Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Covid 19 May Limit the Use of Anti-hyperglycemic Agents. Does it Call for the Development of New Anti-hyperglycemic Agents?

Author(s): Ntethelelo Sibiya*, Bonisiwe Mbatha, Charles Arineitwe, Chiamaka Onyekwuluje, Phikelelani Ngubane and Andile Khathi

Volume 18, Issue 3, 2022

Published on: 06 January, 2022

Article ID: e060821195364 Pages: 10

DOI: 10.2174/1573399817666210806114200

open access plus

Abstract

Diabetes mellitus has been identified as a major risk factor for developing severe COVID 19 complications. In this review article, the efforts were directed to provide insights and the possible extent to which some diabetic pharmacological interventions may exacerbate COVID 19 or may not be idyllic options for COVID 19 patients. Articles reviewed were identified using the Google scholar database, and search was done using the English language. Anti-hyperglycemic is associated with undesirable effects including episodes of hypoglycemia, diarrhea, lactic acidosis, and increased risks of cardiovascular and hepatic hazards. These undesirable effects associated with the anti-hyperglycemic agents possess a threat of developing severe COVID19 complications Therefore, this calls for more studies to understand the extent of the risks these agents possess in diabetic COVID 19 patients. Almost all the anti-hyperglycemic agents have the potential to worsen COVID 19, despite their class. COVID 19 may limit the options in terms of available anti-hyperglycemic agents which may not heighten the risk of developing severe COVID 19 complications. The research towards the discovery and development of new compounds and also new therapeutic targets for hyperglycemia should be encouraged and welcome.

Keywords: COVID 19, anti-hyperglycemic, morbidity, mortality, diabetes mellitus, therapeutic target.

[1]
Bonow RO, Fonarow GC, O’Gara PT, Yancy CW. Association of coronavirus disease 2019 (COVID-19) with myocardial injury and mortality. JAMA Cardiol 2020; 5(7): 751-3.
[http://dx.doi.org/10.1001/jamacardio.2020.1105] [PMID: 32219362]
[2]
Guo T, Fan Y, Chen M, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020; 5(7): 811-8.
[http://dx.doi.org/10.1001/jamacardio.2020.1017] [PMID: 32219356]
[3]
Chakraborty I, Maity P. COVID-19 outbreak: Migration, effects on society, global environment and prevention. Sci Total Environ 2020; 728: 138882.
[http://dx.doi.org/10.1016/j.scitotenv.2020.138882] [PMID: 32335410]
[4]
Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382(18): 1708-20.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[5]
Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020; 323(11): 1061-9.
[http://dx.doi.org/10.1001/jama.2020.1585] [PMID: 32031570]
[6]
Jahanpeyma P. Knowledge of the covid-19 virus, from diagnosis to prevention and treatment: A narrative review. Military Caring Sciences 2020; 7(3): 289-300.
[http://dx.doi.org/10.29252/mcs.7.3.289]
[7]
Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727-33.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[8]
Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med 2020; 382(13): 1199-207.
[http://dx.doi.org/10.1056/NEJMoa2001316] [PMID: 31995857]
[9]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[10]
NCD Risk Factor Collaboration. Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4.4 million participants. Lancet. NCD Risk Factor Collaboration 2016; 387: 1513-30.
[http://dx.doi.org/10.1016/S0140-6736(16)00618-8]
[11]
Bertram MY, Jaswal AVS, Van Wyk VP, Levitt NS, Hofman KJ. The non-fatal disease burden caused by type 2 diabetes in South Africa, 2009. Glob Health Action 2013; 6(1): 19244.
[http://dx.doi.org/10.3402/gha.v6i0.19244] [PMID: 23364089]
[12]
International Diabetes Federation (IDF). IDF Diabetes Atlas 2019: Diabetes increase the risk of health complications. 9th. 2019. Available from: https://www.diabetesatlas.org/ [Accessed on 03 December 2020]
[13]
Whalen K. Lippincott illustrated reviews: Pharmacology.Blatimore, New York, London: Wolters Kluwer 2015; pp. 349-62.
[14]
Cusick M, Meleth AD, Agrón E, et al. Associations of mortality and diabetes complications in patients with type 1 and type 2 diabetes: early treatment diabetic retinopathy study report no. 27. Diabetes Care 2005; 28(3): 617-25.
[http://dx.doi.org/10.2337/diacare.28.3.617] [PMID: 15735198]
[15]
Rueda AM, Ormond M, Gore M, Matloobi M, Giordano TP, Musher DM. Hyperglycemia in diabetics and non-diabetics: effect on the risk for and severity of pneumococcal pneumonia. J Infect 2010; 60(2): 99-105.
[http://dx.doi.org/10.1016/j.jinf.2009.12.003] [PMID: 20005251]
[16]
Singh AK, Gupta R, Ghosh A, Misra A. Diabetes in COVID-19: Prevalence, pathophysiology, prognosis and practical considerations. Diabetes Metab Syndr 2020; 14(4): 303-10.
[http://dx.doi.org/10.1016/j.dsx.2020.04.004] [PMID: 32298981]
[17]
Holman N, Knighton P, Kar P, et al. Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: a population-based cohort study. Lancet Diabetes Endocrinol 2020; 8(10): 823-33.
[http://dx.doi.org/10.1016/S2213-8587(20)30271-0] [PMID: 32798471]
[18]
Mehta C, Kataria S, Mehta Y. Management of coronavirus 2019. Journal of Cardiac Critical Care TSS 2020; 04(01): 1-7.
[http://dx.doi.org/10.1055/s-0040-1710401]
[19]
Guo YR, Cao QD, Hong ZS, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res 2020; 7(1): 11.
[http://dx.doi.org/10.1186/s40779-020-00240-0] [PMID: 32169119]
[20]
Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev 2005; 69(4): 635-64.
[http://dx.doi.org/10.1128/MMBR.69.4.635-664.2005] [PMID: 16339739]
[21]
Goldin CJ, Vázquez R, Polack FP, et al. Identifying pathophysiological bases of disease in COVID-19. translational medicine communications 2020; 5(15)
[http://dx.doi.org/10.1186/s41231-020-00067-w]
[22]
Heurich A, Hofmann-Winkler H, Gierer S, Liepold T, Jahn O, Pöhlmann S. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J Virol 2014; 88(2): 1293-307.
[http://dx.doi.org/10.1128/JVI.02202-13] [PMID: 24227843]
[23]
Arango Duque G, Descoteaux A. Macrophage cytokines: Involvement in immunity and infectious diseases. Front Immunol 2014; 5: 491.
[http://dx.doi.org/10.3389/fimmu.2014.00491] [PMID: 25339958]
[24]
Hotchkiss RS, Moldawer LL, Opal SM, Reinhart K, Turnbull IR, Vincent J-L. Sepsis and septic shock. Nat Rev Dis Primers 2016; 2(1): 16045.
[http://dx.doi.org/10.1038/nrdp.2016.45] [PMID: 28117397]
[25]
Harjola V-P, Mullens W, Banaszewski M, et al. Organ dysfunction, injury and failure in acute heart failure: From pathophysiology to diagnosis and management. A review on behalf of the Acute Heart Failure Committee of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur J Heart Fail 2017; 19(7): 821-36.
[http://dx.doi.org/10.1002/ejhf.872] [PMID: 28560717]
[26]
Shafi AMA, Shaikh SA, Shirke MM, Iddawela S, Harky A. Cardiac manifestations in COVID-19 patients-A systematic review. J Card Surg 2020; 35(8): 1988-2008.
[http://dx.doi.org/10.1111/jocs.14808] [PMID: 32652713]
[27]
Bloom PP, Meyerowitz EA, Reinus Z, et al. Liver biochemistries in hospitalized patients with COVID-19. Hepatology 2021; 73(3): 890-900.
[http://dx.doi.org/10.1002/hep.31326] [PMID: 32415860]
[28]
Liu Y-M, Xie J, Chen M-M, et al. Kidney function indicators predict adverse outcomes of COVID-19. Med 2021; 2(1): 38-48.e2.
[http://dx.doi.org/10.1016/j.medj.2020.09.001] [PMID: 33043313]
[29]
Esmon CT, Xu J, Lupu F. Innate immunity and coagulation. J Thromb Haemost 2011; 9(1): 182-8.
[http://dx.doi.org/10.1111/j.1538-7836.2011.04323.x] [PMID: 21781254]
[30]
Kruse JM, Magomedov A, Kurreck A, et al. Thromboembolic complications in critically ill COVID-19 patients are associated with impaired fibrinolysis. Crit Care 2020; 24(1): 676.
[http://dx.doi.org/10.1186/s13054-020-03401-8] [PMID: 33287877]
[31]
Ponti G, Maccaferri M, Ruini C, Tomasi A, Ozben T. Biomarkers associated with COVID-19 disease progression. Crit Rev Clin Lab Sci 2020; 57(6): 389-99.
[http://dx.doi.org/10.1080/10408363.2020.1770685] [PMID: 32503382]
[32]
I-Cheng Lee, Teh-Ia Huo, Yi-Hsiang Huang. Gastrointestinal and liver manifestations in patients with COVID-19. J Chin Med Assoc 2020.
[33]
Wei J-F, Huang F-Y, Xiong T-Y, et al. Acute myocardial injury is common in patients with COVID-19 and impairs their prognosis. Heart 2020; 106(15): 1154-9.
[http://dx.doi.org/10.1136/heartjnl-2020-317007] [PMID: 32354798]
[34]
Ntusi Ntobeko AB. COVID-19 and cardiovascular disease. SA Heart 2020; 17(1): 10-3.
[35]
Mishra AK, Sahu KK, George AA, Lal A. A review of cardiac manifestations and predictors of outcome in patients with COVID - 19. Heart Lung 2020; 49(6): 848-52.
[http://dx.doi.org/10.1016/j.hrtlng.2020.04.019] [PMID: 32593418]
[36]
Ginter E, Simko V. Type 2 diabetes mellitus, pandemic in 21st century. Adv Exp Med Biol 2012; 771: 42-50.
[http://dx.doi.org/10.1007/978-1-4614-5441-0_6] [PMID: 23393670]
[37]
Al-Goblan AS, Al-Alfi MA, Khan MZ. Mechanism linking diabetes mellitus and obesity. Diabetes Metab Syndr Obes 2014; 7: 587-91.
[http://dx.doi.org/10.2147/DMSO.S67400] [PMID: 25506234]
[38]
Petersen KF, Dufour S, Morino K, Yoo PS, Cline GW, Shulman GI. Reversal of muscle insulin resistance by weight reduction in young, lean, insulin-resistant offspring of parents with type 2 diabetes. Proc Natl Acad Sci USA 2012; 109(21): 8236-40.
[http://dx.doi.org/10.1073/pnas.1205675109] [PMID: 22547801]
[39]
Sutton EF, Beyl R, Early KS, Cefalu WT, Ravussin E, Peterson CM. Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab 2018; 27(6): 1212-1221.e3.
[http://dx.doi.org/10.1016/j.cmet.2018.04.010] [PMID: 29754952]
[40]
Ji J, Petropavlovskaia M, Khatchadourian A, et al. Type 2 diabetes is associated with suppression of autophagy and lipid accumulation in β-cells. J Cell Mol Med 2019; 23(4): 2890-900.
[http://dx.doi.org/10.1111/jcmm.14172] [PMID: 30710421]
[41]
Ebato C, Uchida T, Arakawa M, et al. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab 2008; 8(4): 325-32.
[http://dx.doi.org/10.1016/j.cmet.2008.08.009] [PMID: 18840363]
[42]
Marre M, Shaw J, Brändle M, et al. Liraglutide, a once-daily human GLP-1 analogue, added to a sulphonylurea over 26 weeks produces greater improvements in glycaemic and weight control compared with adding rosiglitazone or placebo in subjects with Type 2 diabetes (LEAD-1 SU). Diabet Med 2009; 26(3): 268-78.
[http://dx.doi.org/10.1111/j.1464-5491.2009.02666.x] [PMID: 19317822]
[43]
Raveendran AV, Chacko EC, Pappachan JM. Non-pharmacological treatment options in the management of diabetes mellitus. Eur Endocrinol 2018; 14(2): 31-9.
[http://dx.doi.org/10.17925/EE.2018.14.2.31] [PMID: 30349592]
[44]
Davari M, Moghaddam H R, Soola A H. Identifying the predictors of self-management behaviors in patients with diabetes based on ecological approach: A systematic review. Current diabetes reviews 2020. Online ahead of print
[http://dx.doi.org/10.2174/1573399816666201026161009]
[45]
Rawal LB, Tapp RJ, Williams ED, Chan C, Yasin S, Oldenburg B. Prevention of type 2 diabetes and its complications in developing countries: a review. Int J Behav Med 2012; 19(2): 121-33.
[http://dx.doi.org/10.1007/s12529-011-9162-9] [PMID: 21590464]
[46]
Sarker A, Das R, Ether S, Saif-Ur-Rahman KM. Non-pharmacological interventions for the prevention of type 2 diabetes mellitus in low and middle-income countries: Protocol for a systematic review and meta-analysis of randomized controlled trials. Syst Rev 2020; 9(1): 288.
[http://dx.doi.org/10.1186/s13643-020-01550-z] [PMID: 33298172]
[47]
Choi Y, Giovannucci E, Lee JE. Glycaemic index and glycaemic load in relation to risk of diabetes-related cancers: A meta-analysis. Br J Nutr 2012; 108(11): 1934-47.
[http://dx.doi.org/10.1017/S0007114512003984] [PMID: 23167978]
[48]
Bantle JP, Wylie-Rosett J, Albright AL, et al. Nutrition recommendations and interventions for diabetes-2006: A position statement of the American Diabetes Association. Diabetes Care 2006; 29(9): 2140-57.
[http://dx.doi.org/10.2337/dc06-9914] [PMID: 16936169]
[49]
Chaix A, Manoogian ENC, Melkani GC, Panda S. Time-restricted eating to prevent and manage chronic metabolic diseases.Annual review of nutrition. Book series 2019; 39: pp. 291-315.
[http://dx.doi.org/10.1146/annurev-nutr-082018-124320]
[50]
Hutchison AT, Regmi P, Manoogian ENC, et al. Time-restricted feeding improves glucose tolerance in men at risk for type 2 diabetes: a randomized crossover trial. Obesity (Silver Spring) 2019; 27(5): 724-32.
[http://dx.doi.org/10.1002/oby.22449] [PMID: 31002478]
[51]
Glick D, Barth S, Macleod KF. Autophagy: Cellular and molecular mechanisms. J Pathol 2010; 221(1): 3-12.
[http://dx.doi.org/10.1002/path.2697] [PMID: 20225336]
[52]
Froberg K, Andersen LB. Mini review: physical activity and fitness and its relations to cardiovascular disease risk factors in children. Int J Obes 2005; 29(Suppl. 2): S34-9.
[http://dx.doi.org/10.1038/sj.ijo.0803096] [PMID: 16385750]
[53]
Reiner M, Niermann C, Jekauc D, Woll A. Long-term health benefits of physical activity-a systematic review of longitudinal studies. BMC Public Health 2013; 13: 813.
[http://dx.doi.org/10.1186/1471-2458-13-813] [PMID: 24010994]
[54]
Aruoma OI, Narrain D, Indelicato J, Bourdon E, Murad F, Bahorun T. Cognitive impairment in patients with type 2 diabetes mellitus: Perspectives and challenges. Arch Med Biomed Res 2014; 1(2): 79-89.
[55]
Seufert J, Lübben G, Dietrich K, Bates PC. A comparison of the effects of thiazolidinediones and metformin on metabolic control in patients with type 2 diabetes mellitus. Clin Ther 2004; 26(6): 805-18.
[http://dx.doi.org/10.1016/S0149-2918(04)90125-7] [PMID: 15262452]
[56]
Westermann D, Rutschow S, Jäger S, et al. Contributions of inflammation and cardiac matrix metalloproteinase activity to cardiac failure in diabetic cardiomyopathy: the role of angiotensin type 1 receptor antagonism. Diabetes 2007; 56(3): 641-6.
[http://dx.doi.org/10.2337/db06-1163] [PMID: 17327431]
[57]
Pickup JC, Sutton AJ. Severe hypoglycaemia and glycaemic control in Type 1 diabetes: meta-analysis of multiple daily insulin injections compared with continuous subcutaneous insulin infusion. Diabet Med 2008; 25(7): 765-74.
[http://dx.doi.org/10.1111/j.1464-5491.2008.02486.x] [PMID: 18644063]
[58]
Olefsky JM, Saltiel AR. PPAR γ and the treatment of insulin resistance. Trends Endocrinol Metab 2000; 11(9): 362-8.
[http://dx.doi.org/10.1016/S1043-2760(00)00306-4] [PMID: 11042466]
[59]
Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet 2002; 359(9323): 2072-7.
[http://dx.doi.org/10.1016/S0140-6736(02)08905-5] [PMID: 12086760]
[60]
Albuquerque C, Correia C, Ferreira M. Adherence to the therapeutic regime in person with type 2 diabetes. Procedia Soc Behav Sci 2015; 171: 350-8.
[http://dx.doi.org/10.1016/j.sbspro.2015.01.132]
[61]
Philippe J, Raccah D. Treating type 2 diabetes: How safe are current therapeutic agents? Int J Clin Pract 2009; 63(2): 321-32.
[http://dx.doi.org/10.1111/j.1742-1241.2008.01980.x] [PMID: 19196370]
[62]
Wang Z, Wilson WA, Fujino MA, Roach PJ. Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p. Mol Cell Biol 2001; 21(17): 5742-52.
[http://dx.doi.org/10.1128/MCB.21.17.5742-5752.2001] [PMID: 11486014]
[63]
Bani D. Relaxin: A pleiotropic hormone. Gen Pharmacol 1997; 28(1): 13-22.
[http://dx.doi.org/10.1016/S0306-3623(96)00171-1] [PMID: 9112071]
[64]
Panten U, Schwanstecher M, Schwanstecher C. Sulfonylurea receptors and mechanism of sulfonylurea action. Exp Clin Endocrinol Diabetes 1996; 104(1): 1-9.
[http://dx.doi.org/10.1055/s-0029-1211414] [PMID: 8750563]
[65]
Sehra D, Sehra S, Sehra ST. Sulfonylureas: Do we need to introspect safety again? Expert Opin Drug Saf 2011; 10(6): 851-61.
[http://dx.doi.org/10.1517/14740338.2011.583234] [PMID: 21605015]
[66]
Füchtenbusch M, Standl E, Schatz H. Clinical efficacy of new thiazolidinediones and glinides in the treatment of type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes 2000; 108(3): 151-63.
[http://dx.doi.org/10.1055/s-2000-7737] [PMID: 10926309]
[67]
Murad MH, Coto-Yglesias F, Wang AT, et al. Clinical review: Drug-induced hypoglycemia: a systematic review. J Clin Endocrinol Metab 2009; 94(3): 741-5.
[http://dx.doi.org/10.1210/jc.2008-1416] [PMID: 19088166]
[68]
Bodmer M, Meier C, Krähenbühl S, Jick SS, Meier CR. Metformin, sulfonylureas, or other antidiabetes drugs and the risk of lactic acidosis or hypoglycemia: A nested case-control analysis. American Diabetes Association: Diabetes Care 2008; 31(11): 2086-91.
[http://dx.doi.org/10.2337/dc08-1171] [PMID: 18782901]
[69]
Moores . Prevention, diagnosis and treatment of venous thromboembolism in patients with COVID-19. CHEST guideline and expert panel report
[http://dx.doi.org/10.1016/j.chest.2020.05.559]
[70]
Goldberg RB, Kendall DM, Deeg MA, et al. A comparison of lipid and glycemic effects of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia. Diabetes Care 2005; 28(7): 1547-54.
[http://dx.doi.org/10.2337/diacare.28.7.1547] [PMID: 15983299]
[71]
Hayes MR, Mietlicki-Baase EG, Kanoski SE, De Jonghe BC. Incretins and amylin: neuroendocrine communication between the gut, pancreas, and brain in control of food intake and blood glucose. Annu Rev Nutr 2014; 34: 237-60.
[http://dx.doi.org/10.1146/annurev-nutr-071812-161201] [PMID: 24819325]
[72]
Thornberry NA, Gallwitz B. Mechanism of action of inhibitors of dipeptidyl-peptidase-4 (DPP-4). Best Pract Res Clin Endocrinol Metab 2009; 23(4): 479-86.
[http://dx.doi.org/10.1016/j.beem.2009.03.004] [PMID: 19748065]
[73]
Rolee P, Bridgeman MB. Dipeptidyl peptidase-4 (DPP-4) inhibitors in the management of diabetes. P & T: A peer-reviewed journal for formulary management 2010; 35(9): 509-13.
[74]
Kalra S. Alpha glucosidase inhibitors. J Pak Med Assoc 2014; 64(4): 474-6.
[PMID: 24864650]
[75]
Eberhard S, Schnell O. Alpha-glucosidase inhibitors 2012 - cardiovascular considerations and trial evaluation.Diabetes and vascular disease research. 2012; pp. 163-9.
[http://dx.doi.org/10.1177/1479164112441524]
[76]
Lai CC, Ko WC, Lee PI, Jean SS, Hsueh PR. Extra-respiratory manifestations of COVID-19. Int J Antimicrob Agents 2020; 56(2): 106024.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106024] [PMID: 32450197]
[77]
Peters AL, Buschur EO, Buse JB, Cohan P, Diner JC, Hirsch IB. Euglycemic diabetic ketoacidosis: a potential complication of treatment with sodium-glucose cotransporter 2 inhibition. Diabetes Care 2015; 38(9): 1687-93.
[http://dx.doi.org/10.2337/dc15-0843] [PMID: 26078479]
[78]
Halimi S, Vergès B. Adverse effects and safety of SGLT-2 inhibitors. Diabetes Metab 2014; 40(6)(Suppl. 1): S28-34.
[http://dx.doi.org/10.1016/S1262-3636(14)72693-X] [PMID: 25554069]
[79]
Heerspink HJ, Perkins BA, Fitchett DH, Husain M, Cherney DZ. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation 2016; 134(10): 752-72.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.021887] [PMID: 27470878]
[80]
Geerlings S, Fonseca V, Castro-Diaz D, List J, Parikh S. Genital and urinary tract infections in diabetes: Impact of pharmacologically-induced glucosuria. Diabetes Res Clin Pract 2014; 103(3): 373-81.
[http://dx.doi.org/10.1016/j.diabres.2013.12.052] [PMID: 24529566]
[81]
Chobanian Aram V, Bakris George L, Black Henry R, et al. Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. hypertension 2003; 42(6): 1206-52.
[82]
Tahrani AA, Barnett AH, Bailey CJ. SGLT inhibitors in management of diabetes. Lancet Diabetes Endocrinol 2013; 1(2): 140-51.
[http://dx.doi.org/10.1016/S2213-8587(13)70050-0] [PMID: 24622320]

© 2025 Bentham Science Publishers | Privacy Policy