Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

LPS/TLR4 Pathways in Breast Cancer: Insights into Cell Signalling

Author(s): Rizwana Afroz, E.M. Tanvir, Mousumi Tania, Junjiang Fu, Mohammad Amjad Kamal and Md. Asaduzzaman Khan*

Volume 29, Issue 13, 2022

Published on: 11 August, 2021

Page: [2274 - 2289] Pages: 16

DOI: 10.2174/0929867328666210811145043

Price: $65

Abstract

Background: Cancer cells are usually recognized as foreign particles by the immune cells. Mounting evidence suggest an important link between toll-like receptors (TLRs) and carcinogenesis. This review article focused on the role of TLRs, especially TLR4, in breast cancer.

Methods: Research data on TLRs and cancer was explored in PubMed, Scopus, Google Scholar and reviewed. Although some pioneer works are referenced, papers published in the last ten years were mostly cited.

Results: TLRs are widely investigated pattern recognition receptors (PRR), and TLR4 is the most studied TLRs, implicated with the occurrence of several types of cancers, including breast cancer. TLR4 activation occurs via the binding of its ligand lipopolysaccharide (LPS), a component of the outer membrane of gram-negative bacteria. Upon LPS binding, TLR4 dimerizes and recruits downstream signalling and/or adapter molecules, leading to gene expression related to cancer cell proliferation, survival, invasion, and metastasis. Although LPS/TLR4 signalling seems a single signal transduction pathway, the TLR4 activation results in the activation of multiple diverse intracellular networks with huge cellular responses in both immune and cancer cells. The role of TLR4 in the growth, invasion, and metastasis of breast cancer is attracting huge attention in oncology research. Several clinical and preclinical studies utilize both TLR4 agonists and antagonists as a treatment option for cancer therapy, either as monotherapy or adjuvants for vaccine development.

Conclusion: This review narrates the role of LPS/TLR4 signalling in breast cancer development and future prospects for targeting LPS/TLR4 axis in the treatment of breast cancer.

Keywords: Breast cancer, toll like receptor 4, lipopolysaccharide, signalling pathway, cancer therapy, cell signalling.

[1]
Society, A.C. Breast cancer facts & figures 2019–2020; Am. Cancer Soc, 2019, pp. 1-44.
[2]
Shi, S.; Xu, C.; Fang, X.; Zhang, Y.; Li, H.; Wen, W.; Yang, G. Expression profile of Toll-like receptors in human breast cancer. Mol. Med. Rep., 2020, 21(2), 786-794.
[PMID: 31789409]
[3]
Imani, S.; Wei, C.; Cheng, J.; Khan, M.A.; Fu, S.; Yang, L.; Tania, M.; Zhang, X.; Xiao, X.; Zhang, X.; Fu, J. MicroRNA-34a targets epithelial to mesenchymal transition-inducing transcription factors (EMT-TFs) and inhibits breast cancer cell migration and invasion. Oncotarget, 2017, 8(13), 21362-21379.
[http://dx.doi.org/10.18632/oncotarget.15214] [PMID: 28423483]
[4]
Cheng, J.; Peng, J.; Fu, J.; Khan, M.A.; Tan, P.; Wei, C.; Deng, X.; Chen, H.; Fu, J. Identification of a novel germline BRCA2 variant in a Chinese breast cancer family. J. Cell. Mol. Med., 2020, 24(2), 1676-1683.
[http://dx.doi.org/10.1111/jcmm.14861] [PMID: 31782247]
[5]
Bhattacharya, D.; Yusuf, N. Expression of toll-like receptors on breast tumors: taking a toll on tumor microenvironment. Int. J. Breast Cancer, 2012, 2012
[http://dx.doi.org/10.1155/2012/716564]
[6]
Dai, X.; Li, T.; Bai, Z.; Yang, Y.; Liu, X.; Zhan, J.; Shi, B. Breast cancer intrinsic subtype classification, clinical use and future trends. Am. J. Cancer Res., 2015, 5(10), 2929-2943.
[PMID: 26693050]
[7]
Ahmed, A.; Redmond, H.P.; Wang, J.H. Links between Toll-like receptor 4 and breast cancer. OncoImmunology, 2013, 2(2), e22945.
[http://dx.doi.org/10.4161/onci.22945] [PMID: 23526132]
[8]
Li, J.; Yin, J.; Shen, W.; Gao, R.; Liu, Y.; Chen, Y.; Li, X.; Liu, C.; Xiang, R.; Luo, N. TLR4 promotes breast cancer metastasis via Akt/GSK3β/β-catenin pathway upon LPS stimulation. Anat. Rec. (Hoboken), 2017, 300(7), 1219-1229.
[http://dx.doi.org/10.1002/ar.23590] [PMID: 28296189]
[9]
Mehmeti, M.; Allaoui, R.; Bergenfelz, C.; Saal, L.H.; Ethier, S.P.; Johansson, M.E.; Jirström, K.; Leandersson, K. Expression of functional toll like receptor 4 in estrogen receptor/progesterone receptor-negative breast cancer. Breast Cancer Res., 2015, 17(1), 130.
[http://dx.doi.org/10.1186/s13058-015-0640-x] [PMID: 26392082]
[10]
González-Reyes, S.; Marín, L.; González, L.; González, L.O.; del Casar, J.M.; Lamelas, M.L.; González-Quintana, J.M.; Vizoso, F.J. Study of TLR3, TLR4 and TLR9 in breast carcinomas and their association with metastasis. BMC Cancer, 2010, 10(1), 665.
[http://dx.doi.org/10.1186/1471-2407-10-665] [PMID: 21129170]
[11]
Yang, H.; Wang, B.; Wang, T.; Xu, L.; He, C.; Wen, H.; Yan, J.; Su, H.; Zhu, X. Toll-like receptor 4 prompts human breast cancer cells invasiveness via lipopolysaccharide stimulation and is overexpressed in patients with lymph node metastasis. PLoS One, 2014, 9(10), e109980.
[http://dx.doi.org/10.1371/journal.pone.0109980] [PMID: 25299052]
[12]
Okamoto, H.; Shoin, S.; Koshimura, S.; Shimizu, R. Studies on the anticancer and streptolysin S-forming abilities of hemolytic Streptococci. Jpn. J. Microbiol., 1967, 11(4), 323-326.
[http://dx.doi.org/10.1111/j.1348-0421.1967.tb00350.x] [PMID: 4875331]
[13]
Kikkawa, F.; Kawai, M.; Oguchi, H.; Kojima, M.; Ishikawa, H.; Iwata, M.; Maeda, O.; Tomoda, Y.; Arii, Y.; Kuzuya, K. Randomised study of immunotherapy with OK-432 in uterine cervical carcinoma. Eur. J. Cancer, 1993, 29A(11), 1542-1546.
[http://dx.doi.org/10.1016/0959-8049(93)90291-M] [PMID: 8217359]
[14]
Haricharan, S.; Brown, P. TLR4 has a TP53-dependent dual role in regulating breast cancer cell growth. Proc. Natl. Acad. Sci. USA, 2015, 112(25), E3216-E3225.
[http://dx.doi.org/10.1073/pnas.1420811112] [PMID: 26063617]
[15]
DeNardo, D.G.; Johansson, M.; Coussens, L.M. Immune cells as mediators of solid tumor metastasis. Cancer Metastasis Rev., 2008, 27(1), 11-18.
[http://dx.doi.org/10.1007/s10555-007-9100-0] [PMID: 18066650]
[16]
Bhatelia, K.; Singh, K.; Singh, R. TLRs: linking inflammation and breast cancer. Cell. Signal., 2014, 26(11), 2350-2357.
[http://dx.doi.org/10.1016/j.cellsig.2014.07.035] [PMID: 25093807]
[17]
Bianchi, M.E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol., 2007, 81(1), 1-5.
[http://dx.doi.org/10.1189/jlb.0306164] [PMID: 17032697]
[18]
Mogensen, T.H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev., 2009, 22(2), 240-273.
[http://dx.doi.org/10.1128/CMR.00046-08] [PMID: 19366914]
[19]
Tang, D.; Kang, R.; Coyne, C.B.; Zeh, H.J.; Lotze, M.T. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol. Rev., 2012, 249(1), 158-175.
[http://dx.doi.org/10.1111/j.1600-065X.2012.01146.x] [PMID: 22889221]
[20]
Aliprantis, A.O.; Yang, R-B.; Mark, M.R.; Suggett, S.; Devaux, B.; Radolf, J.D.; Klimpel, G.R.; Godowski, P.; Zychlinsky, A. Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science, 1999, 285(5428), 736-739.
[http://dx.doi.org/10.1126/science.285.5428.736] [PMID: 10426996]
[21]
Alexopoulou, L.; Holt, A.C.; Medzhitov, R.; Flavell, R.A. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature, 2001, 413(6857), 732-738.
[http://dx.doi.org/10.1038/35099560] [PMID: 11607032]
[22]
Park, B.S.; Lee, J-O. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp. Mol. Med., 2013, 45(12), e66-e66.
[http://dx.doi.org/10.1038/emm.2013.97] [PMID: 24310172]
[23]
Hayashi, F.; Smith, K.D.; Ozinsky, A.; Hawn, T.R.; Yi, E.C.; Goodlett, D.R.; Eng, J.K.; Akira, S.; Underhill, D.M.; Aderem, A. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature, 2001, 410(6832), 1099-1103.
[http://dx.doi.org/10.1038/35074106] [PMID: 11323673]
[24]
Heil, F.; Hemmi, H.; Hochrein, H.; Ampenberger, F.; Kirschning, C.; Akira, S.; Lipford, G.; Wagner, H.; Bauer, S. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science, 2004, 303(5663), 1526-1529.
[http://dx.doi.org/10.1126/science.1093620] [PMID: 14976262]
[25]
Hemmi, H.; Takeuchi, O.; Kawai, T.; Kaisho, T.; Sato, S.; Sanjo, H.; Matsumoto, M.; Hoshino, K.; Wagner, H.; Takeda, K.; Akira, S. A toll-like receptor recognizes bacterial DNA. Nature, 2000, 408(6813), 740-745.
[http://dx.doi.org/10.1038/35047123] [PMID: 11130078]
[26]
Tarkowski, A.; Bjersing, J.; Shestakov, A.; Bokarewa, M.I. Resistin competes with lipopolysaccharide for binding to toll-like receptor 4. J. Cell. Mol. Med., 2010, 14(6B), 1419-1431.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00899.x] [PMID: 19754671]
[27]
Zhang, Z.; La Placa, D.; Nguyen, T.; Kujawski, M.; Le, K.; Li, L.; Shively, J.E. CEACAM1 regulates the IL-6 mediated fever response to LPS through the RP105 receptor in murine monocytes. BMC Immunol., 2019, 20(1), 7.
[http://dx.doi.org/10.1186/s12865-019-0287-y] [PMID: 30674283]
[28]
Lu, H. TLR agonists for cancer immunotherapy: tipping the balance between the immune stimulatory and inhibitory effects. Front. Immunol., 2014, 5, 83.
[http://dx.doi.org/10.3389/fimmu.2014.00083] [PMID: 24624132]
[29]
Wang, J.Q.; Jeelall, Y.S.; Ferguson, L.L.; Horikawa, K. Toll-like receptors and cancer: MYD88 mutation and inflammation. Front. Immunol., 2014, 5, 367.
[http://dx.doi.org/10.3389/fimmu.2014.00367] [PMID: 25132836]
[30]
Yang, H.; Zhou, H.; Feng, P.; Zhou, X.; Wen, H.; Xie, X.; Shen, H.; Zhu, X. Reduced expression of Toll-like receptor 4 inhibits human breast cancer cells proliferation and inflammatory cytokines secretion. J. Exp. Clin. Cancer Res., 2010, 29(1), 92.
[http://dx.doi.org/10.1186/1756-9966-29-92] [PMID: 20618976]
[31]
Merrell, M.A.; Ilvesaro, J.M.; Lehtonen, N.; Sorsa, T.; Gehrs, B.; Rosenthal, E.; Chen, D.; Shackley, B.; Harris, K.W.; Selander, K.S. Toll-like receptor 9 agonists promote cellular invasion by increasing matrix metalloproteinase activity. Mol. Cancer Res., 2006, 4(7), 437-447.
[http://dx.doi.org/10.1158/1541-7786.MCR-06-0007] [PMID: 16849519]
[32]
Yu, S.; Kim, T.; Yoo, K.H.; Kang, K. The T47D cell line is an ideal experimental model to elucidate the progesterone-specific effects of a luminal A subtype of breast cancer. Biochem. Biophys. Res. Commun., 2017, 486(3), 752-758.
[http://dx.doi.org/10.1016/j.bbrc.2017.03.114] [PMID: 28342866]
[33]
Wagner, H. The immunobiology of the TLR9 subfamily. Trends Immunol., 2004, 25(7), 381-386.
[http://dx.doi.org/10.1016/j.it.2004.04.011] [PMID: 15207506]
[34]
Fragomeni, S.M.; Sciallis, A.; Jeruss, J.S. Molecular subtypes and local-regional control of breast cancer. Surgical Oncology Clinics, 2018, 27(1), 95-120.
[http://dx.doi.org/10.1016/j.soc.2017.08.005] [PMID: 29132568]
[35]
Lu, Y-C.; Yeh, W-C.; Ohashi, P.S. LPS/TLR4 signal transduction pathway. Cytokine, 2008, 42(2), 145-151.
[http://dx.doi.org/10.1016/j.cyto.2008.01.006] [PMID: 18304834]
[36]
Kawasaki, T.; Kawai, T. Toll-like receptor signaling pathways. Front. Immunol., 2014, 5, 461.
[http://dx.doi.org/10.3389/fimmu.2014.00461] [PMID: 25309543]
[37]
Jin, F.; Wu, Z.; Hu, X.; Zhang, J.; Gao, Z.; Han, X.; Qin, J.; Li, C.; Wang, Y. The PI3K/Akt/GSK-3β/ROS/eIF2B pathway promotes breast cancer growth and metastasis via suppression of NK cell cytotoxicity and tumor cell susceptibility. Cancer Biol. Med., 2019, 16(1), 38-54.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2018.0253] [PMID: 31119045]
[38]
Ke, M.; Wang, H.; Zhou, Y.; Li, J.; Liu, Y.; Zhang, M.; Dou, J.; Xi, T.; Shen, B.; Zhou, C. SEP enhanced the antitumor activity of 5-fluorouracil by up-regulating NKG2D/MICA and reversed immune suppression via inhibiting ROS and caspase-3 in mice. Oncotarget, 2016, 7(31), 49509-49526.
[http://dx.doi.org/10.18632/oncotarget.10375] [PMID: 27385218]
[39]
Ren, Y.; Zhou, X.; Qi, Y.; Li, G.; Mei, M.; Yao, Z. PTEN activation sensitizes breast cancer to PI3-kinase inhibitor through the β-catenin signaling pathway. Oncol. Rep., 2012, 28(3), 943-948.
[http://dx.doi.org/10.3892/or.2012.1856] [PMID: 22710837]
[40]
Lee, J.J.; Loh, K.; Yap, Y-S. PI3K/Akt/mTOR inhibitors in breast cancer. Cancer Biol. Med., 2015, 12(4), 342-354.
[PMID: 26779371]
[41]
Baselga, J. Targeting the phosphoinositide-3 (PI3) kinase pathway in breast cancer. Oncologist, 2011, 16(Suppl. 1), 12-19.
[http://dx.doi.org/10.1634/theoncologist.2011-S1-12] [PMID: 21278436]
[42]
Meric-Bernstam, F.; Gonzalez-Angulo, A.M. Targeting the mTOR signaling network for cancer therapy. J. Clin. Oncol., 2009, 27(13), 2278-2287.
[http://dx.doi.org/10.1200/JCO.2008.20.0766] [PMID: 19332717]
[43]
De Benedetti, A.; Graff, J.R. eIF-4E expression and its role in malignancies and metastases. Oncogene, 2004, 23(18), 3189-3199.
[http://dx.doi.org/10.1038/sj.onc.1207545] [PMID: 15094768]
[44]
Soni, A.; Akcakanat, A.; Singh, G.; Luyimbazi, D.; Zheng, Y.; Kim, D.; Gonzalez-Angulo, A.; Meric-Bernstam, F. eIF4E knockdown decreases breast cancer cell growth without activating Akt signaling. Mol. Cancer Ther., 2008, 7(7), 1782-1788.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-2357] [PMID: 18644990]
[45]
Culjkovic, B.; Topisirovic, I.; Skrabanek, L.; Ruiz-Gutierrez, M.; Borden, K.L. eIF4E promotes nuclear export of cyclin D1 mRNAs via an element in the 3'UTR. J. Cell Biol., 2005, 169(2), 245-256.
[http://dx.doi.org/10.1083/jcb.200501019] [PMID: 15837800]
[46]
Jastrzebski, K.; Hannan, K.M.; Tchoubrieva, E.B.; Hannan, R.D.; Pearson, R.B. Coordinate regulation of ribosome biogenesis and function by the ribosomal protein S6 kinase, a key mediator of mTOR function. Growth Factors, 2007, 25(4), 209-226.
[http://dx.doi.org/10.1080/08977190701779101] [PMID: 18092230]
[47]
Altomare, D.A.; Testa, J.R. Perturbations of the AKT signaling pathway in human cancer. Oncogene, 2005, 24(50), 7455-7464.
[http://dx.doi.org/10.1038/sj.onc.1209085] [PMID: 16288292]
[48]
McKenna, M.; McGarrigle, S.; Pidgeon, G.P. The next generation of PI3K-Akt-mTOR pathway inhibitors in breast cancer cohorts. Biochim. Biophys. Acta Rev. Cancer, 2018, 1870(2), 185-197.
[http://dx.doi.org/10.1016/j.bbcan.2018.08.001] [PMID: 30318472]
[49]
Xia, L.; Tan, S.; Zhou, Y.; Lin, J.; Wang, H.; Oyang, L.; Tian, Y.; Liu, L.; Su, M.; Wang, H.; Cao, D.; Liao, Q. Role of the NFκB-signaling pathway in cancer. OncoTargets Ther., 2018, 11, 2063-2073.
[http://dx.doi.org/10.2147/OTT.S161109] [PMID: 29695914]
[50]
Kawai, T.; Akira, S. Signaling to NF-kappaB by Toll-like receptors. Trends Mol. Med., 2007, 13(11), 460-469.
[http://dx.doi.org/10.1016/j.molmed.2007.09.002] [PMID: 18029230]
[51]
Gilmore, T.D. In. signal transduction in cancer; Springer, 2004, pp. 241-265.
[http://dx.doi.org/10.1007/0-306-48158-8_10]
[52]
Stratton, M.R.; Campbell, P.J.; Futreal, P.A. The cancer genome. Nature, 2009, 458(7239), 719-724.
[http://dx.doi.org/10.1038/nature07943] [PMID: 19360079]
[53]
Sau, A.; Lau, R.; Cabrita, M.A.; Nolan, E.; Crooks, P.A.; Visvader, J.E.; Pratt, M.A. Persistent activation of NF-κB in BRCA1-deficient mammary progenitors drives aberrant proliferation and accumulation of DNA damage. Cell Stem Cell, 2016, 19(1), 52-65.
[http://dx.doi.org/10.1016/j.stem.2016.05.003] [PMID: 27292187]
[54]
Wang, W.; Nag, S.A.; Zhang, R. Targeting the NFκB signaling pathways for breast cancer prevention and therapy. Curr. Med. Chem., 2015, 22(2), 264-289.
[http://dx.doi.org/10.2174/0929867321666141106124315] [PMID: 25386819]
[55]
Brantley, D.M.; Yull, F.E.; Muraoka, R.S.; Hicks, D.J.; Cook, C.M.; Kerr, L.D. Dynamic expression and activity of NF-kappaB during post-natal mammary gland morphogenesis. Mech. Dev., 2000, 97(1-2), 149-155.
[http://dx.doi.org/10.1016/S0925-4773(00)00405-6] [PMID: 11025216]
[56]
Brantley, D.M.; Chen, C-L.; Muraoka, R.S.; Bushdid, P.B.; Bradberry, J.L.; Kittrell, F.; Medina, D.; Matrisian, L.M.; Kerr, L.D.; Yull, F.E. Nuclear factor-kappaB (NF-kappaB) regulates proliferation and branching in mouse mammary epithelium. Mol. Biol. Cell, 2001, 12(5), 1445-1455.
[http://dx.doi.org/10.1091/mbc.12.5.1445] [PMID: 11359934]
[57]
Cogswell, P.C.; Guttridge, D.C.; Funkhouser, W.K.; Baldwin, A.S.Jr. Selective activation of NF-κ B subunits in human breast cancer: potential roles for NF-κ B2/p52 and for Bcl-3. Oncogene, 2000, 19(9), 1123-1131.
[http://dx.doi.org/10.1038/sj.onc.1203412] [PMID: 10713699]
[58]
Nakshatri, H.; Bhat-Nakshatri, P.; Martin, D.A.; Goulet, R.J., Jr; Sledge, G.W.Jr. Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Mol. Cell. Biol., 1997, 17(7), 3629-3639.
[http://dx.doi.org/10.1128/MCB.17.7.3629] [PMID: 9199297]
[59]
Sovak, M.A.; Bellas, R.E.; Kim, D.W.; Zanieski, G.J.; Rogers, A.E.; Traish, A.M.; Sonenshein, G.E. Aberrant nuclear factor-kappaB/Rel expression and the pathogenesis of breast cancer. J. Clin. Invest., 1997, 100(12), 2952-2960.
[http://dx.doi.org/10.1172/JCI119848] [PMID: 9399940]
[60]
Van Laere, S.J.; Van der Auwera, I.; Van den Eynden, G.G.; van Dam, P.; Van Marck, E.A.; Vermeulen, P.B.; Dirix, L.Y. NF-kappaB activation in inflammatory breast cancer is associated with oestrogen receptor downregulation, secondary to EGFR and/or ErbB2 overexpression and MAPK hyperactivation. Br. J. Cancer, 2007, 97(5), 659-669.
[http://dx.doi.org/10.1038/sj.bjc.6603906] [PMID: 17700572]
[61]
Peddi, P.F.; Ellis, M.J.; Ma, C. Molecular basis of triple negative breast cancer and implications for therapy. Int. J. Breast Cancer, 2012, 2012
[http://dx.doi.org/10.1155/2012/217185]
[62]
Gordon, A.H.; O’Keefe, R.J.; Schwarz, E.M.; Rosier, R.N.; Puzas, J.E. Nuclear factor-kappaB-dependent mechanisms in breast cancer cells regulate tumor burden and osteolysis in bone. Cancer Res., 2005, 65(8), 3209-3217.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-4017] [PMID: 15833852]
[63]
Liu, S.; Cong, Y.; Wang, D.; Sun, Y.; Deng, L.; Liu, Y.; Martin-Trevino, R.; Shang, L.; McDermott, S.P.; Landis, M.D.; Hong, S.; Adams, A.; D’Angelo, R.; Ginestier, C.; Charafe-Jauffret, E.; Clouthier, S.G.; Birnbaum, D.; Wong, S.T.; Zhan, M.; Chang, J.C.; Wicha, M.S. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Reports, 2013, 2(1), 78-91.
[http://dx.doi.org/10.1016/j.stemcr.2013.11.009] [PMID: 24511467]
[64]
Wyatt, G.L.; Crump, L.S.; Young, C.M.; Wessells, V.M.; McQueen, C.M.; Wall, S.W.; Gustafson, T.L.; Fan, Y-Y.; Chapkin, R.S.; Porter, W.W. Cross-talk between SIM2s and NFκB regulates cyclooxygenase 2 expression in breast cancer. Breast Cancer Res., 2019, 21(1), 1-12.
[http://dx.doi.org/10.1186/s13058-019-1224-y] [PMID: 30611295]
[65]
Yu, H.; Lee, H.; Herrmann, A.; Buettner, R.; Jove, R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat. Rev. Cancer, 2014, 14(11), 736-746.
[http://dx.doi.org/10.1038/nrc3818] [PMID: 25342631]
[66]
Owen, K.L.; Brockwell, N.K.; Parker, B.S. JAK-STAT signaling: A double-edged sword of immune regulation and cancer progression. Cancers (Basel), 2019, 11(12), 2002.
[http://dx.doi.org/10.3390/cancers11122002] [PMID: 31842362]
[67]
Segatto, I.; Baldassarre, G.; Belletti, B. STAT3 in breast cancer onset and progression: a matter of time and context. Int. J. Mol. Sci., 2018, 19(9), 2818.
[http://dx.doi.org/10.3390/ijms19092818] [PMID: 30231553]
[68]
Wang, C.H.; Wang, P.J.; Hsieh, Y.C.; Lo, S.; Lee, Y.C.; Chen, Y.C.; Tsai, C.H.; Chiu, W.C.; Chu-Sung Hu, S.; Lu, C.W.; Yang, Y.F.; Chiu, C.C.; Ou-Yang, F.; Wang, Y.M.; Hou, M.F.; Yuan, S.S. Resistin facilitates breast cancer progression via TLR4-mediated induction of mesenchymal phenotypes and stemness properties. Oncogene, 2018, 37(5), 589-600.
[http://dx.doi.org/10.1038/onc.2017.357] [PMID: 28991224]
[69]
Jin, S.; Mutvei, A.P.; Chivukula, I.V.; Andersson, E.R.; Ramsköld, D.; Sandberg, R.; Lee, K.L.; Kronqvist, P.; Mamaeva, V.; Ostling, P.; Mpindi, J.P.; Kallioniemi, O.; Screpanti, I.; Poellinger, L.; Sahlgren, C.; Lendahl, U. Non-canonical Notch signaling activates IL-6/JAK/STAT signaling in breast tumor cells and is controlled by p53 and IKKα/IKKβ. Oncogene, 2013, 32(41), 4892-4902.
[http://dx.doi.org/10.1038/onc.2012.517] [PMID: 23178494]
[70]
Marotta, L.L.; Almendro, V.; Marusyk, A.; Shipitsin, M.; Schemme, J.; Walker, S.R.; Bloushtain-Qimron, N.; Kim, J.J.; Choudhury, S.A.; Maruyama, R.; Wu, Z.; Gönen, M.; Mulvey, L.A.; Bessarabova, M.O.; Huh, S.J.; Silver, S.J.; Kim, S.Y.; Park, S.Y.; Lee, H.E.; Anderson, K.S.; Richardson, A.L.; Nikolskaya, T.; Nikolsky, Y.; Liu, X.S.; Root, D.E.; Hahn, W.C.; Frank, D.A.; Polyak, K. The JAK2/STAT3 signaling pathway is required for growth of CD44+CD24- stem cell-like breast cancer cells in human tumors. J. Clin. Invest., 2011, 121(7), 2723-2735.
[http://dx.doi.org/10.1172/JCI44745] [PMID: 21633165]
[71]
Laudisi, F.; Cherubini, F.; Monteleone, G.; Stolfi, C. STAT3 interactors as potential therapeutic targets for cancer treatment. Int. J. Mol. Sci., 2018, 19(6), 1787.
[http://dx.doi.org/10.3390/ijms19061787] [PMID: 29914167]
[72]
Sfanos, K.S. AACR, 2018.
[73]
Shear, M.; Turner, F.C.; Perrault, A.; Shovelton, T. Chemical treatment of tumors. V. Isolation of the hemorrhage-producing fraction from Serratia marcescens (Bacillus prodigiosus) culture filtrate. J. Natl. Cancer Inst., 1943, 4(1), 81-97.
[74]
Beutler, B.; Greenwald, D.; Hulmes, J.D.; Chang, M.; Pan, Y-C.; Mathison, J.; Ulevitch, R.; Cerami, A. Identity of tumour necrosis factor and the macrophage-secreted factor cachectin. Nature, 1985, 316(6028), 552-554.
[http://dx.doi.org/10.1038/316552a0] [PMID: 2993897]
[75]
Kaczanowska, S.; Joseph, A.M.; Davila, E. TLR agonists: our best frenemy in cancer immunotherapy. J. Leukoc. Biol., 2013, 93(6), 847-863.
[http://dx.doi.org/10.1189/jlb.1012501] [PMID: 23475577]
[76]
Apetoh, L.; Tesniere, A.; Ghiringhelli, F.; Kroemer, G.; Zitvogel, L. Molecular interactions between dying tumor cells and the innate immune system determine the efficacy of conventional anticancer therapies. Cancer Res., 2008, 68(11), 4026-4030.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0427] [PMID: 18519658]
[77]
Theodoropoulos, G.E.; Saridakis, V.; Karantanos, T.; Michalopoulos, N.V.; Zagouri, F.; Kontogianni, P.; Lymperi, M.; Gazouli, M.; Zografos, G.C. Toll-like receptors gene polymorphisms may confer increased susceptibility to breast cancer development. Breast, 2012, 21(4), 534-538.
[http://dx.doi.org/10.1016/j.breast.2012.04.001] [PMID: 22560646]
[78]
Coley, W.B. The treatment of malignant tumors by repeated inoculations of erysipelas: With a report of ten original cases. 1. Am. J. Med. Sci. (1827-1924), 1893, 105(6), 487.
[79]
Wiemann, B.; Starnes, C.O. Coley’s toxins, tumor necrosis factor and cancer research: a historical perspective. Pharmacol. Ther., 1994, 64(3), 529-564.
[http://dx.doi.org/10.1016/0163-7258(94)90023-X] [PMID: 7724661]
[80]
Adams, S. Toll-like receptor agonists in cancer therapy. Immunotherapy, 2009, 1(6), 949-964.
[http://dx.doi.org/10.2217/imt.09.70] [PMID: 20563267]
[81]
Tsuji, S.; Matsumoto, M.; Takeuchi, O.; Akira, S.; Azuma, I.; Hayashi, A.; Toyoshima, K.; Seya, T. Maturation of human dendritic cells by cell wall skeleton of Mycobacterium bovis bacillus Calmette-Guérin: involvement of toll-like receptors. Infect. Immun., 2000, 68(12), 6883-6890.
[http://dx.doi.org/10.1128/IAI.68.12.6883-6890.2000] [PMID: 11083809]
[82]
De Jong, W.H.; De Boer, E.C.; Van der Meijden, A.P.; Vegt, P.; Steerenberg, P.A.; Debruyne, F.M.; Ruitenberg, E.J. Presence of interleukin-2 in urine of superficial bladder cancer patients after intravesical treatment with bacillus Calmette-Guérin. Cancer Immunol. Immunother., 1990, 31(3), 182-186.
[http://dx.doi.org/10.1007/BF01744734] [PMID: 2337907]
[83]
Smith, M.; García-Martínez, E.; Pitter, M.R.; Fucikova, J.; Spisek, R.; Zitvogel, L.; Kroemer, G.; Galluzzi, L. Trial Watch: Toll-like receptor agonists in cancer immunotherapy. OncoImmunology, 2018, 7(12), e1526250.
[http://dx.doi.org/10.1080/2162402X.2018.1526250] [PMID: 30524908]
[84]
Hug, B.A.; Matheny, C.J.; Burns, O.; Struemper, H.; Wang, X.; Washburn, M.L. Safety, Pharmacokinetics, and pharmacodynamics of the TLR4 agonist GSK1795091 in healthy individuals: results from a randomized, double-blind, placebo-controlled, ascending dose study. Clin. Ther., 2020, 42(8), 1519-1534.e33.
[http://dx.doi.org/10.1016/j.clinthera.2020.05.022] [PMID: 32739049]
[85]
Gao, H-X.; Bhattacharya, S.; Matheny, C.J.; Yanamandra, N.; Zhang, S-Y.; Emerich, H.; Li, Y.; Bojczuk, P.; Shi, H.; Wang, W. American society of clinical oncology, 2018.
[86]
Vermorken, J.B.; Claessen, A.M.; van Tinteren, H.; Gall, H.E.; Ezinga, R.; Meijer, S.; Scheper, R.J.; Meijer, C.J.; Bloemena, E.; Ransom, J.H.; Hanna, M.G., Jr; Pinedo, H.M. Active specific immunotherapy for stage II and stage III human colon cancer: a randomised trial. Lancet, 1999, 353(9150), 345-350.
[http://dx.doi.org/10.1016/S0140-6736(98)07186-4] [PMID: 9950438]
[87]
Sharma, P.; Bajorin, D.F.; Jungbluth, A.A.; Herr, H.; Old, L.J.; Gnjatic, S. Immune responses detected in urothelial carcinoma patients after vaccination with NY-ESO-1 protein plus BCG and GM-CSF. J. Immunother., 2008, 31(9), 849-857.
[http://dx.doi.org/10.1097/CJI.0b013e3181891574] [PMID: 18833002]
[88]
Eton, O.; Kharkevitch, D.D.; Gianan, M.A.; Ross, M.I.; Itoh, K.; Pride, M.W.; Donawho, C.; Buzaid, A.C.; Mansfield, P.F.; Lee, J.E.; Legha, S.S.; Plager, C.; Papadopoulos, N.E.; Bedikian, A.Y.; Benjamin, R.S.; Balch, C.M. Active immunotherapy with ultraviolet B-irradiated autologous whole melanoma cells plus DETOX in patients with metastatic melanoma. Clin. Cancer Res., 1998, 4(3), 619-627.
[PMID: 9533529]
[89]
MacLean, G.D.; Reddish, M.; Koganty, R.R.; Wong, T.; Gandhi, S.; Smolenski, M.; Samuel, J.; Nabholtz, J.M.; Longenecker, B.M. Immunization of breast cancer patients using a synthetic sialyl-Tn glycoconjugate plus Detox adjuvant. Cancer Immunol. Immunother., 1993, 36(4), 215-222.
[http://dx.doi.org/10.1007/BF01740902] [PMID: 8439984]
[90]
Braunstein, M.J.; Kucharczyk, J.; Adams, S. Targeting toll-like receptors for cancer therapy. Target. Oncol., 2018, 13(5), 583-598.
[http://dx.doi.org/10.1007/s11523-018-0589-7] [PMID: 30229471]
[91]
Rice, T.W.; Wheeler, A.P.; Bernard, G.R.; Vincent, J-L.; Angus, D.C.; Aikawa, N.; Demeyer, I.; Sainati, S.; Amlot, N.; Cao, C.; Ii, M.; Matsuda, H.; Mouri, K.; Cohen, J. A randomized, double-blind, placebo-controlled trial of TAK-242 for the treatment of severe sepsis. Crit. Care Med., 2010, 38(8), 1685-1694.
[http://dx.doi.org/10.1097/CCM.0b013e3181e7c5c9] [PMID: 20562702]
[92]
Ren, B.; Luo, S.; Tian, X.; Jiang, Z.; Zou, G.; Xu, F.; Yin, T.; Huang, Y.; Liu, J. Curcumin inhibits liver cancer by inhibiting DAMP molecule HSP70 and TLR4 signaling. Oncol. Rep., 2018, 40(2), 895-901.
[http://dx.doi.org/10.3892/or.2018.6485] [PMID: 29901164]
[93]
Park, S-J.; Lee, M-Y.; Son, B-S.; Youn, H-S. TBK1-targeted suppression of TRIF-dependent signaling pathway of Toll-like receptors by 6-shogaol, an active component of ginger. Biosci. Biotechnol. Biochem., 2009, 73(7), 1474-1478.
[http://dx.doi.org/10.1271/bbb.80738] [PMID: 19584560]
[94]
Panaro, M.A.; Carofiglio, V.; Acquafredda, A.; Cavallo, P.; Cianciulli, A. Anti-inflammatory effects of resveratrol occur via inhibition of lipopolysaccharide-induced NF-κB activation in Caco-2 and SW480 human colon cancer cells. Br. J. Nutr., 2012, 108(9), 1623-1632.
[http://dx.doi.org/10.1017/S0007114511007227] [PMID: 22251620]
[95]
Afrose, S.S.; Junaid, M.; Akter, Y.; Tania, M.; Zheng, M.; Khan, M.A. Targeting kinases with thymoquinone: a molecular approach to cancer therapeutics. Drug Discov. Today, 2020, 25(12), 2294-2306.
[http://dx.doi.org/10.1016/j.drudis.2020.07.019] [PMID: 32721537]
[96]
Akter, Z.; Ahmed, F.R.; Tania, M.; Khan, A. Targeting inflammatory mediators: An anticancer mechanism of thymoquinone action. Curr. Med. Chem., 2020.
[http://dx.doi.org/10.2174/0929867326666191011143642] [PMID: 31604405]
[97]
Junaid, M.; Akter, Y.; Afrose, S.S.; Tania, M.; Khan, M.A. Biological role of AKT, and regulation of AKT signaling pathway by thymoquinone: perspectives in cancer therapeutics. Mini Rev. Med. Chem., 2020.
[http://dx.doi.org/10.2174/1389557520666201005143818] [PMID: 33019927]
[98]
Rajput, S.; Kumar, B.N.; Dey, K.K.; Pal, I.; Parekh, A.; Mandal, M. Molecular targeting of Akt by thymoquinone promotes G(1) arrest through translation inhibition of cyclin D1 and induces apoptosis in breast cancer cells. Life Sci., 2013, 93(21), 783-790.
[http://dx.doi.org/10.1016/j.lfs.2013.09.009] [PMID: 24044882]
[99]
Gay, N.J.; Symmons, M.F.; Gangloff, M.; Bryant, C.E. Assembly and localization of Toll-like receptor signalling complexes. Nat. Rev. Immunol., 2014, 14(8), 546-558.
[http://dx.doi.org/10.1038/nri3713] [PMID: 25060580]
[100]
Xie, W.; Wang, Y.; Huang, Y.; Yang, H.; Wang, J.; Hu, Z. Toll-like receptor 2 mediates invasion via activating NF-kappaB in MDA-MB-231 breast cancer cells. Biochem. Biophys. Res. Commun., 2009, 379(4), 1027-1032.
[http://dx.doi.org/10.1016/j.bbrc.2009.01.009] [PMID: 19141294]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy