Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Cancer Risk and Nullity of Glutathione-S-Transferase Mu and Theta 1 in Occupational Pesticide Workers

Author(s): Muhammad Bello Usman, Kanu Priya*, Soumya Pandit and Piyush Kumar Gupta

Volume 23, Issue 7, 2022

Published on: 10 August, 2021

Page: [932 - 945] Pages: 14

DOI: 10.2174/1389201022666210810092342

Price: $65

Abstract

Occupational exposure to pesticides has been associated with adverse health conditions, including genotoxicity and cancer. Nullity of GSTT1/GSTM1 increases the susceptibility of pesticide workers to these adverse health effects due to lack of efficient detoxification process created by the absence of these key xenobiotic metabolizing enzymes. However, this assertion does not seem to maintain its stance at all the time; some pesticide workers with the null genotypes do not present the susceptibility. This suggests the modulatory role of other confounding factors, genetic and environmental conditions. Pesticides, aggravated by the null GSTT1/GSTM1, cause genotoxicity and cancer through oxidative stress and miRNA dysregulation. Thus, the absence of these adverse health effects together with the presence of null GSTT1/GSTM1 genotypes demands further explanation. Also, understanding the mechanism behind the protection of cells – that are devoid of GSTT1/GSTM1 – from oxidative stress constitutes a great challenge and potential research area. Therefore, this review article highlights the recent advancements in the presence and absence of cancer risk in occupational pesticide workers with GSTT1 and GSTM1 null genotypes.

Keywords: Null GSTT1 & GSTM1, occupational exposure, pesticide, genotoxicity, cancer, genotypes.

Graphical Abstract

[1]
Mahmood, I.; Imadi, S.R.; Shazadi, K. Effects of pesticides on environment; Plant, Soil and Microbes, 2016, pp. 253-269.
[2]
Maluin, F.N.; Hussein, M.Z. Chitosan-based agronanochemicals as a sustainable alternative in crop protection. Molecules, 2020, 25(7), 1611.
[http://dx.doi.org/10.3390/molecules25071611] [PMID: 32244664]
[3]
Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; Dar, O.I.; Singh, K.; Jasrotia, S.; Bakshi, P.; Ramakrishnan, M.; Kumar, S.; Bhardwaj, R.; Thukral, A.K. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci., 2019, 1(11)
[http://dx.doi.org/10.1007/s42452-019-1485-1]]
[4]
Zhang, W. Global pesticide use: Profle, trend, cost/benefit and more. Proc Int Acad Ecol Environ Sci, 2018, 8(1), 1-27.
[5]
Barrón Cuenca, J.; Tirado, N.; Barral, J.; Ali, I.; Levi, M.; Stenius, U.; Berglund, M.; Dreij, K. Increased levels of genotoxic damage in a Bolivian agricultural population exposed to mixtures of pesticides. Sci. Total Environ., 2019, 695133942
[http://dx.doi.org/10.1016/j.scitotenv.2019.133942] [PMID: 31756860]
[6]
Gavrilescu, M. Fate of pesticides in the environment and its bioremediation. Eng. Life Sci., 2005, 5(6), 497-526.
[http://dx.doi.org/10.1002/elsc.200520098]
[7]
Schettgen, T.; Heudorf, U.; Drexler, H.; Angerer, J. Pyrethroid exposure of the general population-Is this due to diet. Toxicol. Lett., 2002, 134(1-3), 141-145.
[http://dx.doi.org/10.1016/S0378-4274(02)00183-2] [PMID: 12191872]
[8]
Ye, M.; Beach, J.; Martin, J.W.; Senthilselvan, A. Association between lung function in adults and plasma DDT and DDE levels: results from the Canadian Health Measures Survey. Environ. Health Perspect., 2015, 123(5), 422-427. published correction appears in Environ Health Perspect 2015;123(5):A116
[http://dx.doi.org/10.1289/ehp.1408217] [PMID: 25536373]
[9]
Tsakiris, I.N.; Goumenou, M.; Tzatzarakis, M.N.; Alegakis, A.K.; Tsitsimpikou, C.; Ozcagli, E.; Vynias, D.; Tsatsakis, A.M. Risk assessment for children exposed to DDT residues in various milk types from the Greek market. Food Chem. Toxicol., 2015, 75, 156-165.
[http://dx.doi.org/10.1016/j.fct.2014.11.012] [PMID: 25449197]
[10]
Tsatsakis, A.M.; Tsakiris, I.N.; Tzatzarakis, M.N.; Agourakis, Z.B.; Tutudaki, M.; Alegakis, A.K. Three-year study of fenthion and dimethoate pesticides in olive oil from organic and conventional cultivation. Food Addit. Contam., 2003, 20(6), 553-559.
[http://dx.doi.org/10.1080/0265203031000070786] [PMID: 12881128]
[11]
Ripley, B.D.; Lissemore, L.I.; Leishman, P.D.; Denommé, M.A.; Ritter, L. Pesticide residues on fruits and vegetables from Ontario, Canada, 1991-1995. J. AOAC Int., 2000, 83(1), 196-213.
[http://dx.doi.org/10.1093/jaoac/83.1.196] [PMID: 10693021]
[12]
Ye, M.; Beach, J.; Martin, J.W.; Senthilselvan, A. Pesticide exposures and respiratory health in general populations. J. Environ. Sci. (China), 2017, 51, 361-370.
[http://dx.doi.org/10.1016/j.jes.2016.11.012] [PMID: 28115149]
[13]
Damalas, C.A.; Koutroubas, S.D. Farmers’ exposure to pesticides: Toxicity types and ways of prevention. Toxics, 2016, 4(1), 1.
[http://dx.doi.org/10.3390/toxics4010001] [PMID: 29051407]
[14]
Colosio, C.; Alegakis, A.K.; Tsatsakis, A.M. Emerging health issues from chronic pesticide exposure: innovative methodologies and effects on molecular cell and tissue level. Toxicology, 2013, 307, 1-2.
[http://dx.doi.org/10.1016/j.tox.2013.04.006] [PMID: 23664459]
[15]
Kaur, K.; Kaur, R. Occupational pesticide exposure, Impaired DNA Repair, and Diseases. Indian J. Occup. Environ. Med., 2018, 22(2), 74-81.
[http://dx.doi.org/10.4103/ijoem.IJOEM_45_18] [PMID: 30319227]
[16]
Kim, K.H.; Kabir, E.; Jahan, S.A. Exposure to pesticides and the associated human health effects. Sci. Total Environ., 2017, 575, 525-535.
[http://dx.doi.org/10.1016/j.scitotenv.2016.09.009] [PMID: 27614863]
[17]
Merhi, M.; Raynal, H.; Cahuzac, E.; Vinson, F.; Cravedi, J.P.; Gamet-Payrastre, L. Occupational exposure to pesticides and risk of hematopoietic cancers: meta-analysis of case-control studies. Cancer Causes Control, 2007, 18(10), 1209-1226.
[http://dx.doi.org/10.1007/s10552-007-9061-1] [PMID: 17874193]
[18]
Patel, D.M.; Jones, R.R.; Booth, B.J.; Olsson, A.C.; Kromhout, H.; Straif, K.; Vermeulen, R.; Tikellis, G.; Paltiel, O.; Golding, J.; Northstone, K.; Stoltenberg, C.; Håberg, S.E.; Schüz, J.; Friesen, M.C.; Ponsonby, A.L.; Lemeshow, S.; Linet, M.S.; Magnus, P.; Olsen, J.; Olsen, S.F.; Dwyer, T.; Stayner, L.T.; Ward, M.H. Parental occupational exposure to pesticides, animals and organic dust and risk of childhood leukemia and central nervous system tumors: Findings from the International Childhood Cancer Cohort Consortium (I4C). Int. J. Cancer, 2020, 146(4), 943-952.
[http://dx.doi.org/10.1002/ijc.32388] [PMID: 31054169]
[19]
Ye, M.; Beach, J.; Martin, J.W.; Senthilselvan, A. Occupational pesticide exposures and respiratory health. Int. J. Environ. Res. Public Health, 2013, 10(12), 6442-6471.
[http://dx.doi.org/10.3390/ijerph10126442] [PMID: 24287863]
[20]
Silva Pinto, B.G.; Marques Soares, T.K.; Azevedo Linhares, M.; Castilhos Ghisi, N. Occupational exposure to pesticides: Genetic danger to farmworkers and manufacturing workers - A meta-analytical review. Sci. Total Environ., 2020, 748141382
[http://dx.doi.org/10.1016/j.scitotenv.2020.141382] [PMID: 32818891]
[21]
Kapeleka, J.A.; Sauli, E.; Ndakidemi, P.A. Pesticide exposure and genotoxic effects as measured by DNA damage and human monitoring biomarkers. Int. J. Environ. Health Res., 2021, 31(7), 805-822.
[http://dx.doi.org/10.1080/09603123.2019.1690132] [PMID: 31736325]
[22]
Agrawal, A.; Sharma, B. Pesticides induced oxidative stress in mammalian systems. Int. J. Biol. Med. Res., 2010, 1, 90-104.
[23]
Semren, T.Ž.; Žunec, S.; Pizent, A. Oxidative stress in triazine pesticide toxicity: A review of the main biomarker findings. Arh. Hig. Rada Toksikol., 2018, 69(2), 109-125.
[http://dx.doi.org/10.2478/aiht-2018-69-3118] [PMID: 29990300]
[24]
Bernstein, C.; Prasad, R.A.; Nfonsam, V. DNA damage, DNA repair and cancer; New Research Directions in DNA Repair, 2013.
[http://dx.doi.org/10.5772/53919]
[25]
Agents Reviewed by the IARC Monographs. Available from:. www.iarc.fr
[26]
Amoatey, P.; Al-Mayahi, A.; Omidvarborna, H.; Baawain, M.S.; Sulaiman, H. Occupational exposure to pesticides and associated health effects among greenhouse farm workers. Environ. Sci. Pollut. Res. Int., 2020, 27(18), 22251-22270.
[http://dx.doi.org/10.1007/s11356-020-08754-9] [PMID: 32333353]
[27]
Khan, M.; Damalas, C.A. Occupational exposure to pesticides and resultant health problems among cotton farmers of Punjab, Pakistan. Int. J. Environ. Health Res., 2015, 25(5), 508-521.
[http://dx.doi.org/10.1080/09603123.2014.980781] [PMID: 25397689]
[28]
Hernández, A.F.; Gil, F.; Lacasaña, M. Toxicological interactions of pesticide mixtures: An update. Arch. Toxicol., 2017, 91(10), 3211-3223.
[http://dx.doi.org/10.1007/s00204-017-2043-5] [PMID: 28845507]
[29]
Laetz, C.A.; Baldwin, D.H.; Collier, T.K.; Hebert, V.; Stark, J.D.; Scholz, N.L. The synergistic toxicity of pesticide mixtures: implications for risk assessment and the conservation of endangered Pacific salmon. Environ. Health Perspect., 2009, 117(3), 348-353.
[http://dx.doi.org/10.1289/ehp.0800096] [PMID: 19337507]
[30]
Abdollahi, M.; Ranjbar, A.; Shadnia, S.; Nikfar, S.; Rezaie, A. Pesticides and oxidative stress: A review. Med. Sci. Monit., 2004, 10(6), RA141-RA147.
[PMID: 15173684]
[31]
Lushchak, V.I. Adaptive response to oxidative stress: Bacteria, fungi, plants and animals. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2011, 153(2), 175-190.
[http://dx.doi.org/10.1016/j.cbpc.2010.10.004] [PMID: 20959147]
[32]
Teodoro, M.; Briguglio, G.; Fenga, C.; Costa, C. Genetic polymorphisms as determinants of pesticide toxicity: Recent advances. Toxicol. Rep., 2019, 6, 564-570.
[http://dx.doi.org/10.1016/j.toxrep.2019.06.004] [PMID: 31293901]
[33]
Rupaimoole, R.; Calin, G.A.; Lopez-Berestein, G.; Sood, A.K. miRNA deregulation in cancer cells and the tumor microenvironment. Cancer Discov., 2016, 6(3), 235-246.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0893] [PMID: 26865249]
[34]
Kahl, V.F.S.; da Silva, F.R.; Alves, J.D.S.; da Silva, G.F.; Picinini, J.; Dhillon, V.S.; Fenech, M.; de Souza, M.R.; Dias, J.F.; de Souza, C.T.; Salvador, M.; Branco, C.D.S.; Thiesen, F.V.; Simon, D.; da Silva, J. Role of PON1, SOD2, OGG1, XRCC1, and XRCC4 polymorphisms on modulation of DNA damage in workers occupationally exposed to pesticides. Ecotoxicol. Environ. Saf., 2018, 159, 164-171.
[http://dx.doi.org/10.1016/j.ecoenv.2018.04.052] [PMID: 29747151]
[35]
Zayed, A.A.; Ahmed, A.I.; Khattab, A.M.; Mekdad, A.A.; AbdelAal, A.G. Paraoxonase 1 and cytochrome P450 polymorphisms in susceptibility to acute organophosphorus poisoning in Egyptians. Neurotoxicology, 2015, 51, 20-26.
[http://dx.doi.org/10.1016/j.neuro.2015.08.011] [PMID: 26340881]
[36]
Tawfik Khattab, A.M.; Zayed, A.A.; Ahmed, A.I.; AbdelAal, A.G.; Mekdad, A.A. The role of PON1 and CYP2D6 genes in susceptibility to organophosphorus chronic intoxication in Egyptian patients. Neurotoxicology, 2016, 53, 102-107.
[http://dx.doi.org/10.1016/j.neuro.2015.12.015] [PMID: 26723569]
[37]
Alves, M; Almeida, M; Oliani, AH Women with polycystic ovary syndrome and other causes of infertility have a higher prevalence of GSTT1 deletion.Reprod Biomed,, 2020, S1472-6483.30335-30337.
[http://dx.doi.org/10.1016/j.rbmo.2020.06.010]
[38]
Bhat, M.A.; Gandhi, G. Association of GSTT1 and GSTM1 gene polymorphisms with coronary artery disease in North Indian Punjabi population: A case-control study. Postgrad. Med. J., 2016, 92(1094), 701-706.
[http://dx.doi.org/10.1136/postgradmedj-2015-133836] [PMID: 27215231]
[39]
Budai, B.; Prekopp, P.; Noszek, L.; Kovács, E.R.; Szőnyi, M.; Erdélyi, D.J.; Bíró, K.; Géczi, L. GSTM1 null and GSTT1 null: predictors of cisplatin-caused acute ototoxicity measured by DPOAEs. J. Mol. Med. (Berl.), 2020, 98(7), 963-971.
[http://dx.doi.org/10.1007/s00109-020-01921-y] [PMID: 32435918]
[40]
Dadbinpour, A.; Sheikhha, M.H.; Darbouy, M.; Afkhami-Ardekani, M. Investigating GSTT1 and GSTM1 null genotype as the risk factor of diabetes type 2 retinopathy. J. Diabetes Metab. Disord., 2013, 12(1), 48.
[http://dx.doi.org/10.1186/2251-6581-12-48] [PMID: 24355557]
[41]
Grubisa, I.; Otasevic, P.; Vucinic, N.; Milicic, B.; Jozic, T.; Krstic, S.; Milasin, J. Combined GSTM1 and GSTT1 null genotypes are strong risk factors for atherogenesis in a Serbian population. Genet. Mol. Biol., 2018, 41(1), 35-40.
[http://dx.doi.org/10.1590/1678-4685-gmb-2017-0034] [PMID: 29658969]
[42]
Kim, S.H.; Kim, S.H.; Yoon, H.J.; Shin, D.H.; Park, S.S.; Kim, Y.S.; Park, J.S.; Jee, Y.K. GSTT1 and GSTM1 null mutations and adverse reactions induced by antituberculosis drugs in Koreans. Tuberculosis (Edinb.), 2010, 90(1), 39-43.
[http://dx.doi.org/10.1016/j.tube.2009.12.001] [PMID: 20036620]
[43]
Montazeri-Najafabady, N.; Dabbaghmanesh, M.H.; Namavar Jahromi, B.; Chatrabnous, N.; Chatrsimin, F. The impact of GSTM1 and GSTT1 polymorphisms on susceptibility to gestational diabetes in Iranian population. J. Matern. Fetal Neonatal Med., 2020, 1-6.
[http://dx.doi.org/10.1080/14767058.2020.1757062] [PMID: 32345069]
[44]
Pinheiro, D.S.; Santos, R.D.S.; de Brito, R.B.; Cruz, A.H.D.S.; Ghedini, P.C.; Reis, A.A.S. GSTM1/GSTT1 double-null genotype increases risk of treatment-resistant schizophrenia: A genetic association study in Brazilian patients. PLoS One, 2017, 12(8)e0183812
[http://dx.doi.org/10.1371/journal.pone.0183812] [PMID: 28837637]
[45]
Ahluwalia, M.; Kaur, A. Modulatory role of GSTT1 and GSTM1 in Punjabi agricultural workers exposed to pesticides. Environ. Sci. Pollut. Res. Int., 2018, 25(12), 11981-11986.
[http://dx.doi.org/10.1007/s11356-018-1459-7] [PMID: 29450776]
[46]
Saad-Hussein, A.; Beshir, S.; Taha, M.M.; Shahy, E.M.; Shaheen, W.; Abdel-Shafy, E.A.; Thabet, E. Early prediction of liver carcinogenicity due to occupational exposure to pesticides. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2019, 838, 46-53.
[http://dx.doi.org/10.1016/j.mrgentox.2018.12.004] [PMID: 30678827]
[47]
Sharma, T.; Banerjee, B.D.; Thakur, G.K.; Guleria, K.; Mazumdar, D. Polymorphism of xenobiotic metabolizing gene and susceptibility of epithelial ovarian cancer with reference to organochlorine pesticides exposure. Exp. Biol. Med. (Maywood), 2019, 244(16), 1446-1453.
[http://dx.doi.org/10.1177/1535370219878652] [PMID: 31569996]
[48]
Sharma, T.; Jain, S.; Verma, A.; Sharma, N.; Gupta, S.; Arora, V.K.; Dev Banerjee, B. Gene environment interaction in urinary bladder cancer with special reference to organochlorine pesticide: A case control study. Cancer Biomark., 2013, 13(4), 243-251.
[http://dx.doi.org/10.3233/CBM-130346] [PMID: 24240585]
[49]
Tian, M.; Zhao, B.; Martin, F.L.; Morais, C.L.M.; Liu, L.; Huang, Q.; Zhang, J.; Shen, H. Gene-environment interactions between GSTs polymorphisms and targeted epigenetic alterations in hepatocellular carcinoma following organochlorine pesticides (OCPs) exposure. Environ. Int., 2020, 134105313
[http://dx.doi.org/10.1016/j.envint.2019.105313] [PMID: 31731000]
[50]
Lushchak, V.I.; Matviishyn, T.M.; Husak, V.V.; Storey, J.M.; Storey, K.B. Pesticide toxicity: A mechanistic approach. EXCLI J., 2018, 17, 1101-1136.
[http://dx.doi.org/10.17179/excli2018-1710] [PMID: 30564086]
[51]
Hilgert Jacobsen-Pereira, C.; Dos Santos, C.R.; Troina Maraslis, F.; Pimentel, L.; Feijó, A.J.L.; Iomara Silva, C.; de Medeiros, G.D.S.; Costa Zeferino, R.; Curi Pedrosa, R.; Weidner Maluf, S. Markers of genotoxicity and oxidative stress in farmers exposed to pesticides. Ecotoxicol. Environ. Saf., 2018, 148, 177-183.
[http://dx.doi.org/10.1016/j.ecoenv.2017.10.004] [PMID: 29055201]
[52]
Marutescu, L.; Chifiriuc, M.C. Molecular mechanisms of pesticides toxicity; New Pesticides and Soil Sensors, 2017, pp. 393-435.
[53]
Ojha, A.; Yaduvanshi, S.K.; Pant, S.C.; Lomash, V.; Srivastava, N. Evaluation of DNA damage and cytotoxicity induced by three commonly used organophosphate pesticides individually and in mixture, in rat tissues. Environ. Toxicol., 2013, 28(10), 543-552.
[http://dx.doi.org/10.1002/tox.20748] [PMID: 21786386]
[54]
Poljsak, B.; Šuput, D.; Milisav, I. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxid. Med. Cell. Longev., 2013, 2013956792
[http://dx.doi.org/10.1155/2013/956792] [PMID: 23738047]
[55]
Shah, H.K.; Sharma, T.; Banerjee, B.D. Organochlorine pesticides induce inflammation, ROS production, and DNA damage in human epithelial ovary cells: An in vitro study. Chemosphere, 2020, 246125691
[http://dx.doi.org/10.1016/j.chemosphere.2019.125691] [PMID: 31887490]
[56]
Waris, G.; Ahsan, H. Reactive oxygen species: role in the development of cancer and various chronic conditions. J. Carcinog., 2006, 5, 14.
[http://dx.doi.org/10.1186/1477-3163-5-14] [PMID: 16689993]
[57]
Yun, H. B.; Guo, J.; Bellamri, M.; Turesky, R.J. DNA adducts: Formation, biological effects, and new biospecimens for mass spectrometric measurements in humans. Mass Spectrom. Rev., 2020, 39(1-2), 55-82.
[http://dx.doi.org/10.1002/mas.21570] [PMID: 29889312]
[58]
Sharma, V.; Collins, L.B.; Chen, T.H.; Herr, N.; Takeda, S.; Sun, W.; Swenberg, J.A.; Nakamura, J. Oxidative stress at low levels can induce clustered DNA lesions leading to NHEJ mediated mutations. Oncotarget, 2016, 7(18), 25377-25390.
[http://dx.doi.org/10.18632/oncotarget.8298] [PMID: 27015367]
[59]
Liou, G.Y.; Storz, P. Reactive oxygen species in cancer. Free Radic. Res., 2010, 44(5), 479-496.
[http://dx.doi.org/10.3109/10715761003667554] [PMID: 20370557]
[60]
Derghal, A.; Djelloul, M.; Trouslard, J.; Mounien, L. An emerging role of micro-rna in the effect of the endocrine disruptors. Front. Neurosci., 2016, 10, 318.
[http://dx.doi.org/10.3389/fnins.2016.00318] [PMID: 27445682]
[61]
Yuan, H.; Yuan, M.; Tang, Y.; Wang, B.; Zhan, X. MicroRNA expression profiling in human acute organophosphorus poisoning and functional analysis of dysregulated miRNAs. Afr. Health Sci., 2018, 18(2), 333-342.
[http://dx.doi.org/10.4314/ahs.v18i2.18] [PMID: 30602960]
[62]
Quinlan, S.; Kenny, A.; Medina, M.; Engel, T.; Jimenez-Mateos, E.M. MicroRNAs in neurodegenerative diseases. Int. Rev. Cell Mol. Biol., 2017, 334, 309-343.
[http://dx.doi.org/10.1016/bs.ircmb.2017.04.002] [PMID: 28838542]
[63]
Cloutier, F.; Marrero, A.; O’Connell, C.; Morin, P. Jr MicroRNAs as potential circulating biomarkers for amyotrophic lateral sclerosis. J. Mol. Neurosci., 2015, 56(1), 102-112.
[http://dx.doi.org/10.1007/s12031-014-0471-8] [PMID: 25433762]
[64]
Goodall, E.F.; Heath, P.R.; Bandmann, O.; Kirby, J.; Shaw, P.J. Neuronal dark matter: the emerging role of microRNAs in neurodegeneration. Front. Cell. Neurosci., 2013, 7, 178.
[http://dx.doi.org/10.3389/fncel.2013.00178] [PMID: 24133413]
[65]
Banzhaf-Strathmann, J.; Benito, E.; May, S.; Arzberger, T.; Tahirovic, S.; Kretzschmar, H.; Fischer, A.; Edbauer, D. MicroRNA-125b induces tau hyperphosphorylation and cognitive deficits in Alzheimer’s disease. EMBO J., 2014, 33(15), 1667-1680.
[http://dx.doi.org/10.15252/embj.201387576] [PMID: 25001178]
[66]
Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. miRBase: from microRNA sequences to function. Nucleic Acids Res., 2019, 47(D1), D155-D162.
[http://dx.doi.org/10.1093/nar/gky1141] [PMID: 30423142]
[67]
Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2), 281-297.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[68]
Yang, M.; Mattes, J. Discovery, biology and therapeutic potential of RNA interference, microRNA and antagomirs. Pharmacol. Ther., 2008, 117(1), 94-104.
[http://dx.doi.org/10.1016/j.pharmthera.2007.08.004] [PMID: 17928059]
[69]
Costa, C.; Teodoro, M.; Rugolo, C.A.; Alibrando, C.; Giambò, F.; Briguglio, G.; Fenga, C. MicroRNAs alteration as early biomarkers for cancer and neurodegenerative diseases: New challenges in pesticides exposure. Toxicol. Rep., 2020, 7, 759-767.
[http://dx.doi.org/10.1016/j.toxrep.2020.05.003] [PMID: 32612936]
[70]
Falzone, L.; Romano, G.L.; Salemi, R.; Bucolo, C.; Tomasello, B.; Lupo, G.; Anfuso, C.D.; Spandidos, D.A.; Libra, M.; Candido, S. Prognostic significance of deregulated microRNAs in uveal melanomas. Mol. Med. Rep., 2019, 19(4), 2599-2610.
[http://dx.doi.org/10.3892/mmr.2019.9949] [PMID: 30816460]
[71]
Collotta, M.; Bertazzi, P.A.; Bollati, V. Epigenetics and pesticides. Toxicology, 2013, 307, 35-41.
[http://dx.doi.org/10.1016/j.tox.2013.01.017] [PMID: 23380243]
[72]
Kim, K.Y.; Kim, D.S.; Lee, S.K.; Lee, I.K.; Kang, J.H.; Chang, Y.S.; Jacobs, D.R.; Steffes, M.; Lee, D.H. Association of low-dose exposure to persistent organic pollutants with global DNA hypomethylation in healthy Koreans. Environ. Health Perspect., 2010, 118(3), 370-374.
[http://dx.doi.org/10.1289/ehp.0901131] [PMID: 20064773]
[73]
Li, M.; Huo, X.; Davuljigari, C.B.; Dai, Q.; Xu, X. MicroRNAs and their role in environmental chemical carcinogenesis. Environ. Geochem. Health, 2019, 41(1), 225-247.
[http://dx.doi.org/10.1007/s10653-018-0179-8] [PMID: 30171477]
[74]
Babu, R. K.; Tay, Y. The Yin-Yang Regulation of Reactive Oxygen Species and MicroRNAs in Cancer. Int. J. Mol. Sci., 2019, 20(21), 5335.
[http://dx.doi.org/10.3390/ijms20215335] [PMID: 31717786]
[75]
He, J.; Xu, Q.; Jing, Y.; Agani, F.; Qian, X.; Carpenter, R.; Li, Q.; Wang, X.R.; Peiper, S.S.; Lu, Z.; Liu, L.Z.; Jiang, B.H. Reactive oxygen species regulate ERBB2 and ERBB3 expression via miR-199a/125b and DNA methylation. EMBO Rep., 2012, 13(12), 1116-1122.
[http://dx.doi.org/10.1038/embor.2012.162] [PMID: 23146892]
[76]
He, J.; Jing, Y.; Li, W.; Qian, X.; Xu, Q.; Li, F.S.; Liu, L.Z.; Jiang, B.H.; Jiang, Y. Roles and mechanism of miR-199a and miR-125b in tumor angiogenesis. PLoS One, 2013, 8(2)e56647
[http://dx.doi.org/10.1371/journal.pone.0056647] [PMID: 23437196]
[77]
Ago, T.; Liu, T.; Zhai, P.; Chen, W.; Li, H.; Molkentin, J.D.; Vatner, S.F.; Sadoshima, J. A redox-dependent pathway for regulating class II HDACs and cardiac hypertrophy. Cell, 2008, 133(6), 978-993.
[http://dx.doi.org/10.1016/j.cell.2008.04.041] [PMID: 18555775]
[78]
Ciesla, M.; Marona, P.; Kozakowska, M.; Jez, M.; Seczynska, M.; Loboda, A.; Bukowska-Strakova, K.; Szade, A.; Walawender, M.; Kusior, M.; Stepniewski, J.; Szade, K.; Krist, B.; Yagensky, O.; Urbanik, A.; Kazanowska, B.; Dulak, J.; Jozkowicz, A. Heme Oxygenase-1 Controls an HDAC4-miR-206 Pathway of Oxidative Stress in Rhabdomyosarcoma. Cancer Res., 2016, 76(19), 5707-5718.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1883] [PMID: 27488535]
[79]
Singh, A.; Happel, C.; Manna, S.K.; Acquaah-Mensah, G.; Carrerero, J.; Kumar, S.; Nasipuri, P.; Krausz, K.W.; Wakabayashi, N.; Dewi, R.; Boros, L.G.; Gonzalez, F.J.; Gabrielson, E.; Wong, K.K.; Girnun, G.; Biswal, S. Transcription factor NRF2 regulates miR-1 and miR-206 to drive tumorigenesis. J. Clin. Invest., 2013, 123(7), 2921-2934.
[http://dx.doi.org/10.1172/JCI66353] [PMID: 23921124]
[80]
Fortes, C.; Mastroeni, S.; Bottà, G.; Boffetta, P.; Antonelli, G.; Venanzetti, F. Glutathione S-transferase M1 null genotype, household pesticides exposure and cutaneous melanoma. Melanoma Res., 2016, 26(6), 625-630.
[http://dx.doi.org/10.1097/CMR.0000000000000295] [PMID: 27540835]
[81]
Islas-González, K.; González-Horta, C.; Sánchez-Ramírez, B.; Reyes-Aragón, E.; Levario-Carrillo, M. In vitro assessment of the genotoxicity of ethyl paraoxon in newborns and adults. Hum. Exp. Toxicol., 2005, 24(6), 319-324.
[http://dx.doi.org/10.1191/0960327105ht534oa] [PMID: 16004199]
[82]
He, Q.; Mei, Y.; Liu, Y.; Yuan, Z.; Zhang, J.; Yan, H.; Shen, L.; Zhang, Y. Effects of Cytochrome P450 2C19 Genetic Polymorphisms on Responses to Escitalopram and Levels of Brain-Derived Neurotrophic Factor in Patients With Panic Disorder. J. Clin. Psychopharmacol., 2019, 39(2), 117-123.
[http://dx.doi.org/10.1097/JCP.0000000000001014] [PMID: 30742590]
[83]
Agúndez, J.A.; Klein, K. Functional polymorphisms of xenobiotics metabolizing enzymes-a research topic. Front. Genet., 2013, 4, 79.
[http://dx.doi.org/10.3389/fgene.2013.00079] [PMID: 23658560]
[84]
Chen, G. Xenobiotic metabolism and disposition An Introduction to Interdisciplinary Toxicology,, 2020, 31-42.
[http://dx.doi.org/10.1016/B978-0-12-813602-7.00003-X]
[85]
Bhatti, J.S.; Vijayvergiya, R.; Singh, B.; Bhatti, G.K. Genetic susceptibility of glutathione S-transferase genes (GSTM1/T1 and P1) to coronary artery disease in Asian Indians. Ann. Hum. Genet., 2018, 82(6), 448-456.
[http://dx.doi.org/10.1111/ahg.12274] [PMID: 30039864]
[86]
Lo, H.W.; Ali-Osman, F. Genetic polymorphism and function of glutathione S-transferases in tumor drug resistance. Curr. Opin. Pharmacol., 2007, 7(4), 367-374.
[http://dx.doi.org/10.1016/j.coph.2007.06.009] [PMID: 17681492]
[87]
Ge, B.; Song, Y.; Zhang, Y.; Liu, X.; Wen, Y.; Guo, X. Glutathione S-transferase M1 (GSTM1) and T1 (GSTT1) null polymorphisms and the risk of hypertension: A meta-analysis. PLoS One, 2015, 10(3)e0118897
[http://dx.doi.org/10.1371/journal.pone.0118897] [PMID: 25742618]
[88]
Alves, A.A.; Franco, F.C.; Godoy, F.R.; Aguiar Ramos, J.S.; Nunes, H.F.; Soares, T.N.; de Melo, E. Silva, D. The importance of understanding the distribution of GSTM1 and GSTT1 genotypes and haplotypes in a region with intense agriculture activity. Heliyon, 2019, 5(12)e02815
[http://dx.doi.org/10.1016/j.heliyon.2019.e02815] [PMID: 31872100]
[89]
Norppa, H. Cytogenetic biomarkers and genetic polymorphisms. Toxicol. Lett., 2004, 149(1-3), 309-334.
[http://dx.doi.org/10.1016/j.toxlet.2003.12.042] [PMID: 15093278]
[90]
Acevedo, C.A.; Quiñones, L.A.; Catalán, J.; Cáceres, D.D.; Fullá, J.A.; Roco, A.M. Impact of CYP1A1, GSTM1, and GSTT1 polymorphisms in overall and specific prostate cancer survival. Urol. Oncol., 2014, 32(3), 280-290.
[http://dx.doi.org/10.1016/j.urolonc.2013.05.010] [PMID: 24508281]
[91]
Dialyna, I.A.; Miyakis, S.; Georgatou, N.; Spandidos, D.A. Genetic polymorphisms of CYP1A1, GSTM1 and GSTT1 genes and lung cancer risk. Oncol. Rep., 2003, 10(6), 1829-1835.
[http://dx.doi.org/10.3892/or.10.6.1829] [PMID: 14534704]
[92]
Hishida, A.; Terakura, S.; Emi, N.; Yamamoto, K.; Murata, M.; Nishio, K.; Sekido, Y.; Niwa, T.; Hamajima, N.; Naoe, T. GSTT1 and GSTM1 deletions, NQO1 C609T polymorphism and risk of chronic myelogenous leukemia in Japanese. Asian Pac. J. Cancer Prev., 2005, 6(3), 251-255.
[PMID: 16235982]
[93]
Kim, J.H.; Hong, Y.C. GSTM1, GSTT1, and GSTP1 polymorphisms and associations between air pollutants and markers of insulin resistance in elderly Koreans. Environ. Health Perspect., 2012, 120(10), 1378-1384.
[http://dx.doi.org/10.1289/ehp.1104406] [PMID: 22732554]
[94]
Palma-Cano, L.E.; Córdova, E.J.; Orozco, L.; Martínez-Hernández, A.; Cid, M.; Leal-Berumen, I.; Licón-Trillo, A.; Lechuga-Valles, R.; González-Ponce, M.; González-Rodríguez, E.; Moreno-Brito, V. GSTT1 and GSTM1 null variants in Mestizo and Amerindian populations from northwestern Mexico and a literature review. Genet. Mol. Biol., 2017, 40(4), 727-735.
[http://dx.doi.org/10.1590/1678-4685-gmb-2016-0142] [PMID: 29111561]
[95]
Baclig, M.O.; Alvarez, M.R.; Lozada, X.M.; Mapua, C.A.; Lozano-Kühne, J.P.; Dimamay, M.P.; Natividad, F.F.; Gopez-Cervantes, J.; Matias, R.R. Association of glutathione S-transferase T1 and M1 genotypes with chronic liver diseases among Filipinos. Int. J. Mol. Epidemiol. Genet., 2012, 3(2), 153-159.
[PMID: 22724052]
[96]
Chan, J.Y.; Ugrasena, D.G.; Lum, D.W.; Lu, Y.; Yeoh, A.E. Xenobiotic and folate pathway gene polymorphisms and risk of childhood acute lymphoblastic leukaemia in Javanese children. Hematol. Oncol., 2011, 29(3), 116-123.
[http://dx.doi.org/10.1002/hon.965] [PMID: 20824655]
[97]
Fujihara, J.; Yasuda, T.; Iida, R.; Takatsuka, H.; Fujii, Y.; Takeshita, H. Cytochrome P450 1A1, glutathione S-transferases M1 and T1 polymorphisms in Ovambos and Mongolians. Leg. Med. (Tokyo), 2009, 11(Suppl. 1), S408-S410.
[http://dx.doi.org/10.1016/j.legalmed.2009.01.073] [PMID: 19264525]
[98]
Garte, S.; Gaspari, L.; Alexandrie, A.K.; Ambrosone, C.; Autrup, H.; Autrup, J.L.; Baranova, H.; Bathum, L.; Benhamou, S.; Boffetta, P.; Bouchardy, C.; Breskvar, K.; Brockmoller, J.; Cascorbi, I.; Clapper, M.L.; Coutelle, C.; Daly, A.; Dell’Omo, M.; Dolzan, V.; Dresler, C.M.; Fryer, A.; Haugen, A.; Hein, D.W.; Hildesheim, A.; Hirvonen, A.; Hsieh, L.L.; Ingelman-Sundberg, M.; Kalina, I.; Kang, D.; Kihara, M.; Kiyohara, C.; Kremers, P.; Lazarus, P.; Le Marchand, L.; Lechner, M.C.; van Lieshout, E.M.; London, S.; Manni, J.J.; Maugard, C.M.; Morita, S.; Nazar-Stewart, V.; Noda, K.; Oda, Y.; Parl, F.F.; Pastorelli, R.; Persson, I.; Peters, W.H.; Rannug, A.; Rebbeck, T.; Risch, A.; Roelandt, L.; Romkes, M.; Ryberg, D.; Salagovic, J.; Schoket, B.; Seidegard, J.; Shields, P.G.; Sim, E.; Sinnet, D.; Strange, R.C.; Stücker, I.; Sugimura, H.; To-Figueras, J.; Vineis, P.; Yu, M.C.; Taioli, E. Metabolic gene polymorphism frequencies in control populations. Cancer Epidemiol. Biomarkers Prev., 2001, 10(12), 1239-1248.
[PMID: 11751440]
[99]
Sombié, H.K.; Sorgho, A.P.; Kologo, J.K.; Ouattara, A.K.; Yaméogo, S.; Yonli, A.T.; Djigma, F.W.; Tchelougou, D.; Somda, D.; Kiendrébéogo, I.T.; Bado, P.; Nagalo, B.M.; Nagabila, Y.; Adoko, E.T.H.D.; Zabsonré, P.; Millogo, H.; Simporé, J. Glutathione S-transferase M1 and T1 genes deletion polymorphisms and risk of developing essential hypertension: A case-control study in Burkina Faso population (West Africa). BMC Med. Genet., 2020, 21(1), 55.
[http://dx.doi.org/10.1186/s12881-020-0990-9] [PMID: 32188413]
[100]
Gates, M.A.; Tworoger, S.S.; Terry, K.L.; Titus-Ernstoff, L.; Rosner, B.; De Vivo, I.; Cramer, D.W.; Hankinson, S.E. Talc use, variants of the GSTM1, GSTT1, and NAT2 genes, and risk of epithelial ovarian cancer. Cancer Epidemiol. Biomarkers Prev., 2008, 17(9), 2436-2444.
[http://dx.doi.org/10.1158/1055-9965.EPI-08-0399] [PMID: 18768514]
[101]
Krajinovic, M.; Labuda, D.; Richer, C.; Karimi, S.; Sinnett, D. Susceptibility to childhood acute lymphoblastic leukemia: influence of CYP1A1, CYP2D6, GSTM1, and GSTT1 genetic polymorphisms. Blood, 1999, 93(5), 1496-1501.
[http://dx.doi.org/10.1182/blood.V93.5.1496] [PMID: 10029576]
[102]
Fundia, A.F.; Weich, N.; Crivelli, A.; La Motta, G.; Larripa, I.B.; Slavutsky, I. Glutathione S-transferase gene polymorphisms in celiac disease and their correlation with genomic instability phenotype. Clin. Res. Hepatol. Gastroenterol., 2014, 38(3), 379-384.
[http://dx.doi.org/10.1016/j.clinre.2014.01.007] [PMID: 24565472]
[103]
Al-Dayel, F.; Al-Rasheed, M.; Ibrahim, M.; Bu, R.; Bavi, P.; Abubaker, J.; Al-Jomah, N.; Mohamed, G.H.; Moorji, A.; Uddin, S.; Siraj, A.K.; Al-Kuraya, K. Polymorphisms of drug-metabolizing enzymes CYP1A1, GSTT and GSTP contribute to the development of diffuse large B-cell lymphoma risk in the Saudi Arabian population. Leuk. Lymphoma, 2008, 49(1), 122-129.
[http://dx.doi.org/10.1080/10428190701704605] [PMID: 18203021]
[104]
Dunna, N.R.; Vure, S.; Sailaja, K.; Surekha, D.; Raghunadharao, D.; Rajappa, S.; Vishnupriya, S. Deletion of GSTM1 and T1 genes as a risk factor for development of acute leukemia. Asian Pac. J. Cancer Prev., 2013, 14(4), 2221-2224.
[http://dx.doi.org/10.7314/APJCP.2013.14.4.2221] [PMID: 23725116]
[105]
Liu, L.; Li, C.; Gao, J.; Li, K.; Gao, L.; Gao, T. Genetic polymorphisms of glutathione S-transferase and risk of vitiligo in the Chinese population. J. Invest. Dermatol., 2009, 129(11), 2646-2652.
[http://dx.doi.org/10.1038/jid.2009.143] [PMID: 19571817]
[106]
Hamdy, S.I.; Hiratsuka, M.; Narahara, K.; Endo, N.; El-Enany, M.; Moursi, N.; Ahmed, M.S.; Mizugaki, M. Genotype and allele frequencies of TPMT, NAT2, GST, SULT1A1 and MDR-1 in the Egyptian population. Br. J. Clin. Pharmacol., 2003, 55(6), 560-569.
[http://dx.doi.org/10.1046/j.1365-2125.2003.01786.x] [PMID: 12814450]
[107]
Piacentini, S.; Polimanti, R.; Porreca, F.; Martínez-Labarga, C.; De Stefano, G.F.; Fuciarelli, M. GSTT1 and GSTM1 gene polymorphisms in European and African populations. Mol. Biol. Rep., 2011, 38(2), 1225-1230.
[http://dx.doi.org/10.1007/s11033-010-0221-0] [PMID: 20563854]
[108]
Buchard, A.; Sanchez, J.J.; Dalhoff, K.; Morling, N. Multiplex PCR detection of GSTM1, GSTT1, and GSTP1 gene variants: simultaneously detecting GSTM1 and GSTT1 gene copy number and the allelic status of the GSTP1 Ile105Val genetic variant. J. Mol. Diagn., 2007, 9(5), 612-617.
[http://dx.doi.org/10.2353/jmoldx.2007.070030] [PMID: 17916600]
[109]
Kabesch, M.; Hoefler, C.; Carr, D.; Leupold, W.; Weiland, S.K.; von Mutius, E. Glutathione S transferase deficiency and passive smoking increase childhood asthma. Thorax, 2004, 59(7), 569-573.
[http://dx.doi.org/10.1136/thx.2003.016667] [PMID: 15223862]
[110]
Gra, O.; Mityaeva, O.; Berdichevets, I.; Kozhekbaeva, Z.; Fesenko, D.; Kurbatova, O.; Goldenkova-Pavlova, I.; Nasedkina, T. Microarray-based detection of CYP1A1, CYP2C9, CYP2C19, CYP2D6, GSTT1, GSTM1, MTHFR, MTRR, NQO1, NAT2, HLA-DQA1, and AB0 allele frequencies in native Russians. Genet. Test. Mol. Biomarkers, 2010, 14(3), 329-342.
[http://dx.doi.org/10.1089/gtmb.2009.0158] [PMID: 20373852]
[111]
Aydin-Sayitoglu, M.; Hatirnaz, O.; Erensoy, N.; Ozbek, U. Role of CYP2D6, CYP1A1, CYP2E1, GSTT1, and GSTM1 genes in the susceptibility to acute leukemias. Am. J. Hematol., 2006, 81(3), 162-170.
[http://dx.doi.org/10.1002/ajh.20434] [PMID: 16493615]
[112]
Spurdle, A.B.; Chang, J.H.; Byrnes, G.B.; Chen, X.; Dite, G.S.; McCredie, M.R.; Giles, G.G.; Southey, M.C.; Chenevix-Trench, G.; Hopper, J.L. A systematic approach to analysing gene-gene interactions: polymorphisms at the microsomal epoxide hydrolase EPHX and glutathione S-transferase GSTM1, GSTT1, and GSTP1 loci and breast cancer risk. Cancer Epidemiol. Biomarkers Prev., 2007, 16(4), 769-774.
[http://dx.doi.org/10.1158/1055-9965.EPI-06-0776] [PMID: 17416769]
[113]
Saloni, K.; Kiran, G.; Tusha, S. A case control study of gene environment interaction in pre-eclampsia with special reference to organochlorine pesticides. Obstetrics and Gynecology Research, 2020, 3, 161-171.
[114]
Ratna, M.G.; Nugrahaningsih, D.A.A.; Sholikhah, E.N.; Dwianingsih, E.K.; Malueka, R.G. The association between PON1 and GSTM1 genetic variation with methylation of p16 gene promoter among Javanese farmers exposed to pesticides at Magelang Regency, Central Java, Indonesia. Heliyon, 2020, 6(5)e03993
[http://dx.doi.org/10.1016/j.heliyon.2020.e03993] [PMID: 32478190]
[115]
Huang, W.; Shi, H.; Hou, Q.; Mo, Z.; Xie, X. GSTM1 and GSTT1 polymorphisms contribute to renal cell carcinoma risk: evidence from an updated meta-analysis. Sci. Rep., 2015, 5, 17971.
[http://dx.doi.org/10.1038/srep17971] [PMID: 26656529]
[116]
Mortazavi, N.; Asadikaram, G.; Ebadzadeh, M.R.; Kamalati, A.; Pakmanesh, H.; Dadgar, R.; Moazed, V.; Paydar, P.; Fallah, H.; Abolhassani, M. Organochlorine and organophosphorus pesticides and bladder cancer: A case-control study. J. Cell. Biochem., 2019, 120(9), 14847-14859.
[http://dx.doi.org/10.1002/jcb.28746] [PMID: 31009110]
[117]
Godoy, F.R.; Costa, E.O.; da Silva Reis, A.A.; Batista, M.P.; de Melo, A.V.; Gonçalves, M.W.; Cruz, A.S.; de Araújo Melo, C.O.; Minasi, L.B.; Ribeiro, C.L.; da Cruz, A.D.; de Melo, E. Silva, D. Do GSTT1 and GSTM1 polymorphisms influence intoxication events in individuals occupationally exposed to pesticides? Environ. Sci. Pollut. Res. Int., 2014, 21(5), 3706-3712.
[http://dx.doi.org/10.1007/s11356-013-2349-7] [PMID: 24281680]
[118]
Matic, M.G.; Coric, V.M.; Savic-Radojevic, A.R.; Bulat, P.V.; Pljesa-Ercegovac, M.S.; Dragicevic, D.P.; Djukic, T.I.; Simic, T.P.; Pekmezovic, T.D. Does occupational exposure to solvents and pesticides in association with glutathione S-transferase A1, M1, P1, and T1 polymorphisms increase the risk of bladder cancer? The Belgrade case-control study. PLoS One, 2014, 9(6)e99448
[http://dx.doi.org/10.1371/journal.pone.0099448] [PMID: 24914957]
[119]
Tumer, T.B.; Savranoglu, S.; Atmaca, P.; Terzioglu, G.; Sen, A.; Arslan, S. Modulatory role of GSTM1 null genotype on the frequency of micronuclei in pesticide-exposed agricultural workers. Toxicol. Ind. Health, 2016, 32(12), 1942-1951.
[http://dx.doi.org/10.1177/0748233715599876] [PMID: 26381689]
[120]
Singh, S.; Kumar, V.; Singh, P.; Thakur, S.; Banerjee, B.D.; Rautela, R.S.; Grover, S.S.; Rawat, D.S.; Pasha, S.T.; Jain, S.K.; Rai, A. Genetic polymorphisms of GSTM1, GSTT1 and GSTP1 and susceptibility to DNA damage in workers occupationally exposed to organophosphate pesticides. Mutat. Res., 2011, 725(1-2), 36-42.
[http://dx.doi.org/10.1016/j.mrgentox.2011.06.006] [PMID: 21736951]
[121]
Singh, S.; Kumar, V.; Singh, P.; Banerjee, B.D.; Rautela, R.S.
Grover, S.S.; Rawat, D.S.; Pasha, S.T.; Jain, S.K.; Rai, A. Influence of CYP2C9, GSTM1, GSTT1 and NAT2 genetic polymorphisms on DNA damage in workers occupationally exposed to organophosphate pesticides. Mutat. Res., 2012, 741(1-2), 101-108.
[http://dx.doi.org/10.1016/j.mrgentox.2011.11.001] [PMID: 22108250]
[122]
Abhishek, S.; Kaur, N.; Kaur, S.; Lata, M.; Sharma, J.K.; Sharma, A. Association of GSTM1 and GSTT1 gene deletions with susceptibility to DNA damage in the pesticide-exposed workers of Punjab. Rejuvenation Res., 2010, 13(2-3), 281-284.
[http://dx.doi.org/10.1089/rej.2009.0931] [PMID: 20370484]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy