Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Anticancer Effect of Alginate-chitosan Hydrogel Loaded with Curcumin and Chrysin on Lung and Breast Cancer Cell Lines

Author(s): Farhad Abbasalizadeh, Effat Alizadeh, Seyyed Mohammad Bagher Fazljou, Mohammadali Torbati* and Abolfazl Akbarzadeh*

Volume 19, Issue 5, 2022

Published on: 11 January, 2022

Page: [600 - 613] Pages: 14

DOI: 10.2174/1567201818666210813142007

Price: $65

Abstract

Background: Cancer, which is defined as abnormal cell growth, is one of the biggest public health problems in the world. Natural compounds, such as polyphenols, are used as chemo- preventive and chemotherapeutic agents in different types of cancer owing to their antioxidant, antineoplastic, and cytotoxic properties. To improve their bioavailability and releasing behavior, hydrogel systems with high drug loadingg, stability and hydrophilic nature have been designed.

Objective: We conducted the present study to investigate the anticancer effects of curcumin and chrysin loaded in the alginate-chitosan hydrogel on breast cancer (T47D) and lung cancer (A549).

Methods: The curcumin-chrysin-loaded alginate-chitosan hydrogels were prepared through the ionic gelation mechanism utilizing CaCl2. The prepared hydrogels were studied by using the Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The MTT and DAPI staining assays were employed for cytotoxicity and apoptosis studies of curcumin-chrysin- loaded alginate-chitosan hydrogels. The effects of the curcumin-chrysin-loaded alginate-chitosan hydrogels on the cell cycle of cell lines T47D and A549 were also evaluated using the propidium iodide staining.

Results: The curcumin-chrysin-loaded alginate-chitosan hydrogels could significantly (p<0.05) reduce the viability and induce apoptosis. Morover G2/M causes arrest of the cell cycle in both A549 and T47D cell lines.

Conclusion: The alginate-chitosan hydrogels could work best as an enhanced anticancer drug delivery system.

Keywords: Curcumin, chrysin, hydrogel, sodium alginate, chitosan, cell cycle.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Mohammadinejad, S.; Akbarzadeh, A.; Rahmati-Yamchi, M.; Hatam, S.; Kachalaki, S.; Zohreh, S.; Zarghami, N. Preparation and evaluation of chrysin encapsulated in PLGA-PEG nanoparticles in the T47-D breast cancer cell line. Asian Pac. J. Cancer Prev., 2015, 16(9), 3753-3758.
[http://dx.doi.org/10.7314/APJCP.2015.16.9.3753] [PMID: 25987033]
[3]
Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther., 2018, 3(1), 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[4]
Moghaddam, S.V.; Abedi, F.; Alizadeh, E.; Baradaran, B.; Annabi, N.; Akbarzadeh, A.; Davaran, S. Lysine-embedded cellulose-based nanosystem for efficient dual-delivery of chemotherapeutics in combination cancer therapy. Carbohydr. Polym., 2020, 250, 116861.
[http://dx.doi.org/10.1016/j.carbpol.2020.116861] [PMID: 33049815]
[5]
Zhang, L.; Chen, W.; Tu, G.; Chen, X.; Lu, Y.; Wu, L.; Zheng, D. Enhanced chemotherapeutic efficacy of PLGA-encapsulated epigallocatechin gallate (EGCG) against human lung cancer. Int. J. Nanomedicine, 2020, 15, 4417-4429.
[PMID: 32606686]
[6]
Kaur, P.; Mishra, V.; Shunmugaperumal, T.; Goyal, A.K.; Ghosh, G.; Rath, G. Inhalable spray dried lipidnanoparticles for the co-delivery of paclitaxel and doxorubicin in lung cancer. J. Drug Deliv. Sci. Technol., 2020, 56, 101502.
[http://dx.doi.org/10.1016/j.jddst.2020.101502]
[7]
Wu, M.; Chen, J.; Huang, W.; Yan, B.; Peng, Q.; Liu, J.; Chen, L.; Zeng, H. Injectable and self-healing nanocomposite hydrogels with ultrasensitive ph-responsiveness and tunable mechanical properties: implications for controlled drug delivery. Biomacromolecules, 2020, 21(6), 2409-2420.
[http://dx.doi.org/10.1021/acs.biomac.0c00347] [PMID: 32310635]
[8]
Alyassin, Y.; Sayed, E.G.; Mehta, P.; Ruparelia, K.; Arshad, M.S.; Rasekh, M.; Shepherd, J.; Kucuk, I.; Wilson, P.B.; Singh, N.; Chang, M.W.; Fatouros, D.G.; Ahmad, Z. Application of mesoporous silica nanoparticles as drug delivery carriers for chemotherapeutic agents. Drug Discov. Today, 2020, 25(8), 1513-1520.
[http://dx.doi.org/10.1016/j.drudis.2020.06.006] [PMID: 32561300]
[9]
Ding, L.; Li, J.; Wu, C.; Yan, F.; Li, X.; Zhang, S. A self-assembled RNA-triple helix hydrogel drug delivery system targeting triple-negative breast cancer. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(16), 3527-3533.
[http://dx.doi.org/10.1039/C9TB01610D] [PMID: 31737891]
[10]
Jafari, Z.; Rad, A.S.; Baharfar, R.; Asghari, S.; Esfahani, M.R. Synthesis and application of chitosan/tripolyphosphate/graphene oxide hydrogel as a new drug delivery system for Sumatriptan Succinate. J. Mol. Liq., 2020, 315, 113835.
[http://dx.doi.org/10.1016/j.molliq.2020.113835]
[11]
Xu, G.; Zhu, C.; Li, B.; Wang, T.; Wan, J.; Zhang, Y.; Huang, J.; Yang, D.; Shen, Y. Improving the Anti-Ovarian Cancer Activity of Docetaxel by Self-Assemble Micelles and Thermosensitive Hydrogel Drug Delivery System. J. Biomed. Nanotechnol., 2020, 16(1), 40-53.
[http://dx.doi.org/10.1166/jbn.2020.2867] [PMID: 31996284]
[12]
Taghipour, Y.D.; Hokmabad, V.R.; Del Bakhshayesh, A.R.; Asadi, N.; Salehi, R.; Nasrabadi, H.T.; Nasrabadi, H.T. The application of hydrogels based on natural polymers for tissue engineering. Curr. Med. Chem., 2020, 27(16), 2658-2680.
[http://dx.doi.org/10.2174/0929867326666190711103956] [PMID: 31296151]
[13]
Yao, X.; Niu, X.; Ma, K.; Huang, P.; Grothe, J.; Kaskel, S.; Zhu, Y. Graphene quantum dots‐capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small, 2017, 13(2), 1602225.
[http://dx.doi.org/10.1002/smll.201602225] [PMID: 27735129]
[14]
Lipinski, C.A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods, 2000, 44(1), 235-249.
[http://dx.doi.org/10.1016/S1056-8719(00)00107-6] [PMID: 11274893]
[15]
McKenzie, M.; Betts, D.; Suh, A.; Bui, K.; Kim, L.D.; Cho, H. Hydrogel-based drug delivery systems for poorly water-soluble drugs. Molecules, 2015, 20(11), 20397-20408.
[http://dx.doi.org/10.3390/molecules201119705] [PMID: 26580588]
[16]
Javan Maasomi, Z.; Pilehvar Soltanahmadi, Y.; Dadashpour, M.; Alipour, Sh.; Abolhasani, S.; Zarghami, N. Synergistic anticancer effects of silibinin and chrysin in T47D breast cancer cells. Asian Pacific journal of cancer prevention. Asian Pac. J. Cancer Prev., 2017, 18(5), 1283-1287.
[PMID: 28610415]
[17]
Salem, M.; Rohani, S.; Gillies, E.R. Curcumin, a promising anti-cancer therapeutic: a review of its chemical properties, bioactivity and approaches to cancer cell delivery. RSC Advances, 2014, 4(21), 10815-10829.
[http://dx.doi.org/10.1039/c3ra46396f]
[18]
Das, R.K.; Kasoju, N.; Bora, U. Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomedicine (Lond.), 2010, 6(1), 153-160.
[http://dx.doi.org/10.1016/j.nano.2009.05.009] [PMID: 19616123]
[19]
Samarghandian, S.; Azimi-Nezhad, M.; Borji, A.; Hasanzadeh, M.; Jabbari, F.; Farkhondeh, T.; Samini, M. Inhibitory and cytotoxic activities of chrysin on human breast adenocarcinoma cells by induction of apoptosis. Pharmacogn. Mag., 2016, 12(Suppl. 4), S436-S440.
[http://dx.doi.org/10.4103/0973-1296.191453] [PMID: 27761071]
[20]
Kasala, E.R.; Bodduluru, L.N.; Madana, R.M.; v, A.K.; Gogoi, R.; Barua, C.C. Chemopreventive and therapeutic potential of chrysin in cancer: mechanistic perspectives. Toxicol. Lett., 2015, 233(2), 214-225.
[http://dx.doi.org/10.1016/j.toxlet.2015.01.008] [PMID: 25596314]
[21]
Asadi, N.; Del Bakhshayesh, A.R.; Davaran, S.; Akbarzadeh, A. Common biocompatible polymeric materials for tissue engineering and regenerative medicine. Mater. Chem. Phys., 2020, 242, 122528.
[http://dx.doi.org/10.1016/j.matchemphys.2019.122528]
[22]
Calzoni, E.; Cesaretti, A.; Polchi, A.; Di Michele, A.; Tancini, B.; Emiliani, C. Biocompatible polymer nanoparticles for drug delivery applications in cancer and neurodegenerative disorder therapies. J. Funct. Biomater., 2019, 10(1), 4.
[http://dx.doi.org/10.3390/jfb10010004] [PMID: 30626094]
[23]
De Souza, R.; Zahedi, P.; Allen, C.J.; Piquette-Miller, M. Polymeric drug delivery systems for localized cancer chemotherapy. Drug Deliv., 2010, 17(6), 365-375.
[http://dx.doi.org/10.3109/10717541003762854] [PMID: 20429844]
[24]
Del Bakhshayesh, A.R.; Asadi, N.; Alihemmati, A.; Tayefi Nasrabadi, H.; Montaseri, A.; Davaran, S.; Saghati, S.; Akbarzadeh, A.; Abedelahi, A. An overview of advanced biocompatible and biomimetic materials for creation of replacement structures in the musculoskeletal systems: focusing on cartilage tissue engineering. J. Biol. Eng., 2019, 13(1), 85.
[http://dx.doi.org/10.1186/s13036-019-0209-9] [PMID: 31754372]
[25]
Sohail, R.; Abbas, S.R. Evaluation of amygdalin-loaded alginate-chitosan nanoparticles as biocompatible drug delivery carriers for anticancerous efficacy. Int. J. Biol. Macromol., 2020, 153, 36-45.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.191] [PMID: 32097740]
[26]
Cong, Z.; Shi, Y.; Wang, Y.; Wang, Y.; Niu, J.; Chen, N.; Xue, H. A novel controlled drug delivery system based on alginate hydrogel/chitosan micelle composites. Int. J. Biol. Macromol., 2018, 107(Pt A), 855-864.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.09.065] [PMID: 28935541]
[27]
Mohamadnia, Z.; Zohuriaan-Mehr, M.J.; Kabiri, K.; Jamshidi, A.; Mobedi, H. Ionically cross-linked carrageenan-alginate hydrogel beads. J. Biomater. Sci. Polym. Ed., 2008, 19(1), 47-59.
[http://dx.doi.org/10.1163/156856208783227640] [PMID: 18177553]
[28]
Khoushab, F.; Yamabhai, M. Chitin research revisited. Mar. Drugs, 2010, 8(7), 1988-2012.
[http://dx.doi.org/10.3390/md8071988] [PMID: 20714419]
[29]
Pillai, C.; Paul, W.; Sharma, C.P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci., 2009, 34(7), 641-678.
[http://dx.doi.org/10.1016/j.progpolymsci.2009.04.001]
[30]
Bhunchu, S.; Muangnoi, C.; Rojsitthisak, P.; Rojsitthisak, P. Curcumin diethyl disuccinate encapsulated in chitosan/alginate nanoparticles for improvement of its in vitro cytotoxicity against MDA-MB-231 human breast cancer cells. Pharmazie, 2016, 71(12), 691-700.
[PMID: 29441997]
[31]
Zhang, Y.; Wei, W.; Lv, P.; Wang, L.; Ma, G. Preparation and evaluation of alginate-chitosan microspheres for oral delivery of insulin. Eur. J. Pharm. Biopharm., 2011, 77(1), 11-19.
[http://dx.doi.org/10.1016/j.ejpb.2010.09.016] [PMID: 20933083]
[32]
Kean, T.; Thanou, M. Biodegradation, biodistribution and toxicity of chitosan. Adv. Drug Deliv. Rev., 2010, 62(1), 3-11.
[http://dx.doi.org/10.1016/j.addr.2009.09.004] [PMID: 19800377]
[33]
Bhunchu, S.; Rojsitthisak, P. Biopolymeric alginate-chitosan nanoparticles as drug delivery carriers for cancer therapy. Pharmazie, 2014, 69(8), 563-570.
[PMID: 25158565]
[34]
Huang, G.; Liu, Y.; Chen, L. Chitosan and its derivatives as vehicles for drug delivery. Drug Deliv., 2017, 24(sup1), 108-113.
[http://dx.doi.org/10.1080/10717544.2017.1399305] [PMID: 29124981]
[35]
Rasouli, S.; Montazeri, M.; Mashayekhi, S.; Sadeghi-Soureh, S.; Dadashpour, M.; Mousazadeh, H.; Nobakht, A.; Zarghami, N.; Pilehvar-Soltanahmadi, Y. Synergistic anticancer effects of electrospun nanofiber-mediated codelivery of Curcumin and Chrysin: Possible application in prevention of breast cancer local recurrence. J. Drug Deliv. Sci. Technol., 2020, 55, 101402.
[http://dx.doi.org/10.1016/j.jddst.2019.101402]
[36]
Wu, T-C.; Chan, S-T.; Chang, C-N.; Yu, P-S.; Chuang, C-H.; Yeh, S-L. Quercetin and chrysin inhibit nickel-induced invasion and migration by downregulation of TLR4/NF-κB signaling in A549 cells. Chem. Biol. Interact., 2018, 292, 101-109.
[http://dx.doi.org/10.1016/j.cbi.2018.07.010] [PMID: 30016632]
[37]
Rampino, A.; Borgogna, M.; Blasi, P.; Bellich, B.; Cesàro, A. Chitosan nanoparticles: preparation, size evolution and stability. Int. J. Pharm., 2013, 455(1-2), 219-228.
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.034] [PMID: 23886649]
[38]
Xing, N.; Tian, F.; Yang, J.; Li, Y.K. Preparation and basic characterizations of alginate-chitosan hydrogel; Advanced Materials Research, Trans Tech Publ, 2012, pp. 3396-3400.
[39]
Akbarzadeh, A.; Mikaeili, H.; Zarghami, N.; Mohammad, R.; Barkhordari, A.; Davaran, S. Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible copolymers. Int. J. Nanomedicine, 2012, 7, 511-526.
[PMID: 22334781]
[40]
Davaran, S.; Ghamkhari, A.; Alizadeh, E.; Massoumi, B.; Jaymand, M. Novel dual stimuli-responsive ABC triblock copolymer: RAFT synthesis, “schizophrenic” micellization, and its performance as an anticancer drug delivery nanosystem. J. Colloid Interface Sci., 2017, 488, 282-293.
[http://dx.doi.org/10.1016/j.jcis.2016.11.002] [PMID: 27837719]
[41]
Rahimi, M.; Safa, K.D.; Alizadeh, E.; Salehi, R. Dendritic chitosan as a magnetic and biocompatible nanocarrier for the simultaneous delivery of doxorubicin and methotrexate to MCF-7 cell line. New J. Chem., 2017, 41(8), 3177-3189.
[http://dx.doi.org/10.1039/C6NJ04107H]
[42]
Mousazadeh, H.; Milani, M.; Zarghami, N.; Alizadeh, E.; Safa, K.D. Study of the Cytotoxic and Bactericidal Effects of Sila-substituted Thioalkyne and Mercapto-thione Compounds based on 1,2,3-Triazole Scaffold. Basic Clin. Pharmacol. Toxicol., 2017, 121(5), 390-399.
[http://dx.doi.org/10.1111/bcpt.12822] [PMID: 28613449]
[43]
Davatgaran-Taghipour, Y.; Masoomzadeh, S.; Farzaei, M.H.; Bahramsoltani, R.; Karimi-Soureh, Z.; Rahimi, R.; Abdollahi, M. Polyphenol nanoformulations for cancer therapy: experimental evidence and clinical perspective. Int. J. Nanomedicine, 2017, 12, 2689-2702.
[http://dx.doi.org/10.2147/IJN.S131973] [PMID: 28435252]
[44]
Pluta, J.; Karolewicz, B. Hydrogels: properties and application in the technology of drug form. II. Possibilities of use of hydrogels as active substance carriers. Polim. Med., 2004, 34(3), 63-81.
[PMID: 15631157]
[45]
Hamidi, M.; Azadi, A.; Rafiei, P. Hydrogel nanoparticles in drug delivery. Adv. Drug Deliv. Rev., 2008, 60(15), 1638-1649.
[http://dx.doi.org/10.1016/j.addr.2008.08.002] [PMID: 18840488]
[46]
Hoare, T.R.; Kohane, D.S. Hydrogels in drug delivery: Progress and challenges. Polymer (Guildf.), 2008, 49(8), 1993-2007.
[http://dx.doi.org/10.1016/j.polymer.2008.01.027]
[47]
Rahaiee, S.; Hashemi, M.; Shojaosadati, S.A.; Moini, S.; Razavi, S.H. Nanoparticles based on crocin loaded chitosan-alginate biopolymers: Antioxidant activities, bioavailability and anticancer properties. Int. J. Biol. Macromol., 2017, 99, 401-408.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.02.095] [PMID: 28254570]
[48]
Lotfi-Attari, J.; Pilehvar-Soltanahmadi, Y.; Dadashpour, M.; Alipour, S.; Farajzadeh, R.; Javidfar, S.; Zarghami, N. Co-delivery of curcumin and chrysin by polymeric nanoparticles inhibit synergistically growth and hTERT gene expression in human colorectal cancer cells. Nutr. Cancer, 2017, 69(8), 1290-1299.
[http://dx.doi.org/10.1080/01635581.2017.1367932] [PMID: 29083232]
[49]
Abou Taleb, M.F.; Alkahtani, A.; Mohamed, S.K. Radiation synthesis and characterization of sodium alginate/chitosan/hydroxyapatite nanocomposite hydrogels: a drug delivery system for liver cancer. Polym. Bull., 2015, 72(4), 725-742.
[http://dx.doi.org/10.1007/s00289-015-1301-z]
[50]
Sahoo, S.K.; Chandana, M. Process for preparing curcumin encapsulated chitosan alginate sponge useful for wound healing. Google Patents, 2017.
[51]
Sathishkumar, G.; Bharti, R.; Jha, P.K.; Selvakumar, M.; Dey, G.; Jha, R.; Jeyaraj, M.; Mandal, M.; Sivaramakrishnan, S. Dietary flavone chrysin (5, 7-dihydroxyflavone ChR) functionalized highly-stable metal nanoformulations for improved anticancer applications. RSC Advances, 2015, 5(109), 89869-89878.
[http://dx.doi.org/10.1039/C5RA15060D]
[52]
Rahmani Del Bakhshayesh, A.; Mostafavi, E.; Alizadeh, E.; Asadi, N.; Akbarzadeh, A.; Davaran, S. Fabrication of three-dimensional scaffolds based on nano-biomimetic collagen hybrid constructs for skin tissue engineering. ACS Omega, 2018, 3(8), 8605-8611.
[http://dx.doi.org/10.1021/acsomega.8b01219] [PMID: 31458990]
[53]
Asadi, N.; Del Bakhshayesh, A.R.; Davaran, S.; Akbarzadeh, A. Common Biocompatible Polymeric Materials for Tissue Engineering and Regenerative Medicine. Mater. Chem. Phys., 2019, 122528.
[http://dx.doi.org/10.1016/j.matchemphys.2019.122528]
[54]
Hu, A.; Huang, J-J.; Zhang, J-F.; Dai, W-J.; Li, R-L.; Lu, Z-Y.; Duan, J-L.; Li, J-P.; Chen, X-P.; Fan, J-P.; Xu, W.H.; Zheng, H.L. Curcumin induces G2/M cell cycle arrest and apoptosis of head and neck squamous cell carcinoma in vitro and in vivo through ATM/Chk2/p53-dependent pathway. Oncotarget, 2017, 8(31), 50747-50760.
[http://dx.doi.org/10.18632/oncotarget.17096] [PMID: 28881600]
[55]
Sassi, A.; Maatouk, M.; El Gueder, D.; Bzéouich, I.M.; Abdelkefi-Ben Hatira, S.; Jemni-Yacoub, S.; Ghedira, K.; Chekir-Ghedira, L. Chrysin, a natural and biologically active flavonoid suppresses tumor growth of mouse B16F10 melanoma cells: In vitro and in vivo study. Chem. Biol. Interact., 2018, 283, 10-19.
[http://dx.doi.org/10.1016/j.cbi.2017.11.022] [PMID: 29352974]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy