem., 2017, 139, 936-946.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.046] [PMID: 28881288]
[64]
Andersen, J.L.; Lindberg, S.; Langgård, M.; Maltas, P.J.; Rønn, L.C.B.; Bundgaard, C.; Strandbygaard, D.; Thirup, S.; Watson, S.P. The identification of novel acid isostere based inhibitors of the VPS10P family sorting receptor Sortilin. Bioorg. Med. Chem. Lett., 2017, 27(11), 2629-2633.
[http://dx.doi.org/10.1016/j.bmcl.2017.02.028] [PMID: 28462834]
[65]
Hadden, M.; Goodman, A.; Guo, C.; Guzzo, P.R.; Henderson, A.J.; Pattamana, K.; Ruenz, M.; Sargent, B.J.; Swenson, B.; Yet, L.; Liu, J.; He, S.; Sebhat, I.K.; Lin, L.S.; Tamvakopoulos, C.; Peng, Q.; Kan, Y.; Palyha, O.; Kelly, T.M.; Guan, X.M.; Metzger, J.M.; Reitman, M.L.; Nargund, R.P. Synthesis and SAR of heterocyclic carboxylic acid isosteres based on 2-biarylethylimidazole as bombesin receptor subtype-3 (BRS-3) agonists for the treatment of obesity. Bioorg. Med. Chem. Lett., 2010, 20(9), 2912-2915.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.028] [PMID: 20347296]
[66]
Sainas, S.; Pippione, A.C.; Giorgis, M.; Lupino, E.; Goyal, P.; Ramondetti, C.; Buccinnà, B.; Piccinini, M.; Braga, R.C.; Andrade, C.H.; Andersson, M.; Moritzer, A.C.; Friemann, R.; Mensa, S.; Al-Kadaraghi, S.; Boschi, D.; Lolli, M.L. Design, synthesis, biological evaluation and X-ray structural studies of potent human dihydroorotate dehydrogenase inhibitors based on hydroxylated azole scaffolds. Eur. J. Med. Chem., 2017, 129, 287-302.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.017] [PMID: 28235702]
[67]
Dib-Hajj, S.D.; Cummins, T.R.; Black, J.A.; Waxman, S.G. Sodium channels in normal and pathological pain. Annu. Rev. Neurosci., 2010, 33(1), 325-347.
[http://dx.doi.org/10.1146/annurev-neuro-060909-153234] [PMID: 20367448]
[68]
Dib-Hajj, S.D.; Yang, Y.; Black, J.A.; Waxman, S.G. The Na(V)1.7 sodium channel: From molecule to man. Nat. Rev. Neurosci., 2013, 14(1), 49-62.
[http://dx.doi.org/10.1038/nrn3404] [PMID: 23232607]
[69]
Pajouhesh, H.; Beckley, J.T.; Delwig, A.; Hajare, H.S.; Luu, G.; Monteleone, D.; Zhou, X.; Ligutti, J.; Amagasu, S.; Moyer, B.D.; Yeomans, D.C.; Du Bois, J.; Mulcahy, J.V. Discovery of a selective, state-independent inhibitor of NaV1.7 by modification of guanidinium toxins. Sci. Rep., 2020, 10(1), 14791.
[http://dx.doi.org/10.1038/s41598-020-71135-2] [PMID: 32908170]
[70]
Boezio, A.A.; Andrews, K.; Boezio, C.; Chu-Moyer, M.; Copeland, K.W.; DiMauro, E.F.; Foti, R.S.; Fremeau, R.T., Jr; Gao, H.; Geuns-Meyer, S.; Graceffa, R.F.; Gunaydin, H.; Huang, H.; La, D.S.; Ligutti, J.; Moyer, B.D.; Peterson, E.A.; Yu, V.; Weiss, M.M. 1,2,4-Triazolsulfone: A novel isosteric replacement of acylsulfonamides in the context of NaV1.7 inhibition. Bioorg. Med. Chem. Lett., 2018, 28(11), 2103-2108.
[http://dx.doi.org/10.1016/j.bmcl.2018.04.035] [PMID: 29709252]
[71]
Desai, N.C.; Pandit, U.P.; Dodiya, A. Thiazolidinedione compounds: A patent review (2010 - present). Expert Opin. Ther. Pat., 2015, 25(4), 479-488.
[http://dx.doi.org/10.1517/13543776.2014.1001738] [PMID: 25579106]
[72]
Henke, B.R.; Blanchard, S.G.; Brackeen, M.F.; Brown, K.K.; Cobb, J.E.; Collins, J.L.; Harrington, W.W., Jr; Hashim, M.A.; Hull-Ryde, E.A.; Kaldor, I.; Kliewer, S.A.; Lake, D.H.; Leesnitzer, L.M.; Lehmann, J.M.; Lenhard, J.M.; Orband-Miller, L.A.; Miller, J.F.; Mook, R.A., Jr; Noble, S.A.; Oliver, W., Jr; Parks, D.J.; Plunket, K.D.; Szewczyk, J.R.; Willson, T.M.N. -(2-Benzoylphenyl)-L-tyrosine PPARgamma agonists. 1. Discovery of a novel series of potent antihyperglycemic and antihyperlipidemic agents. J. Med. Chem., 1998, 41(25), 5020-5036.
[http://dx.doi.org/10.1021/jm9804127] [PMID: 9836620]
[73]
Soll, R.M.; Kinney, W.A.; Primeau, J.; Garrick, L.; McCaully, R.J.; Colatsky, T.; Oshiro, G.; Park, C.H.; Hartupee, D.; White, V.; McCallum, J.; Russo, A.; Dinish, J.; Wojdan, A. 3-Hydroxy-3-cyclobutene-1,2-dione: Application of novel carboxylic acid bioisostere to an in-Vivo Active Non-tetrazole Angiotensin-II Antagonist. Bioorg. Med. Chem. Lett., 1993, 3(4), 757-760.
[http://dx.doi.org/10.1016/S0960-894X(01)81269-5]
[74]
Kinney, W.A.; Abou-Gharbia, M.; Garrison, D.T.; Schmid, J.; Kowal, D.M.; Bramlett, D.R.; Miller, T.L.; Tasse, R.P.; Zaleska, M.M.; Moyer, J.A. Design and synthesis of [2-(8,9-dioxo-2,6-diazabicyclo[5.2.0]non-1(7)-en-2-yl)-ethyl]phosphonic acid (EAA-090), a potent N-methyl-D-aspartate antagonist, via the use of 3-cyclobutene-1,2-dione as an achiral α-amino acid bioisostere. J. Med. Chem., 1998, 41(2), 236-246.
[http://dx.doi.org/10.1021/jm970504g] [PMID: 9457246]
[75]
Ballatore, C.; Soper, J.H.; Piscitelli, F.; James, M.; Huang, L.; Atasoylu, O.; Huryn, D.M.; Trojanowski, J.Q.; Lee, V.M.Y.; Brunden, K.R.; Smith, A.B., III Cyclopentane-1,3-dione: A novel isostere for the carboxylic acid functional group. Application to the design of potent thromboxane (A2) receptor antagonists. J. Med. Chem., 2011, 54(19), 6969-6983.
[http://dx.doi.org/10.1021/jm200980u] [PMID: 21863799]
[76]
Hiraga, K. Structures of cyclopentanepolyones. Chem. Pharm. Bull. (Tokyo), 1965, 13(11), 1300-1306.
[http://dx.doi.org/10.1248/cpb.13.1300] [PMID: 5864720]
[77]
Wang, X.; Liu, L.; Huang, L.; Herbst-Robinson, K.; Cornec, A.S.; James, M.J.; Sugiyama, S.; Bassetto, M.; Brancale, A.; Trojanowski, J.Q.; Lee, V.M.Y.; Smith, A.B., III; Brunden, K.R.; Ballatore, C. Potent, long-acting cyclopentane-1,3-Dione thromboxane (A2)-receptor antagonists. ACS Med. Chem. Lett., 2014, 5(9), 1015-1020.
[http://dx.doi.org/10.1021/ml5002085] [PMID: 25221659]
[78]
Meyer, E.A.; Caroff, E.; Riederer, M.A. Advances in Antiplatelet Agents. In: Comprehensive Medicinal Chemistry III, Vol 7: CNS, Pain, Metabolic Syndrome, Cardiovascular, Tissue Fibrosis and Urinary Incontinence; Chackalamannil, S.; Rotella, D.; Ward, S. E.; Hall, A.; Neelamkavil, S.; Jones, R., Eds.; Elsevier: Amsterdam, 2017; p. 556-599.
[http://dx.doi.org/10.1016/B978-0-12-409547-2.12431-X]
[79]
Ballatore, C.; Gay, B.; Huang, L.; Robinson, K.H.; James, M.J.; Trojanowski, J.Q.; Lee, V.M.Y.; Brunden, K.R.; Smith, A.B., III Evaluation of the cyclopentane-1,2-dione as a potential bio-isostere of the carboxylic acid functional group. Bioorg. Med. Chem. Lett., 2014, 24(17), 4171-4175.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.047] [PMID: 25127105]
[80]
Trost, B.M.; Dong, G.; Vance, J.A. Cyclic 1,2-diketones as core building blocks: A strategy for the total synthesis of (-)-terpestacin. Chemistry, 2010, 16(21), 6265-6277.
[http://dx.doi.org/10.1002/chem.200903356] [PMID: 20411537]
[81]
Vittorelli, P.; Heimgart, H.; Schmid, H.; Hoet, P.; Ghosez, L. Addition of carboxylic-acids and cyclic 1,3-diketones to 2-dimethylamino-3,3-dimethyl-1-azirine. Tetrahedron, 1974, 30(20), 3737-3740.
[http://dx.doi.org/10.1016/S0040-4020(01)90659-3]
[82]
Burkhard, J.A.; Wuitschik, G.; Rogers-Evans, M.; Müller, K.; Carreira, E.M. Oxetanes as versatile elements in drug discovery and synthesis. Angew. Chem. Int. Ed. Engl., 2010, 49(48), 9052-9067.
[http://dx.doi.org/10.1002/anie.200907155] [PMID: 21031377]
[83]
Bull, J.A.; Croft, R.A.; Davis, O.A.; Doran, R.; Morgan, K.F. Oxetanes: recent advances in synthesis, reactivity, and medicinal chemistry. Chem. Rev., 2016, 116(19), 12150-12233.
[http://dx.doi.org/10.1021/acs.chemrev.6b00274] [PMID: 27631342]
[84]
Dick, B.L.; Cohen, S.M. Metal-binding isosteres as new scaffolds for metalloenzyme inhibitors. Inorg. Chem., 2018, 57(15), 9538-9543.
[http://dx.doi.org/10.1021/acs.inorgchem.8b01632] [PMID: 30009599]
[85]
Lassalas, P.; Oukoloff, K.; Makani, V.; James, M.; Tran, V.; Yao, Y.; Huang, L.; Vijayendran, K.; Monti, L.; Trojanowski, J.Q.; Lee, V.M.Y.; Kozlowski, M.C.; Smith, A.B., III; Brunden, K.R.; Ballatore, C. Evaluation of oxetan-3-ol, thietan-3-ol, and derivatives thereof as bioisosteres of the carboxylic acid functional group. ACS Med. Chem. Lett., 2017, 8(8), 864-868.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00212] [PMID: 28835803]
[86]
Cathers, B.E.; Schloss, J.V. The sulfonimidamide as a novel transition state analog for aspartic acid and metallo proteases. Bioorg. Med. Chem. Lett., 1999, 9(11), 1527-1532.
[http://dx.doi.org/10.1016/S0960-894X(99)00241-3] [PMID: 10386929]
[87]
Toth, J.E.; Grindey, G.B.; Ehlhardt, W.J.; Ray, J.E.; Boder, G.B.; Bewley, J.R.; Klingerman, K.K.; Gates, S.B.; Rinzel, S.M.; Schultz, R.M.; Weir, L.C.; Worzalla, J.F. Sulfonimidamide analogs of oncolytic sulfonylureas. J. Med. Chem., 1997, 40(6), 1018-1025.
[http://dx.doi.org/10.1021/jm960673l] [PMID: 9083492]
[88]
Agarwal, S.; Sasane, S.; Shah, H.A.; Pethani, J.P.; Deshmukh, P.; Vyas, V.; Iyer, P.; Bhavsar, H.; Viswanathan, K.; Bandyopadhyay, D.; Giri, P.; Mahapatra, J.; Chatterjee, A.; Jain, M.R.; Sharma, R. Discovery of N-cyano-sulfoximineurea derivatives as potent and orally bioavailable NLRP3 inflammasome inhibitors. ACS Med. Chem. Lett., 2020, 11(4), 414-418.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00433] [PMID: 32292543]
[89]
Sehgelmeble, F.; Janson, J.; Ray, C.; Rosqvist, S.; Gustavsson, S.; Nilsson, L.I.; Minidis, A.; Holenz, J.; Rotticci, D.; Lundkvist, J.; Arvidsson, P.I. Sulfonimidamides as sulfonamides bioisosteres: Rational evaluation through synthetic, in vitro, and in vivo studies with γ-secretase inhibitors. ChemMedChem, 2012, 7(3), 396-399.
[http://dx.doi.org/10.1002/cmdc.201200014] [PMID: 22307979]
[90]
Frings, M.; Bolm, C.; Blum, A.; Gnamm, C. Sulfoximines from a medicinal chemist’s perspective: physicochemical and in vitro parameters relevant for drug discovery. Eur. J. Med. Chem., 2017, 126, 225-245.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.091] [PMID: 27821325]
[91]
Chinthakindi, P.K.; Naicker, T.; Thota, N.; Govender, T.; Kruger, H.G.; Arvidsson, P.I. Sulfonimidamides in medicinal and agricultural chemistry. Angew. Chem. Int. Ed. Engl., 2017, 56(15), 4100-4109.
[http://dx.doi.org/10.1002/anie.201610456] [PMID: 27958674]
[92]
Izzo, F.; Schäfer, M.; Lienau, P.; Ganzer, U.; Stockman, R.; Lücking, U. Exploration of novel chemical space: synthesis and in vitro evaluation of N-functionalized tertiary sulfonimidamides. Chemistry, 2018, 24(37), 9295-9304.
[http://dx.doi.org/10.1002/chem.201801557] [PMID: 29726583]
[93]
Pemberton, N.; Graden, H.; Evertsson, E.; Bratt, E.; Lepistö, M.; Johannesson, P.; Svensson, P.H. Synthesis and functionalization of cyclic sulfonimidamides: A novel chiral heterocyclic carboxylic Acid bioisostere. ACS Med. Chem. Lett., 2012, 3(7), 574-578.
[http://dx.doi.org/10.1021/ml3000935] [PMID: 24900513]
[94]
Borhade, S.R.; Svensson, R.; Brandt, P.; Artursson, P.; Arvidsson, P.I.; Sandström, A. Preclinical characterization of acyl sulfonimidamides: Potential carboxylic acid bioisosteres with tunable properties. ChemMedChem, 2015, 10(3), 455-460.
[http://dx.doi.org/10.1002/cmdc.201402497] [PMID: 25630705]
[95]
Trippier, P.C.; McGuigan, C. Boronic acids in medicinal chemistry: anticancer, antibacterial and antiviral applications. MedChemComm, 2010, 1(3), 183-198.
[http://dx.doi.org/10.1039/c0md00119h]
[96]
Plescia, J.; Moitessier, N. Design and discovery of boronic acid drugs. Eur. J. Med. Chem., 2020, 195(112270), 112270.
[http://dx.doi.org/10.1016/j.ejmech.2020.112270] [PMID: 32302879]
[97]
Matteson, D.S. α-Amido boronic acids: A synthetic challenge and their properties as serine protease inhibitors. Med. Res. Rev., 2008, 28(2), 233-246.
[http://dx.doi.org/10.1002/med.20105] [PMID: 17849483]
[98]
Yang, F.; Zhu, M.; Zhang, J.; Zhou, H. Synthesis of biologically active boron-containing compounds. MedChemComm, 2017, 9(2), 201-211.
[http://dx.doi.org/10.1039/C7MD00552K] [PMID: 30108914]
[99]
Adams, J.; Behnke, M.; Chen, S.; Cruickshank, A.A.; Dick, L.R.; Grenier, L.; Klunder, J.M.; Ma, Y-T.; Plamondon, L.; Stein, R.L. Potent and selective inhibitors of the proteasome: Dipeptidyl boronic acids. Bioorg. Med. Chem. Lett., 1998, 8(4), 333-338.
[http://dx.doi.org/10.1016/S0960-894X(98)00029-8] [PMID: 9871680]
[100]
Adams, J.; Kauffman, M. Development of the proteasome inhibitor Velcade (Bortezomib). Cancer Invest., 2004, 22(2), 304-311.
[http://dx.doi.org/10.1081/CNV-120030218] [PMID: 15199612]
[101]
Curran, M.P.; McKeage, K. Bortezomib: A review of its use in patients with multiple myeloma. Drugs, 2009, 69(7), 859-888.
[http://dx.doi.org/10.2165/00003495-200969070-00006] [PMID: 19441872]
[102]
World Health Organization Model List of Essential Medicines, 21st List, 2019. Geneva: World Health Organization; 2019. Licence: CC BY-NC-SA 3.0 IGO.
[103]
Shirley, M. Ixazomib: First Global Approval. Drugs, 2016, 76(3), 405-411.
[http://dx.doi.org/10.1007/s40265-016-0548-5] [PMID: 26846321]
[104]
Vogl, D.T.; Martin, T.G.; Vij, R.; Hari, P.; Mikhael, J.R.; Siegel, D.; Wu, K.L.; Delforge, M.; Gasparetto, C. Phase I/II study of the novel proteasome inhibitor delanzomib (CEP-18770) for relapsed and refractory multiple myeloma. Leuk. Lymphoma, 2017, 58(8), 1872-1879.
[http://dx.doi.org/10.1080/10428194.2016.1263842] [PMID: 28140719]
[105]
Stoll, R.; Renner, C.; Hansen, S.; Palme, S.; Klein, C.; Belling, A.; Zeslawski, W.; Kamionka, M.; Rehm, T.; Mühlhahn, P.; Schumacher, R.; Hesse, F.; Kaluza, B.; Voelter, W.; Engh, R.A.; Holak, T.A. Chalcone derivatives antagonize interactions between the human oncoprotein MDM2 and p53. Biochemistry, 2001, 40(2), 336-344.
[http://dx.doi.org/10.1021/bi000930v] [PMID: 11148027]
[106]
Kumar, S.K.; Hager, E.; Pettit, C.; Gurulingappa, H.; Davidson, N.E.; Khan, S.R. Design, synthesis, and evaluation of novel boronic-chalcone derivatives as antitumor agents. J. Med. Chem., 2003, 46(14), 2813-2815.
[http://dx.doi.org/10.1021/jm030213+] [PMID: 12825923]
[107]
Ghosh, A.K.; Xia, Z.; Kovela, S.; Robinson, W.L.; Johnson, M.E.; Kneller, D.W.; Wang, Y-F.; Aoki, M.; Takamatsu, Y.; Weber, I.T.; Mitsuya, H. Potent HIV-1 protease inhibitors containing carboxylic and boronic acids: effect on enzyme inhibition and antiviral activity and protein-ligand X-ray structural studies. ChemMedChem, 2019, 14(21), 1863-1872.
[http://dx.doi.org/10.1002/cmdc.201900508] [PMID: 31549492]
[108]
Albers, H.M.H.G.; Dong, A.; van Meeteren, L.A.; Egan, D.A.; Sunkara, M.; van Tilburg, E.W.; Schuurman, K.; van Tellingen, O.; Morris, A.J.; Smyth, S.S.; Moolenaar, W.H.; Ovaa, H. Boronic acid-based inhibitor of autotaxin reveals rapid turnover of LPA in the circulation. Proc. Natl. Acad. Sci. USA, 2010, 107(16), 7257-7262.
[http://dx.doi.org/10.1073/pnas.1001529107] [PMID: 20360563]
[109]
Albers, H.M.H.G.; Hendrickx, L.J.D.; van Tol, R.J.P.; Hausmann, J.; Perrakis, A.; Ovaa, H. Structure-based design of novel boronic acid-based inhibitors of autotaxin. J. Med. Chem., 2011, 54(13), 4619-4626.
[http://dx.doi.org/10.1021/jm200310q] [PMID: 21615078]
[110]
Albers, H.M.H.G.; van Meeteren, L.A.; Egan, D.A.; van Tilburg, E.W.; Moolenaar, W.H.; Ovaa, H. Discovery and optimization of boronic acid based inhibitors of autotaxin. J. Med. Chem., 2010, 53(13), 4958-4967.
[http://dx.doi.org/10.1021/jm1005012] [PMID: 20536182]
[111]
Hausmann, J.; Kamtekar, S.; Christodoulou, E.; Day, J.E.; Wu, T.; Fulkerson, Z.; Albers, H.M.H.G.; van Meeteren, L.A.; Houben, A.J.S.; van Zeijl, L.; Jansen, S.; Andries, M.; Hall, T.; Pegg, L.E.; Benson, T.E.; Kasiem, M.; Harlos, K.; Kooi, C.W.V.; Smyth, S.S.; Ovaa, H.; Bollen, M.; Morris, A.J.; Moolenaar, W.H.; Perrakis, A. Structural basis of substrate discrimination and integrin binding by autotaxin. Nat. Struct. Mol. Biol., 2011, 18(2), 198-204.
[http://dx.doi.org/10.1038/nsmb.1980] [PMID: 21240271]
[112]
Nakamura, H.; Kuroda, H.; Saito, H.; Suzuki, R.; Yamori, T.; Maruyama, K.; Haga, T. Synthesis and biological evaluation of boronic acid containing cis-stilbenes as apoptotic tubulin polymerization inhibitors. ChemMedChem, 2006, 1(7), 729-740.
[http://dx.doi.org/10.1002/cmdc.200600068] [PMID: 16902927]
[113]
Li, C.; Wang, J.; Barton, L.M.; Yu, S.; Tian, M.; Peters, D.S.; Kumar, M.; Yu, A.W.; Johnson, K.A.; Chatterjee, A.K.; Yan, M.; Baran, P.S. Decarboxylative borylation. Science, 2017, 356(6342), 1-8.
[http://dx.doi.org/10.1126/science.aam7355] [PMID: 28408721]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy